1
|
Yadavalli R, Umeda K, Waugh HA, Tracy AN, Sidhu AV, Hernández DE, Fernández Robledo JA. CRISPR/Cas9 Ribonucleoprotein-Based Genome Editing Methodology in the Marine Protozoan Parasite Perkinsus marinus. Front Bioeng Biotechnol 2021; 9:623278. [PMID: 33898400 PMCID: PMC8062965 DOI: 10.3389/fbioe.2021.623278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
Perkinsus marinus (Perkinsozoa), a close relative of apicomplexans, is an osmotrophic facultative intracellular marine protozoan parasite responsible for "Dermo" disease in oysters and clams. Although there is no clinical evidence of this parasite infecting humans, HLA-DR40 transgenic mice studies strongly suggest the parasite as a natural adjuvant in oral vaccines. P. marinus is being developed as a heterologous gene expression platform for pathogens of medical and veterinary relevance and a novel platform for delivering vaccines. We previously reported the transient expression of two rodent malaria genes Plasmodium berghei HAP2 and MSP8. In this study, we optimized the original electroporation-based protocol to establish a stable heterologous expression method. Using 20 μg of pPmMOE[MOE1]:GFP and 25.0 × 106 P. marinus cells resulted in 98% GFP-positive cells. Furthermore, using the optimized protocol, we report for the first time the successful knock-in of GFP at the C-terminus of the PmMOE1 using ribonucleoprotein (RNP)-based CRISPR/Cas9 gene editing methodology. The GFP was expressed 18 h post-transfection, and expression was observed for 8 months post-transfection, making it a robust and stable knock-in system.
Collapse
Affiliation(s)
| | - Kousuke Umeda
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hannah A. Waugh
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Southern Maine Community College, South Portland, ME, United States
| | - Adrienne N. Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | - Asha V. Sidhu
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | - Derek E. Hernández
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | | |
Collapse
|
2
|
Sakamoto H, Hirakawa Y, Ishida KI, Keeling PJ, Kita K, Matsuzaki M. Puromycin selection for stable transfectants of the oyster-infecting parasite Perkinsus marinus. Parasitol Int 2018; 69:13-16. [PMID: 30389616 DOI: 10.1016/j.parint.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Perkinsus marinus is a marine protozoan parasite that infects natural and farmed oysters, attracting attention from researchers in both fisheries and evolutionary biology. The functions of almost all cellular components and organelles are, however, poorly understood even though a draft genome sequence of P. marinus is publicly available. One of the major obstacles for a functional study of the parasite is limited experimental means for genetic manipulation: a transfection method was established in 2008, and the first drug selection system with bleomycin was reported in 2016. We here introduce the second drug-selectable marker for selection of P. marinus transfectants. The parasite growth is efficiently inhibited by puromycin (IC50 = 4.96 μg/mL), and transfection of its resistance gene, puromycin-N-acetyl-transferase (pac), confers resistance to the drug on the parasite. Stable transfectants can be obtained within 2 months by treating with puromycin at 100 μg/mL. Furthermore, combining puromycin and bleomycin treatment can select transfectants co-expressing two marker genes. This dual-transfection method raises the possibility of using co-localization to identify the cellular localization of novel proteins in P. marinus, thereby contributing to the understanding of cellular functions and pathogenesis.
Collapse
Affiliation(s)
- Hirokazu Sakamoto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
3
|
Sakamoto H, Suzuki S, Nagamune K, Kita K, Matsuzaki M. Investigation into the Physiological Significance of the Phytohormone Abscisic Acid in Perkinsus marinus, an Oyster Parasite Harboring a Nonphotosynthetic Plastid. J Eukaryot Microbiol 2016; 64:440-446. [PMID: 27813319 PMCID: PMC5573998 DOI: 10.1111/jeu.12379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 12/03/2022]
Abstract
Some organisms have retained plastids even after they have lost the ability to photosynthesize. Several studies of nonphotosynthetic plastids in apicomplexan parasites have shown that the isopentenyl pyrophosphate biosynthesis pathway in the organelle is essential for their survival. A phytohormone, abscisic acid, one of several compounds biosynthesized from isopentenyl pyrophosphate, regulates the parasite cell cycle. Thus, it is possible that the phytohormone is universally crucial, even in nonphotosynthetic plastids. Here, we examined this possibility using the oyster parasite Perkinsus marinus, which is a plastid‐harboring cousin of apicomplexan parasites and has independently lost photosynthetic ability. Fluridone, an inhibitor of abscisic acid biosynthesis, blocked parasite growth and induced cell clustering. Nevertheless, abscisic acid and its intermediate carotenoids did not affect parasite growth or rescue the parasite from inhibition. Moreover, abscisic acid was not detected from the parasite using liquid chromatography mass spectrometry. Our findings show that abscisic acid does not play any significant roles in P. marinus.
