1
|
Miyauchi M, Ishikawa S, Kurachi T, Sakamoto K, Sakai H. Oral Absorption across Organotypic Culture Models of the Human Buccal Epithelium after E-cigarette Aerosol Exposure. ACS OMEGA 2022; 7:45574-45581. [PMID: 36530294 PMCID: PMC9753183 DOI: 10.1021/acsomega.2c06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Inhaled aerosols are absorbed across the oral cavity, respiratory tract, and gastrointestinal tract. The absorption across the oral cavity, which is one of the exposure routes, plays an important role in understanding pharmacokinetics and physiological effects. After aerosol exposure from e-cigarettes, tissue viability studies, morphological observation, and chemical analyses at the inner and outer buccal tissues were performed using organotypic 3D in vitro culture models of the buccal epithelium to better understand the deposition and absorption on the inner and outer buccal tissues. The aerosol exposures did not affect the tissue viability and had no change to the tissue morphology and structure. The deposition ratio at the buccal tissue surface is relatively low. This shows that majority of aerosol transfers to the airway tissues. The distribution from the inner tissue to the outer tissue has selectivity among various compounds, depending on the affinity with the liquid crystal structure of phospholipids and glucosylceramide. Although nicotine absorption in the aqueous solution was well known to increase as the unprotonated state of nicotine increased, the nicotine absorption after the aerosol exposure is irrelevant to the protonated-unprotonated state. Furthermore, the results showed that half of nicotine that adhered to the oral cavity transferred to the inner tissue via the oral epithelium and the other half transferred to the gastrointestinal tract accompanying multiple executions of swallowing, while majority of the water-soluble compounds with the hydroxyl group such as propylene glycol and benzoic acid that adhered to the oral cavity were eluted with the saliva and transferred to the gastrointestinal tract by swallowing.
Collapse
Affiliation(s)
- Masato Miyauchi
- Tobacco
Science Research Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba, Yokohama, Kanagawa 227-8512, Japan
| | - Shinkichi Ishikawa
- Scientific
Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba, Yokohama, Kanagawa 227-8512, Japan
| | - Takeshi Kurachi
- Scientific
Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba, Yokohama, Kanagawa 227-8512, Japan
| | - Kazutami Sakamoto
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Rawas-Qalaji M, Thu HE, Hussain Z. Oromucosal delivery of macromolecules: Challenges and recent developments to improve bioavailability. J Control Release 2022; 352:726-746. [PMID: 36334858 DOI: 10.1016/j.jconrel.2022.10.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Owing to their biological diversity, high potency, good tolerability, low immunogenicity, site-specific activity, and great efficacy, macromolecular drugs (i.e., proteins and peptides, antibodies, hormones, nucleic acids, vaccines, etc.) are extensively used as diagnostics, prophylactics, and therapeutics in various diseases. To overcome drawbacks associated with parenteral (invasive) delivery of macromolecules as well as to preserve their therapeutic integrity, oromucosal route (sublingual and buccal) has been proven efficient alternate port of delivery. This review aims to summarize challenges associated with oromucosal route and overtime developments in conventional delivery systems with special emphasis on most recent delivery strategies. Over the past few decades, significant efforts have been made for improving the oromucosal absorption of macromolecules by employing chemical penetration enhancers (CPE), enzyme inhibitors, chemical modification of drug structure (i.e., lipidation, PEGylation, etc.), and mucoadhesive materials in the form of buccal tablets, films (or patches), sprays, fast disintegrating tablets, and microneedles. Adaptation of adjunct strategies (e.g., iontophoresis in conjunction with CPE) has shown significant improvement in oromucosal absorption of macromolecules; however, these approaches were also associated with many drawbacks. To overcome these shortcomings and to further improve therapeutic outcomes, specialized delivery devices called "hybrid nanosystems" have been designed in recent times. This newer intervention showed promising potential for promoting oromucosal absorption and absolute bioavailability of macromolecules along with improved thermostability (cold chain free storage), enabling self-administration, site-specific activity, improving therapeutic efficacy and patient compliance. We anticipate that tailoring of hybrid nanosystems to clinical trials as well as establishing their short- and long-term safety profile would substantiate their therapeutic value as pharmaceutical devices for oromucosal delivery of macromolecules.
