1
|
Dawood WA, Fisher GM, Kinnen FJM, Anzenhofer C, Skinner-Adams T, Alves Avelar L, Asfaha Y, Kurz T, Andrews KT. Activity of alkoxyamide-based histone deacetylase inhibitors against Plasmodium falciparum malaria parasites. Exp Parasitol 2024; 258:108716. [PMID: 38340779 DOI: 10.1016/j.exppara.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
There are more than 240 million cases of malaria and 600,000 associated deaths each year, most due to infection with Plasmodium falciparum parasites. While malaria treatment options exist, new drugs with novel modes of action are needed to address malaria parasite drug resistance. Protein lysine deacetylases (termed HDACs) are important epigenetic regulatory enzymes and prospective therapeutic targets for malaria. Here we report the antiplasmodial activity of a panel of 17 hydroxamate zinc binding group HDAC inhibitors with alkoxyamide linkers and different cap groups. The two most potent compounds (4a and 4b) were found to inhibit asexual P. falciparum growth with 50% inhibition concentrations (IC50's) of 0.07 μM and 0.09 μM, respectively, and demonstrated >200-fold more selectivity for P. falciparum parasites versus human neonatal foreskin fibroblasts (NFF). In situ hyperacetylation studies demonstrated that 4a, 4b and analogs caused P. falciparum histone H4 hyperacetylation, suggesting HDAC inhibition, with structure activity relationships providing information relevant to the design of new Plasmodium-specific aliphatic chain hydroxamate HDAC inhibitors.
Collapse
Affiliation(s)
- Wisam A Dawood
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Franziska J M Kinnen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Christian Anzenhofer
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Leandro Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Yodita Asfaha
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany.
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
2
|
Hart CJ, Riches AG, Tiash S, Abraham R, Fayd'Herbe K, Joch E, Zulfiqar B, Sykes ML, Avery VM, Šlapeta J, Abraham S, Ryan JH, Skinner-Adams TS. Thieno[3,2-b]pyrrole 5-carboxamides as potent and selective inhibitors of Giardia duodenalis. Int J Parasitol Drugs Drug Resist 2023; 23:54-62. [PMID: 37776606 PMCID: PMC10560980 DOI: 10.1016/j.ijpddr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Giardia duodenalis is the causative agent of the neglected diarrhoeal disease giardiasis. While often self-limiting, giardiasis is ubiquitous and impacts hundreds of millions of people annually. It is also a common gastro-intestinal disease of domestic pets, wildlife, and livestock animals. However, despite this impact, there is no vaccine for Giardia currently available. In addition, treatment relies on chemotherapies that are associated with increasing failure rates. To identify new treatment options for giardiasis we recently screened the Compounds Australia Scaffold Library for new chemotypes with selective anti-Giardia activity, identifying three compounds with sub-μM activity and promising selectivity. Here we extended these studies by examining the anti-Giardia activity of series CL9569 compounds. This compound series was of interest given the promising activity (IC50 1.2 μM) and selectivity demonstrated by representative compound, SN00798525 (1). Data from this work has identified an additional three thieno [3,2-b]pyrrole 5-carboxamides with anti-Giardia activity, including 2 which displayed potent cytocidal (IC50 ≤ 10 nM) and selective activity against multiple Giardia strains, including representatives from both human-infecting assemblages and metronidazole resistant parasites. Preclinical studies in mice also demonstrated that 2 is well-tolerated, does not impact the normal gut microbiota and can reduce Giardia parasite burden in these animals.
Collapse
Affiliation(s)
- Christopher Js Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| | - Andrew G Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria, Australia
| | - Snigdha Tiash
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Rebecca Abraham
- Harry Butler Institute, Murdoch University, Western Australia, Australia
| | - Keely Fayd'Herbe
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| | - Ellis Joch
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| | - Bilal Zulfiqar
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Melissa L Sykes
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales, Australia
| | - Sam Abraham
- Harry Butler Institute, Murdoch University, Western Australia, Australia
| | - John H Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia.
| |
Collapse
|
3
|
Kundu R, Banerjee S, Baidya SK, Adhikari N, Jha T. A quantitative structural analysis of AR-42 derivatives as HDAC1 inhibitors for the identification of promising structural contributors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:861-883. [PMID: 36412121 DOI: 10.1080/1062936x.2022.2145353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Alteration and abnormal epigenetic mechanisms can lead to the aberration of normal biological functions and the occurrence of several diseases. The histone deacetylase (HDAC) family of enzymes is one of the prime regulators of epigenetic functions modifying the histone proteins, and thus, regulating epigenetics directly. HDAC1 is one of those HDACs which have important contributions to cellular epigenetics. The abnormality of HDAC is correlated to the occurrence, progression, and poor prognosis in several disease conditions namely neurodegenerative disorders, cancer cell proliferation, metastasis, chemotherapy resistance, and survival in various cancers. Therefore, the progress of potent and effective HDAC1 inhibitors is one of the prime approaches to combat such diseases. In this study, both regression and classification-based molecular modelling studies were conducted on some AR-42 derivatives as HDAC1 inhibitors to elucidate the crucial structural aspects that are responsible for regulating their biological responses. This study revealed that the molecular polarizability, van der Waals volume, the presence of aromatic rings as well as the higher number of hydrogen bond acceptors might affect prominently their inhibitory activity and might be responsible for proper fitting and interactions at the HDAC1 active site to pertain effective inhibition.
Collapse
Affiliation(s)
- R Kundu
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|