1
|
Tsakalozou E, Alam K, Babiskin A, Zhao L. Physiologically-Based Pharmacokinetic Modeling to Support Determination of Bioequivalence for Dermatological Drug Products: Scientific and Regulatory Considerations. Clin Pharmacol Ther 2021; 111:1036-1049. [PMID: 34231211 DOI: 10.1002/cpt.2356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling and simulation provides mechanism-based predictions of the pharmacokinetics of an active ingredient following its administration in humans. Dermal PBPK models describe the skin permeation and disposition of the active ingredient following the application of a dermatological product on the skin of virtual healthy and diseased human subjects. These models take into account information on product quality attributes, physicochemical properties of the active ingredient and skin (patho)physiology, and their interplay with each other. Regulatory and product development decision makers can leverage these quantitative tools to identify factors impacting local and systemic exposure. In the realm of generic drug products, the number of US Food and Drug Administratioin (FDA) interactions that use dermal PBPK modeling to support alternative bioequivalence (BE) approaches is increasing. In this report, we share scientific considerations on the development, verification and validation (V&V), and application of PBPK models within the context of a virtual BE assessment for dermatological drug products. We discuss the challenges associated with model V&V for these drug products stemming from the fact that target-site active ingredient concentrations are typically not measurable. Additionally, there are no established relationships between local and systemic PK profiles, when the latter are quantifiable. To that end, we detail a multilevel model V&V approach involving validation for the model of the drug product of interest coupled with the overall assessment of the modeling platform in use while leveraging in vitro and in vivo data related to local and systemic bioavailability.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Khondoker Alam
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Bodenlenz M, Augustin T, Birngruber T, Tiffner KI, Boulgaropoulos B, Schwingenschuh S, Raney SG, Rantou E, Sinner F. Variability of Skin Pharmacokinetic Data: Insights from a Topical Bioequivalence Study Using Dermal Open Flow Microperfusion. Pharm Res 2020; 37:204. [PMID: 32989514 PMCID: PMC7522073 DOI: 10.1007/s11095-020-02920-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Dermal open flow microperfusion (dOFM) has previously demonstrated its utility to assess the bioequivalence (BE) of topical drug products in a clinical study. We aimed to characterize the sources of variability in the dermal pharmacokinetic data from that study. METHODS Exploratory statistical analyses were performed with multivariate data from a clinical dOFM-study in 20 healthy adults evaluating the BE, or lack thereof, of Austrian test (T) and U.S. reference (R) acyclovir cream, 5% products. RESULTS The overall variability of logAUC values (CV: 39% for R and 45% for T) was dominated by inter-subject variability (R: 82%, T: 91%) which correlated best with the subject's skin conductance. Intra-subject variability was 18% (R) and 9% (T) of the overall variability; skin treatment sites or methodological factors did not significantly contribute to that variability. CONCLUSIONS Inter-subject variability was the major component of overall variability for acyclovir, and treatment site location did not significantly influence intra-subject variability. These results support a dOFM BE study design with T and R products assessed simultaneously on the same subject, where T and R treatment sites do not necessarily need to be next to each other. Localized variation in skin microstructure may be primarily responsible for intra-subject variability.
Collapse
Affiliation(s)
- Manfred Bodenlenz
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Augustin
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Birngruber
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Katrin I Tiffner
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Beate Boulgaropoulos
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Simon Schwingenschuh
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Sam G Raney
- Division of Therapeutic Performance Office of Research and Standards Office of Generic Drugs, United States (U.S.) Food and Drug Administration, 10903 New Hampshire Avenue, MD, 20993, Silver Spring, USA
| | - Elena Rantou
- Division of Biostatistics VIII, Office of Biostatistics, Office of Translational Sciences, United States (U.S.) Food and Drug Administration, 10903 New Hampshire Avenue, MD, 20993, Silver Spring, USA
| | - Frank Sinner
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria.
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
3
|
Variability in Capsaicin-stimulated Calcitonin Gene-related Peptide Release from Human Dental Pulp. J Endod 2016; 42:542-6. [PMID: 26898566 DOI: 10.1016/j.joen.2015.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The unique innervation and anatomic features of dental pulp contribute to the remarkable finding that any physical stimulation of pulpal tissue is painful. Furthermore, when pathological processes such as caries affect teeth and produce inflammation of the pulp, the pain experienced can be quite intense and debilitating. To better understand these underlying neurobiological mechanisms and identify novel analgesic targets for pulpally derived pain, we have developed a powerful ex vivo model using human tooth slices. METHODS Noncarious, freshly extracted teeth were collected and sectioned longitudinally into 1-mm-thick slices containing both dental pulp and the surrounding mineralized tissues. Tooth slices from 36 patients were exposed to 60 μmol/L capsaicin to stimulate the release of calcitonin gene-related peptide (CGRP) from nerve terminals in the pulp. Patient factors were analyzed for their effects on capsaicin-stimulated CGRP release using a mixed model analysis of variance. RESULTS Approximately one third of the variability observed in capsaicin-evoked CGRP release was attributable to differences between individuals. In terms of individual factors, there was no effect of anesthesia type, sex, or age on capsaicin-stimulated CGRP release. Using a within-subject study design, a significant effect of capsaicin on CGRP release was observed. CONCLUSIONS Capsaicin-stimulated CGRP release from dental pulp is highly variable between individuals. A within-subject study design improves the variability and maximizes the potential of this powerful translational model to test the efficacy of novel pharmacotherapeutic agents on human peripheral nociceptors.
