1
|
Han Z, Song B, Yang J, Wang B, Ma Z, Yu L, Li Y, Xu H, Qiao M. Curcumin-Encapsulated Fusion Protein-Based Nanocarrier Demonstrated Highly Efficient Epidermal Growth Factor Receptor-Targeted Treatment of Colorectal Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15464-15473. [PMID: 36454954 DOI: 10.1021/acs.jafc.2c04668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Curcumin, a polyphenol derived from turmeric, has multiple biological functions, such as anti-inflammatory, antioxidant, antibacterial and, above all, antitumor activity. Colorectal cancer is a common malignancy of the gastrointestinal tract with an extremely high mortality rate. However, the low bioavailability and poor targeting properties of curcumin generally limit its clinical application. In the present study, we designed a fusion protein GE11-HGFI as a nanodrug delivery system. The protein was connected by flexible linkers, inheriting the self-assembly properties of hydrophobin HGFI and the targeting ability of GE11. The data show that the encapsulation of curcumin by fusion protein GE11-HGFI can form uniform and stable nanoparticles with a size of only 80 nm. In addition, the nanocarrier had high encapsulation efficiency for curcumin and made it to release sustainably. Notably, the drug-loaded nanosystem selectively targeted colorectal cancer cells with high epidermal growth factor receptor expression, resulting in high aggregated concentrations of curcumin at tumor sites, thus showing a significant anticancer effect. These results suggest that the nanocarrier fusion protein has the potential to be a novel strategy for enhancing molecular bioactivity and drug targeting in cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Yuanhao Li
- Remegen Co., Ltd., Shandong 264000, P.R. China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
- School of Life Science, Shanxi University, Shanxi 030000, P.R. China
| |
Collapse
|
2
|
Manatunga D, Jayasinghe JAB, Sandaruwan C, De Silva RM, De Silva KMN. Enhancement of Release and Solubility of Curcumin from Electrospun PEO-EC-PVP Tripolymer-Based Nanofibers: A Study on the Effect of Hydrogenated Castor Oil. ACS OMEGA 2022; 7:37264-37278. [PMID: 36312427 PMCID: PMC9608420 DOI: 10.1021/acsomega.2c03495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 05/15/2023]
Abstract
This study reveals the state-of-the-art fabrication of a tripolymer-based electrospun nanofiber (NF) system to enhance the release, solubility, and transdermal penetration of curcumin (Cur) with the aid of in situ release of infused castor oil (Co). In this regard, Cur-loaded Co-infused polyethylene oxide (PEO), ethyl cellulose (EC), and polyvinyl pyrrolidone (PVP) tripolymer-based NF systems were developed to produce a hybridized transdermal skin patch. Weight percentages of 1-4% Cur and 3-10% of Co were blended with PEO-EC-PEO and PEO-EC-PVP polymer systems. The prepared NFs were characterized by SEM, TEM, FT-IR analysis, PXRD, differential scanning calorimetry (DSC), and XPS. Dialysis membranes and vertical Franz diffusion cells were used to study the in vitro drug release and transdermal penetration, respectively. The results indicated that maintaining a Cur concentration of 1-3 wt % with 3 wt % Co in both PEO-EC-Co-Cur@PEO and PEO-EC-Co-Cur@PVP gave rise to nanofibers with lowered diameters (144.83 ± 48.05-209.26 ± 41.80 nm and 190.20 ± 59.42-404.59 ± 45.31 nm). Lowered crystallinity observed from the PXRD patterns and the disappearance of exothermic peaks corresponding to the melting point of Cur suggested the formation of an amorphous NF structure. Furthermore, the XPS data revealed that the Cur loading will possibly take place at the inner interface of PEO-EC-Co-PEO and PEO-EC-Co-PVP NFs rather than on the surface. The beneficiary role of Co on the release and dermal penetration of Cur was further confirmed from the respective release data which indicated that PEO-EC-Co-Cur@PEO would lead to a rapid release (4-5 h), while PEO-EC-Co-Cur@PVP would lead to a sustained release over a period of 24 h in the presence of Co. Transdermal penetration of the released Cur was further evidenced with the development of color in the receiver compartment of the diffusion cell. DPPH results further corroborated that a sustained antioxidant activity is observed in the released Cur where the free-radical scavenging activity is intact even after subjecting to an electrospinning process and under extreme freeze-thaw conditions.
Collapse
Affiliation(s)
- Danushika.
