1
|
Golenser J, Birman I, Gold D. Considering ivermectin for treatment of schistosomiasis. Parasitol Res 2024; 123:180. [PMID: 38592544 PMCID: PMC11003930 DOI: 10.1007/s00436-024-08178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Because of recent reports of praziquantel resistance in schistosome infections, there have been suggestions to employ ivermectin as a possible alternative, especially as its chemical composition is different from that of praziquantel, so cross-resistance is not expected. In order to ascertain possible damage and elimination of worms, we used ivermectin by oral gavage in infected mice, at a high dose (30.1 mg/kg, bordering toxicity). We also tested the efficacy of the drug at various times postinfection (PI), to check on possible effect on young and mature stages of the parasites. Thus, we treated mice on days 21 and 22 or on days 41 and 42 and even on days 21, 22, 41, and 42 PI. None of the treatment regimens resulted in cure rates or signs of lessened pathology in the mice. We also compared the effect of ivermectin to that of artemisone, an artemisinin derivative which had served us in the past as an effective anti-schistosome drug, and there was a stark difference in the artemisone's efficacy compared to that of ivermectin; while ivermectin was not effective, artemisone eliminated most of the worms, prevented egg production and granulomatous inflammatory response. We assume that the reported lack of activity of ivermectin, in comparison with praziquantel and artemisinins, originates from the difference in their mode of action. In wake of our results, we suggest that ivermectin is not a suitable drug for treatment of schistosomiasis.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| | - Ida Birman
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Daniel Gold
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Marchant JS. Progress interrogating TRPMPZQ as the target of praziquantel. PLoS Negl Trop Dis 2024; 18:e0011929. [PMID: 38358948 PMCID: PMC10868838 DOI: 10.1371/journal.pntd.0011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The drug praziquantel (PZQ) has served as the long-standing drug therapy for treatment of infections caused by parasitic flatworms. These encompass diseases caused by parasitic blood, lung, and liver flukes, as well as various tapeworm infections. Despite a history of clinical usage spanning over 4 decades, the parasite target of PZQ has long resisted identification. However, a flatworm transient receptor potential ion channel from the melastatin subfamily (TRPMPZQ) was recently identified as a target for PZQ action. Here, recent experimental progress interrogating TRPMPZQ is evaluated, encompassing biochemical, pharmacological, genetic, and comparative phylogenetic data that highlight the properties of this ion channel. Various lines of evidence that support TRPMPZQ being the therapeutic target of PZQ are presented, together with additional priorities for further research into the mechanism of action of this important clinical drug.
Collapse
Affiliation(s)
- Jonathan S. Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Chulkov EG, Rohr CM, Marchant JS. Praziquantel activates a native cation current in Schistosoma mansoni. FRONTIERS IN PARASITOLOGY 2023; 2:1285177. [PMID: 39816816 PMCID: PMC11732042 DOI: 10.3389/fpara.2023.1285177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 01/18/2025]
Abstract
Introduction Praziquantel (PZQ), an anthelmintic drug discovered in the 1970s, is still used to treat schistosomiasis and various other infections caused by parasitic flatworms. PZQ causes a triad of phenotypic effects on schistosome worms - rapid depolarization, muscle contraction, and damage throughout the worm tegument. The molecular target mediating these effects has been intimated as a Ca2+-permeable ion channel, but native currents evoked by PZQ have not been reported in any schistosome cell type. The properties of the endogenous PZQ activated conductance therefore remain unknown. Methods Here, invasive electrophysiology was used to probe for responses to PZQ from different locales in a living schistosome worm. Results and discussion No direct response was seen in tegument-derived vesicles, or from the sub-tegumental muscle layer despite the presence of voltage-operated currents. However, PZQ rapidly triggered a sustained, non-selective cation current in recordings from neuronal tissue, targeting both the anterior ganglion and the main longitudinal nerve cord. The biophysical signature of this PZQ-evoked current resolved at single channel resolution matched that of a transient receptor potential ion channel named TRPMPZQ, recently proposed as the molecular target of PZQ. The endogenous PZQ-evoked current was also inhibited by a validated TRPMPZQ antagonist. PZQ therefore is a neuroactive anthelmintic, causing a sustained depolarization through ion channels with the characteristics of TRPMPZQ.
Collapse
Affiliation(s)
| | | | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Sprague DJ, Kaethner M, Park SK, Rohr CM, Harris JL, Maillard D, Spangenberg T, Lundström-Stadelmann B, Marchant JS. The Anthelmintic Activity of Praziquantel Analogs Correlates with Structure-Activity Relationships at TRPM PZQ Orthologs. ACS Med Chem Lett 2023; 14:1537-1543. [PMID: 37970586 PMCID: PMC10641913 DOI: 10.1021/acsmedchemlett.3c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
The anthelmintic drug praziquantel remains a key clinical therapy for treating various diseases caused by parasitic flatworms. The parasite target of praziquantel has remained undefined despite longstanding usage in the clinic, although a candidate ion channel target, named TRPMPZQ, has recently been identified. Intriguingly, certain praziquantel derivatives show different activities against different parasites: for example, some praziquantel analogs are considerably more active against cestodes than against schistosomes. Here we interrogate whether the different activities of praziquantel analogs against different parasites are also reflected by unique structure-activity relationships at the TRPMPZQ channels found in these different organisms. To do this, several praziquantel analogs were synthesized and functionally profiled against schistosome and cestode TRPMPZQ channels. Data demonstrate that structure-activity relationships are closely mirrored between parasites and their TRPMPZQ orthologs, providing further support for TRPMPZQ as the therapeutically relevant target of praziquantel.
Collapse
Affiliation(s)
- Daniel J. Sprague
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Program
in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Marc Kaethner
- Institute
of Parasitology, Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Berne, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, 3012 Berne, Switzerland
| | - Sang-Kyu Park
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Claudia M. Rohr
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jade L. Harris
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - David Maillard
- Central
Process Development - Downstream Processing Services, Merck Electronics KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Thomas Spangenberg
- Global Health
Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Germany, 1262 Eysins, Switzerland
| | - Britta Lundström-Stadelmann
- Institute
of Parasitology, Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Berne, Switzerland
- Multidisciplinary
Center for Infectious Diseases, University
of Bern, 3012 Berne, Switzerland
| | - Jonathan S. Marchant
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|