Collapse
Affiliation(s)
- Hirokazu Sakamoto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shigeo Suzuki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kisaburo Nagamune
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
4
|
Cold ER, Vasta GR, Robledo JAF. Transient Expression of Plasmodium berghei MSP8 and HAP2 in the Marine Protozoan Parasite Perkinsus marinus. J Parasitol 2016; 103:118-122. [PMID: 27723436 DOI: 10.1645/16-88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Perkinsus marinus is a protozoan parasite of molluscs that can be propagated in vitro in a defined culture medium, in the absence of host cells. We previously reported that P. marinus trophozoites can be transfected with high efficiency by electroporation using a plasmid based on MOE, a highly expressed gene, and proposed its potential use as a "pseudoparasite." This is a novel gene expression platform for parasites of medical relevance for which the choice of the surrogate organism is based on phylogenetic affinity to the parasite of interest, while taking advantage of the whole engineered surrogate organism as a vaccination adjuvant. Here we improved the original transfection plasmid by incorporating a multicloning site, an enterokinase recognition sequence upstream of GFP, and a His-tag and demonstrate its potential suitability for the heterologous expression of Plasmodium sp. genes relevant to the development of anti-malarial vaccines. Plasmodium berghei HAP2 and MSP8, currently considered candidate genes for a malaria vaccine, were cloned into p[MOE]:GFP, and the constructs were used to transfect P. marinus trophozoites. Within 48 hr of transfection we observed fluorescent cells indicating that the P. berghei genes fused to GFP were expressed. The expression appeared to be transient for both P. berghei genes, as florescence of the transfectants diminished gradually over time. Although this heterologous expression system will require optimization for integration and constitutive expression of Plasmodium genes, our results represent attainment of proof for the "pseudoparasite" concept we previously proposed, as we show that the engineered P. marinus system has the potential to become a surrogate system suitable for expression of Plasmodium spp. genes of interest, which could eventually be used as a malaria vaccine delivery platform. The aim of the present study was to test the ability of marine protozoan parasite P. marinus to express genes of P. berghei .
Collapse
Affiliation(s)
- Emma R Cold
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544
| | - Gerardo R Vasta
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544
| | | |
Collapse
|
5
|
Lomakina GY, Modestova YA, Ugarova NN. Bioluminescence assay for cell viability. BIOCHEMISTRY (MOSCOW) 2016; 80:701-13. [PMID: 26531016 DOI: 10.1134/s0006297915060061] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Theoretical aspects of the adenosine triphosphate bioluminescence assay based on the use of the firefly luciferin-luciferase system are considered, as well as its application for assessing cell viability in microbiology, sanitation, medicine, and ecology. Various approaches for the analysis of individual or mixed cultures of microorganisms are presented, and capabilities of the method for investigation of biological processes in live cells including necrosis, apoptosis, as well as for investigation of the dynamics of metabolism are described.
Collapse
Affiliation(s)
- G Yu Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
6
|
Cold ER, Freyria NJ, Martínez Martínez J, Fernández Robledo JA. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus. PLoS One 2016; 11:e0155015. [PMID: 27149378 PMCID: PMC4858233 DOI: 10.1371/journal.pone.0155015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/22/2016] [Indexed: 11/18/2022] Open
Abstract
The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham's F12-5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1) Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham's F12-5% FBS- 0.75% agar plates, which could be further propagated in liquid medium; 2) Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3) Chemical susceptibility: Infusing the DME: Ham's F12-5% FBS- 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications.