C. Manatunga
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Department
of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama10206, Sri Lanka
| | - J. Asanka Bandara Jayasinghe
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Chanaka Sandaruwan
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Rohini M. De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| | - K. M. Nalin De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| |
Collapse
|
3
|
Korin E, Froumin N, Cohen S. Surface Analysis of Nanocomplexes by X-ray Photoelectron Spectroscopy (XPS). ACS Biomater Sci Eng 2017; 3:882-889. [PMID: 33429560 DOI: 10.1021/acsbiomaterials.7b00040] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanocomplexes composed of individual molecules that spontaneously connect via noncovalent interactions have recently emerged as versatile alternatives to conventional controlled drug delivery systems because of their unique bioinspired properties (responsiveness, dynamics, etc.). Characterization of such nanocomplexes typically includes their size distribution, surface charge, morphology, drug entrapment efficiency, and verification of the coexistence of labeled components within the nanocomplexes using a colocalization study. Less common is the direct examination of the molecular interactions between the different components in the coassembled nanocomplex, especially in nanocomplexes composed of hygroscopic components, because convenient methods are still lacking. Here, we present a detailed experimental protocol for determining the surface composition and the chemical bonds by X-ray photoelectron spectroscopy (XPS) after drying the deposit hygroscopic sample overnight under UHV. We applied this method to investigate the surface chemistry of binary Ca2+-siRNA nanocomplexes and ternary nanocomplexes of hyaluronan-sulfate (HAS)-Ca2+-siRNA, deposited on a wafer. Notably, we showed that the protocol can be implemented to study the surface composition and interactions of the deposited nanocomplexes with a traditional XPS instrument, and it requires only a relatively small amount of the nanocomplex suspension.
Collapse
Affiliation(s)
- Efrat Korin
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, ‡Department of Materials Engineering, §The Ilse Katz Institute for Nanoscale Science and Technology, and ∥Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Natalya Froumin
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Department of Materials Engineering, §The Ilse Katz Institute for Nanoscale Science and Technology, and ∥Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Department of Materials Engineering, The Ilse Katz Institute for Nanoscale Science and Technology, and ∥Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
4
|
São Pedro A, Fernandes R, Flora Villarreal C, Fialho R, Cabral Albuquerque E. Opioid-based micro and nanoparticulate formulations: alternative approach on pain management. J Microencapsul 2016; 33:18-29. [DOI: 10.3109/02652048.2015.1134687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Montes A, Baldauf E, Gordillo MD, Pereyra CM, Martínez de la Ossa EJ. Polymer encapsulation of amoxicillin microparticles by SAS process. J Microencapsul 2013; 31:16-22. [DOI: 10.3109/02652048.2013.799242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
|
7
|
Montes A, Gordillo M, Pereyra C, Martínez de la Ossa E. Co-precipitation of amoxicillin and ethyl cellulose microparticles by supercritical antisolvent process. J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2011.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Surface analysis for compositional, chemical and structural imaging in pharmaceutics with mass spectrometry: A ToF-SIMS perspective. Int J Pharm 2011; 417:61-9. [DOI: 10.1016/j.ijpharm.2011.01.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 11/22/2022]
|
9
|
Al-Qadi S, Grenha A, Remuñán-López C. Microspheres loaded with polysaccharide nanoparticles for pulmonary delivery: Preparation, structure and surface analysis. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Calderó G, García-Celma MJ, Solans C. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. J Colloid Interface Sci 2011; 353:406-11. [DOI: 10.1016/j.jcis.2010.09.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
|
11
|
Analytical characterization of chitosan nanoparticles for peptide drug delivery applications. Anal Bioanal Chem 2008; 393:207-15. [PMID: 18958447 DOI: 10.1007/s00216-008-2463-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/01/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
Chitosan-cyclodextrin hybrid nanoparticles (NPs) were obtained by the ionic gelation process in the presence of glutathione (GSH), chosen as a model drug. NPs were characterized by means of transmission electron microscopy and zeta-potential measurements. Furthermore, a detailed X-ray photoelectron spectroscopy study was carried out in both conventional and depth-profile modes. The combination of controlled ion-erosion experiments and a scrupulous curve-fitting approach allowed for the first time the quantitative study of the GSH in-depth distribution in the NPs. NPs were proven to efficiently encapsulate GSH in their inner cores, thus showing promising perspectives as drug carriers.
Collapse
|