Collapse
Affiliation(s)
- Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33326, USA.
| | - Hnin Ei Thu
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zahid Hussain
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Guo X, Zhang J, Cai Q, Fan S, Xu Q, Zang J, Yang H, Yu W, Li Z, Zhang Z. Acetic acid transporter-mediated, oral, multifunctional polymer liposomes for oral delivery of docetaxel. Colloids Surf B Biointerfaces 2020; 198:111499. [PMID: 33317899 DOI: 10.1016/j.colsurfb.2020.111499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Nanoparticle-structuring aimed at the acetic acid (A) transporter on intestinal epithelial cells and tumor cells is a new potential strategy to enhance oral bioavailability and anti-tumor efficacy. In this study, chitosan (CS) was modified with hydrophilic A and hydrophobic lipoic acid (L), to produce ACSL. A novel ACSL-modified multifunctional liposomes (Lip) loaded with docetaxel (DTX; DTX-ACSL-Lip) was then prepared and characterized. DTX-ACSL-Lip recorded higher pH sensitivity and slower release than DTX-Lip and showed dithiothreitol (DTT) response release. DTX-ACSL-Lip uptake by Caco-2 cells was also significantly enhanced mainly viaA transporters compared with DTX-Lip. ACSL modification of DTX-Lip also improved oral bioavailability by 10.70-folds, with a 3.45-fold increase in Cmax and a 1.19-fold prolongation in retention time of DTX in the blood. Moreover, the grafting degree of A significantly affected cell uptake and oral bioavailability. They also showed a significant (1.33-fold) increase in drug intratumoral distribution, as well as an increase in tumor growth inhibition rate from 54.34% to 87.51% without weight loss, compared with DTX-Lip. Therefore, modification of DTX-Lip with ACSL can significantly enhance the oral bioavailability and anti-tumor efficacy of DTX without obvious toxicity, confirming the potential of the dual strategy of targeting A transporter and controlled drug release in tumor cells in oral therapy of tumor.
Collapse
Affiliation(s)
- XinHong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Targeted Therapy and Diagnosis of Tumor and Major Diseases, Henan Province, Zhengzhou, 450001, China
| | - JunYa Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - QingQing Cai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - ShuTing Fan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - QingQing Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - JieYing Zang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - HuiTing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - WenJuan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Targeted Therapy and Diagnosis of Tumor and Major Diseases, Henan Province, Zhengzhou, 450001, China.
| | - ZhenZhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Targeted Therapy and Diagnosis of Tumor and Major Diseases, Henan Province, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharamaceuticals. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res 2014; 32:1-21. [PMID: 25168518 DOI: 10.1007/s11095-014-1485-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
With continuing advances in biotechnology and genetic engineering, there has been a dramatic increase in the availability of new biomacromolecules, such as peptides and proteins that have the potential to ameliorate the symptoms of many poorly-treated diseases. Although most of these macromolecular therapeutics exhibit high potency, their large molecular mass, susceptibility to enzymatic degradation, immunogenicity and tendency to undergo aggregation, adsorption, and denaturation have limited their ability to be administered via the traditional oral route. As a result, alternative noninvasive routes have been investigated for the systemic delivery of these macromolecules, one of which is the buccal mucosa. The buccal mucosa offers a number of advantages over the oral route, making it attractive for the delivery of peptides and proteins. However, the buccal mucosa still exhibits some permeability-limiting properties, and therefore various methods have been explored to enhance the delivery of macromolecules via this route, including the use of chemical penetration enhancers, physical methods, particulate systems and mucoadhesive formulations. The incorporation of anti-aggregating agents in buccal formulations also appears to show promise in other mucosal delivery systems, but has not yet been considered for buccal mucosal drug delivery. This review provides an update on recent approaches that have shown promise in enhancing the buccal mucosal transport of macromolecules, with a major focus on proteins and peptides.