Collapse
|
4
|
Shukla C, Bashaw E, Stagni G, Benfeldt E. Applications of dermal microdialysis: a review. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50044-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Schmidt S, Banks R, Kumar V, Rand KH, Derendorf H. Clinical Microdialysis in Skin and Soft Tissues: An Update. J Clin Pharmacol 2013; 48:351-64. [DOI: 10.1177/0091270007312152] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Holmgaard R, Benfeldt E, Nielsen JB, Gatschelhofer C, Sorensen JA, Höfferer C, Bodenlenz M, Pieber TR, Sinner F. Comparison of Open-Flow Microperfusion and Microdialysis Methodologies When Sampling Topically Applied Fentanyl and Benzoic Acid in Human Dermis Ex Vivo. Pharm Res 2012; 29:1808-20. [DOI: 10.1007/s11095-012-0705-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/08/2012] [Indexed: 11/30/2022]
|
7
|
Holmgaard R, Benfeldt E, Bangsgaard N, Sorensen JA, Brosen K, Nielsen F, Nielsen JB. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin. Skin Pharmacol Physiol 2011; 25:9-16. [PMID: 21849814 DOI: 10.1159/000330491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/09/2011] [Indexed: 12/25/2022]
Abstract
Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis and the amount of drug sampled following topical penetration ex vivo. The result is of relevance to the in vivo situation, and it can be predicted that the differences in sampling at different probe depths will have a more significant impact in the beginning of a study or in studies of short duration. Based on this study it can be recommended that studies of topical drug penetration using DMD sampling should include measurements of probe depth and that efforts should be made to minimize probe depth variability.
Collapse
Affiliation(s)
- R Holmgaard
- Department of Environmental Medicine, University of Southern Denmark, Odense. rikkeholmgaard @ gmail.com
| | | | | | | | | | | | | |
Collapse
|
8
|
Assessment of topical bioequivalence using dermal microdialysis and tape stripping methods. Pharm Res 2011; 28:2165-75. [PMID: 21499834 DOI: 10.1007/s11095-011-0444-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To assess the bioequivalence of two commercial topical formulations of oxytetracycline HCl by tape stripping and microdialysis in healthy volunteers. METHODS Tape stripping study was conducted on 12 healthy volunteers. After a 30-minute application of the formulations, adhesive tapes were used to sample stratum corneum at 0.25, 0.5, 1, 1.5, 2, 3, 4 hr. Ten of these volunteers were included in the microdialysis study with a period of 4 weeks between the experiments. Microdialysis probes were inserted into the dermis of the forearm. Following the application of the test and reference simultaneously, dialysates were collected in 30-minute sampling intervals up to 4 hr. RESULTS Pharmacokinetic evaluation by microdialysis yielded that the test could not be said to be bioequivalent to the reference at 90% CI. The intersubject variability of oxytetracycline content in stratum corneum was moderate when it was compared to the dermal levels. The test was found to be bioequivalent to reference according to the dermatopharmacokinetic evaluation by tape stripping. CONCLUSIONS No significant correlations were found between microdialysis and tape stripping methods as regarding the topical bioequivalence of oxytetracycline HCl formulations.
