1
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
2
|
Preparation, characterization, and evaluation of eosin B-loaded nano-liposomes for growth inhibition of Plasmodium falciparum. Parasitol Res 2022; 121:383-393. [PMID: 34993631 DOI: 10.1007/s00436-021-07395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Malaria is a deadly disease in humans caused by the Plasmodium parasite. High prevalence of malaria and resistance of malaria parasite to currently proposed drugs have increased the need to introduce and use new and effective antimalarial agents. In this study, eosin B was used as an effective antimalarial agent, the efficacy of which has already been confirmed by in vitro models. Also, for efficacy and safety improvement of eosin B, liposomal nanocarrier was used because of diversity and adaptability in controlled drug delivery and targeting. Eosin B was trapped inside liposomal nanocarriers by thin layer hydration method and its optimization was performed based on size, polydispersity index, and drug entrapment efficiency. Finally, the eosin B-loaded liposomes were tested on Plasmodium falciparum in culture to evaluate its anti-plasmodial effect. According to the results, the formulation with DSPC:cholesterol 8:1 (molar ratio) and drug concentration of 3 mg/ml was selected as the optimal form. The optimal nano-liposomes showed a size of 163.3 nm, a polydispersity index of 0.250, and an encapsulation efficiency of 69.94%. The process of drug release from nanocarriers was also obtained about 63% at the end of 72 h. Stability studies over 2 months at 25 °C and 4 °C on the optimum sample showed that the samples stored in the refrigerator were more stable in terms of size characteristics, polydispersity index, and drug entrapment efficiency. The results indicate a greater effect of liposomal-formulated eosin B on inhibiting parasite growth compared to the free eosin B.
Collapse
|
3
|
Franke H, Scholl R, Aigner A. Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and "Papyrus Ebers" to modern perspectives and "poisonous plant of the year 2018". Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1181-1208. [PMID: 31359089 DOI: 10.1007/s00210-019-01691-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
While probably originating from Africa, the plant Ricinus communis is found nowadays around the world, grown for industrial use as a source of castor oil production, wildly sprouting in many regions, or used as ornamental plant. As regards its pharmacological utility, a variety of medical purposes of selected parts of the plant, e.g., as a laxative, an anti-infective, or an anti-inflammatory drug, have been described already in the sixteenth century BC in the famous Papyrus Ebers (treasured in the Library of the University of Leipzig). Quite in contrast, on the toxicological side, the native plant has become the "poisonous plant 2018" in Germany. As of today, a number of isolated components of the plant/seeds have been characterized, including, e.g., castor oil, ricin, Ricinus communis agglutinin, ricinin, nudiflorin, and several allergenic compounds. This review mainly focuses on the most toxic protein, ricin D, classified as a type 2 ribosome-inactivating protein (RIP2). Ricin is one of the most potent and lethal substances known. It has been considered as an important bioweapon (categorized as a Category B agent (second-highest priority)) and an attractive agent for bioterroristic activities. On the other hand, ricin presents great potential, e.g., as an anti-cancer agent or in cell-based research, and is even explored in the context of nanoparticle formulations in tumor therapy. This review provides a comprehensive overview of the pharmacology and toxicology-related body of knowledge on ricin. Toxicokinetic/toxicodynamic aspects of ricin poisoning and possibilities for analytical detection and therapeutic use are summarized as well.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | - Reinhold Scholl
- Department of History, University of Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Clinical Pharmacology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Tyagi N, Tyagi M, Pachauri M, Ghosh PC. Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances. Tumour Biol 2015; 36:8239-46. [DOI: 10.1007/s13277-015-4028-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022] Open
|
5
|
Tyagi N, Rathore SS, Ghosh PC. Efficacy of Liposomal Monensin on the Enhancement of the Antitumour Activity of Liposomal Ricin in Human Epidermoid Carcinoma (KB) Cells. Indian J Pharm Sci 2013; 75:16-22. [PMID: 23901156 PMCID: PMC3719144 DOI: 10.4103/0250-474x.113533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 11/04/2022] Open
Abstract
The monensin, known to enhance the cytotoxicity of ricin and ricin-based immunotoxins is a very hydrophobic molecule and this limits its administration in optimum doses under in vivo conditions. In order to realise its full potential, monensin was intercalated into various liposomal formulations and its ability to potentiate the cytotoxicity of ricin liposomes in human epidermoid carcinoma (KB) cells was studied. It was observed that ricin cytotoxicity enhancing ability of monensin liposome depends on the surface charge as well as density and chain length of distearoyl phosphatidylethanolamine-methoxy polyethylene glycol present on the surface of liposomal monensin. Maximum potentiation on the cytotoxicity of liposomal ricin was observed by monensin entrapped in neutral liposome (106.5 fold) followed by negatively charged (94.2 fold) and positively charged liposome (90 fold). Studies on the effect of variation of density and chain length of distearoyl phosphatidylethanolamine-methoxy polyethylene glycol showed that neutral monensin liposomes having 2.5 mol% distearoyl phosphatidylethanolamine-methoxy polyethylene glycol with chain length of 2000 exhibits maximum potentiation (117.6 fold) on the cytotoxicity of ricin liposomes when the cellular uptake of monensin liposome was maximum (42.0%) and the zeta potential value on the surface of liposomes was -0.645. The present study has clearly shown that liposomal monensin is very effective in enhancing the cytotoxicity of liposomal ricin in human cancer cells and liposome can be used as in vivo deliver vehicle for monensin to potentiate the cytotoxicity of liposomal ricin to eliminate cancer cells.