Collapse
|
6
|
Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm 2010. [DOI: 10.3109/03639040903117348] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Hassan N, Ahad A, Ali M, Ali J. Chemical permeation enhancers for transbuccal drug delivery. Expert Opin Drug Deliv 2009; 7:97-112. [DOI: 10.1517/17425240903338758] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Mrsny RJ. Lessons from nature: "Pathogen-Mimetic" systems for mucosal nano-medicines. Adv Drug Deliv Rev 2009; 61:172-92. [PMID: 19146895 DOI: 10.1016/j.addr.2008.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 09/22/2008] [Indexed: 12/13/2022]
Abstract
Mucosal surfaces establish an interface with external environments that provide a protective barrier with the capacity to selectively absorb and secrete materials important for homeostasis of the organism. In man, mucosal surfaces such as those in the gastrointestinal tract, respiratory tree and genitourinary system also represent significant barrier to the successful administration of certain pharmaceutical agents and the delivery of newly designed nano-scale therapeutic systems. This review examines morphological, physiological and biochemical aspects of these mucosal barriers and presents currently understood mechanisms used by a variety of virulence factors used by pathogenic bacteria to overcome various aspects of these mucosal barriers. Such information emphasizes the impediments that biologically active materials must overcome for absorption across these mucosal surfaces and provides a template for strategies to overcome these barriers for the successful delivery of nano-scale bioactive materials, also known as nano-medicines.
Collapse
|
9
|
Interferon alpha delivery systems for the treatment of hepatitis C. Int J Pharm 2008; 369:121-35. [PMID: 19103271 DOI: 10.1016/j.ijpharm.2008.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 01/15/2023]
Abstract
Hepatitis C virus (HCV) infections are the most common chronic blood-borne viral infections in the world. The prevalence of HCV infections varies significantly by race or ethnicity, with a high prevalence of the disease displayed in the Hispanic population. Additionally, Hispanics with chronic HCV have also more advanced hepatic fibrosis and faster liver fibrosis progression rates than either African Americans or Caucasians. Furthermore, a higher prevalence of cirrhosis and extent of mortality from liver cirrhosis is also observed in the Hispanic population compared with other groups. Current recommendations for treatment of hepatitis C are interferon alpha (IFNalpha)-based monotherapy and combination of IFNalpha preparations with ribavirin. Future treatment regimens will still be based on IFNalpha therapy with or without other effective antiviral agents, currently under investigation. However, there are some inherent limitations, mainly their relative short systemic circulation lifespan, and their unwanted effects on some non-target tissues. New research focuses on the development of novel modified interferon molecules which demonstrate reduced side effects and extended systemic circulation time, which can ultimately provide greater efficacy. Alternative routes for IFNalpha delivery, such as oral delivery, demonstrate challenging but promising areas of research for improving future patient compliance.
Collapse
|
10
|
Saxena S, Bajpai SK. Dynamic Release of Propranolol HCl from Cationic Ion–Exchanger–Loaded Calcium Alginate Beads. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2008. [DOI: 10.1080/10601320801947106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007; 59:1521-46. [PMID: 17881081 DOI: 10.1016/j.addr.2007.08.019] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/16/2007] [Indexed: 11/22/2022]
Abstract
The quest to eliminate the needle from insulin delivery and to replace it with non- or less-invasive alternative routes has driven rigorous pharmaceutical research to replace the injectable forms of insulin. Recently, various approaches have been studied involving many strategies using various technologies that have shown success in delivering insulin, which are designed to overcome the inherent barriers for insulin uptake across the gastrointestinal tract, mucosal membranes and skin. This review examines some of the many attempts made to develop alternative, more convenient routes for insulin delivery to avoid existing long-term dependence on multiple subcutaneous injections and to improve the pharmacodynamic properties of insulin. In addition, this article concentrates on the successes in this new millennium in developing potential non-invasive technologies and devices, and on major new milestones in modern insulin delivery for the effective treatment of diabetes.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|