Collapse
|
9
|
Bioequivalence for Topical Products—An Update. Pharm Res 2010; 27:2590-601. [DOI: 10.1007/s11095-010-0250-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 08/16/2010] [Indexed: 01/30/2023]
|
10
|
Nourian AR, Mills PC, Pollitt CC. Development of an intra-lamellar microdialysis method for laminitis investigations in horses. Vet J 2010; 183:22-26. [DOI: 10.1016/j.tvjl.2009.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/27/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
|
11
|
Tettey-Amlalo RNO, Kanfer I, Skinner MF, Benfeldt E, Verbeeck RK. Application of dermal microdialysis for the evaluation of bioequivalence of a ketoprofen topical gel. Eur J Pharm Sci 2009; 36:219-25. [DOI: 10.1016/j.ejps.2008.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/07/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
|
12
|
Wetherell JR, Armstrong SJ, Read RW, Clough GF. VX Penetration Following Percutaneous Poisoning: A Dermal Microdialysis Study in the Guinea Pig. Toxicol Mech Methods 2008; 18:313-21. [DOI: 10.1080/15376510701884944] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
García Ortiz P, Hansen SH, Shah VP, Menné T, Benfeldt E. The effect of irritant dermatitis on cutaneous bioavailability of a metronidazole formulation, investigated by microdialysis and dermatopharmacokinetic method. Contact Dermatitis 2008; 59:23-30. [DOI: 10.1111/j.1600-0536.2008.01348.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
In-vivo human data on percutaneous absorption are scarce, although they are indispensable for health risk assessment of dermal exposure. In addition, they are considered to be the gold standard for the evaluation of in-vitro systems as well as predictive mathematical models. Dermal absorption in vivo can be assessed using different approaches. The most used methods for determination of in-vivo dermal absorption are the measurement of the parent chemical and/or its metabolite level in biological material, the microdialysis technique and stratum corneum tape stripping. Recently, the non-invasive spectrophotometric methods based on infrared and Raman spectroscopy showed themselves as promising tools for studying percutaneous absorption though these approaches are still in their developmental stages and requires further optimization and validation. The aim of this article is to review different methods for determination of percutaneous absorption in vivo in humans. The advantages and limitations are discussed with respect to generating data for comparison with in-vitro or predictive mathematical models or health risk assessment of chemicals. Furthermore, the importance of the volunteer experiments in generating relevant data for human risk assessment as well as for the development and implementation of biological monitoring in occupational settings will be addressed.
Collapse
Affiliation(s)
- S Kezic
- Academic Medical Center, Coronel Institute of Occupational Health, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Herkenne C, Alberti I, Naik A, Kalia YN, Mathy FX, Préat V, Guy RH. In vivo methods for the assessment of topical drug bioavailability. Pharm Res 2008; 25:87-103. [PMID: 17985216 PMCID: PMC2217624 DOI: 10.1007/s11095-007-9429-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022]
Abstract
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described.
Collapse
Affiliation(s)
- Christophe Herkenne
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Debio Recherche Pharmaceutique S.A., Route du Levant 146, CH-1920 Martigny, Switzerland
| | - Ingo Alberti
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Antares Pharma AG, Gewerbestrasse 18, 4123 Allschwil, Switzerland
| | - Aarti Naik
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - François-Xavier Mathy
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
- UCB SA, Chemin du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Richard H. Guy
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY Allschwil, UK
| |
Collapse
|
16
|
Klimowicz A, Farfał S, Bielecka-Grzela S. Evaluation of skin penetration of topically applied drugs in humans by cutaneous microdialysis: acyclovir vs. salicylic acid. J Clin Pharm Ther 2007; 32:143-8. [PMID: 17381664 DOI: 10.1111/j.1365-2710.2007.00803.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Cutaneous drug application is used for both local drug therapy and systemic treatment. For both types of treatment, the drug concentration profile in, and transport across, the skin is important. To evaluate skin penetration of topically-applied drugs we recently used cutaneous microdialysis. The aim of this study was the use of this method for studying acyclovir and salicylic acid. METHOD Five per cent acyclovir cream was applied on intact and tape-stripped skin of healthy volunteers and 5% salicylic acid ointment-onto intact skin of other volunteers. Microdialysis probes with 2 kDa molecular weight cut-off were inserted intradermally and were perfused with Ringer solution. Drug concentrations were measured by high-performance liquid chromatography. RESULTS Following topical application of 5% acyclovir cream onto intact skin of eight healthy volunteers, no drug was determinable in the skin (cutaneous microdialysate) in any of the subjects studied. After partial removal of the stratum corneum the penetration of this drug into skin increased markedly. The mean maximum skin concentration was about 2 x 5 micromol/L after 2 x 4 +/- 0 x 7 h. Topically applied salicylic acid penetrated intact skin with a maximum concentration in the cutaneous microdialysate of 7 x 57 +/- 3 x 90 micromol/L after 5 x 3 +/- 0 x 4 h. CONCLUSION Cutaneous microdialysis is a valuable method for estimating skin concentration of topically-applied drug. It allows evaluation after application to a small skin area, of about 2 cm(2), thereby reducing the risk of systemic toxicity. The method may be helpful for evaluating the influence of skin condition on the transport process.
Collapse
Affiliation(s)
- A Klimowicz
- Division of Dermatopharmacotherapy, Department of Dermatology and Venereology, Pomeranian Medical University, Szczecin, Poland.
| | | | | |
Collapse
|