Collapse
Affiliation(s)
- Emma R. Cold
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- Research Experiences for Undergraduates (REU) NSF Program - 2015 - Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America
| | - Nastasia J. Freyria
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- Université de Toulon, Toulon, France
| | | | | |
Collapse
|
7
|
Alemán Resto Y, Fernández Robledo JA. Identification of MMV Malaria Box inhibitors of Perkinsus marinus using an ATP-based bioluminescence assay. PLoS One 2014; 9:e111051. [PMID: 25337810 PMCID: PMC4206467 DOI: 10.1371/journal.pone.0111051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/26/2014] [Indexed: 11/18/2022] Open
Abstract
"Dermo" disease caused by the protozoan parasite Perkinsus marinus (Perkinsozoa) is one of the main obstacles to the restoration of oyster populations in the USA. Perkinsus spp. are also a concern worldwide because there are limited approaches to intervention against the disease. Based on the phylogenetic affinity between the Perkinsozoa and Apicomplexa, we exposed Perkinsus trophozoites to the Medicines for Malaria Venture Malaria Box, an open access compound library comprised of 200 drug-like and 200 probe-like compounds that are highly active against the erythrocyte stage of Plasmodium falciparum. Using a final concentration of 20 µM, we found that 4 days after exposure 46% of the compounds were active against P. marinus trophozoites. Six compounds with IC50 in the µM range were used to compare the degree of susceptibility in vitro of eight P. marinus strains from the USA and five Perkinsus species from around the world. The three compounds, MMV666021, MMV665807 and MMV666102, displayed a uniform effect across Perkinsus strains and species. Both Perkinsus marinus isolates and Perkinsus spp. presented different patterns of response to the panel of compounds tested, supporting the concept of strain/species variability. Here, we expanded the range of compounds available for inhibiting Perkinsus proliferation in vitro and characterized Perkinsus phenotypes based on their resistance to six compounds. We also discuss the implications of these findings in the context of oyster management. The Perkinsus system offers the potential for investigating the mechanism of action of the compounds of interest.
Collapse
Affiliation(s)
- Yesmalie Alemán Resto
- Research Experiences for Undergraduates (REU) NSF Program - 2013 - Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America
| | | |
Collapse
|
8
|
Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo) do not develop noticeable pathology but elicit systemic immunity. PLoS One 2014; 9:e87435. [PMID: 24498105 PMCID: PMC3909113 DOI: 10.1371/journal.pone.0087435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/23/2013] [Indexed: 12/02/2022] Open
Abstract
Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA0) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA0 mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.
Collapse
|
9
|
Fernández Robledo JA, Vasta GR, Record NR. Protozoan parasites of bivalve molluscs: literature follows culture. PLoS One 2014; 9:e100872. [PMID: 24955977 PMCID: PMC4067406 DOI: 10.1371/journal.pone.0100872] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
Bivalve molluscs are key components of the estuarine environments as contributors to the trophic chain, and as filter -feeders, for maintaining ecosystem integrity. Further, clams, oysters, and scallops are commercially exploited around the world both as traditional local shellfisheries, and as intensive or semi-intensive farming systems. During the past decades, populations of those species deemed of environmental or commercial interest have been subject to close monitoring given the realization that these can suffer significant decline, sometimes irreversible, due to overharvesting, environmental pollution, or disease. Protozoans of the genera Perkinsus, Haplosporidium, Marteilia, and Bonamia are currently recognized as major threats for natural and farmed bivalve populations. Since their identification, however, the variable publication rates of research studies addressing these parasitic diseases do not always appear to reflect their highly significant environmental and economic impact. Here we analyzed the peer- reviewed literature since the initial description of these parasites with the goal of identifying potential milestone discoveries or achievements that may have driven the intensity of the research in subsequent years, and significantly increased publication rates. Our analysis revealed that after initial description of the parasite as the etiological agent of a given disease, there is a time lag before a maximal number of yearly publications are reached. This has already taken place for most of them and has been followed by a decrease in publication rates over the last decade (20- to 30- year lifetime in the literature). Autocorrelation analyses, however, suggested that advances in parasite purification and culture methodologies positively drive publication rates, most likely because they usually lead to novel molecular tools and resources, promoting mechanistic studies. Understanding these trends should help researchers in prioritizing research efforts for these and other protozoan parasites, together with their development as model systems for further basic and translational research in parasitic diseases.
Collapse
Affiliation(s)
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, University of Maryland Baltimore, School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, United States of America
| | - Nicholas R. Record
- Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America
| |
Collapse
|