Collapse
Affiliation(s)
- N Tyagi
- Department of Oncologic Sciences, Mitchel Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | | | | |
Collapse
|
6
|
Pearson RT, Avila-Olias M, Joseph AS, Nyberg S, Battaglia G. Smart Polymersomes: Formation, Characterisation and Applications. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The term polymersome, which refers to a fully synthetic polymeric vesicle, became commonplace around the turn of the millennium. Since then these highly intriguing structures have been at the center of multi-disciplinary research, bridging the fields of nanotechnology, chemistry, physics, biology, medicine and imaging and, more recently, pioneering the field of synthetic biology. As structures they offer greater control into understanding the relationship between amphiphile properties and membrane curvature. Moreover, as delivery vectors for therapeutic and diagnostic compounds they enable greater efficiency of current therapies and targeted delivery. With the rising costs of both healthcare and drug development, polymersomes and nanomedicine are well placed to combat these modern-day problems. This chapter provides an overview of the approaches to prepare and to characterize polymersomes as well as their applications in biomedicine, highlighting recent achievements in the stimuli-responsive drug delivery field.
Collapse
Affiliation(s)
- R. T. Pearson
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - M. Avila-Olias
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - A. S. Joseph
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - S. Nyberg
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - G. Battaglia
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| |
Collapse
|
7
|
Li S, Hu J, Zhang L, Zhang L, Sun Y, Xie Y, Wu S, Liu L, Gao Z. In-vitro and in-vivo evaluation of austocystin D liposomes. ACTA ACUST UNITED AC 2012; 65:355-62. [PMID: 23356844 DOI: 10.1111/j.2042-7158.2012.01606.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The purpose this study is to enhance the anti-tumour activity of austocystin D (AD) by AD-loaded liposomes (AD-Ls). METHODS AD-Ls were prepared by the film dispersion-ultrasonication method and characterized in terms of particle size and zeta potential, encapsulation efficiency and in-vitro drug release. In vivo, the pharmacokinetics, biodistribution and anti-tumour effect were also compared with those of the solution. KEY FINDINGS The obtained liposomes were a mildly translucent suspension, with a particle size of 71.26 ± 6.43 nm, a polydispersity index of 0.259 ± 0.017 and a zeta potential of -9.9 ± 1.8 mV. Transmission electron microscope examination showed that the liposomes had a spherical shape and a multilayer structure. The encapsulation efficiency ofAD-Ls was 83.74 ± 1.26%. AD was continuously released from liposomes up to 72 h in in-vitro experiments. The growth of HT-29 tumours in animal models was controlled more effectively by AD-LS than by AD solution. Pharmacokinetic study showed that AD-Ls had higher t½β and mean retention time. Biodistribution results in tumour-bearing mice showed that the AD-LS could target to liver and tumour. CONCLUSIONS This study indicates that AD-Ls are a potential carrier of AD for the treatment of tumours in the liver, increasing the cure efficiency and decreasing the side effects on other tissues.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Du S, Zhu L, Du B, Shi X, Zhang Z, Wang S, Zhang C. Pharmacokinetic evaluation and antitumor activity of 2-methoxyestradiol nanosuspension. Drug Dev Ind Pharm 2011; 38:431-8. [DOI: 10.3109/03639045.2011.609560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Inhibition of the Growth of Plasmodium falciparum in Culture by Stearylamine-Phosphatidylcholine Liposomes. J Parasitol Res 2011; 2011:120462. [PMID: 21772979 PMCID: PMC3135048 DOI: 10.1155/2011/120462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/05/2011] [Accepted: 04/19/2011] [Indexed: 11/29/2022] Open
Abstract
We have examined the effect of stearylamine (SA) in liposomes on the viability of Plasmodium falciparum in culture by studying the inhibition of incorporation of [3H]-hypoxanthine in the nucleic acid of parasites. Stearylamine in liposomes significantly inhibits the growth of the parasites depending on the phospholipids composition. The maximum inhibition was observed when SA was delivered through Soya phosphatidylcholine (SPC) liposomes. The chain length of alkyl group and density of SA in liposomes play a significant role in inhibiting the growth of the parasites. Incorporation of either cholesterol or Distearylphosphatidylethanolamine−Methoxy-Polyethylene glycol-2000 (DSPE-mPEG-2000) in Soya phosphatidylcholine-stearylamine (SPC-SA) liposomes improves the efficacy. Intraerythrocytic entry of intact SPC-SA liposomes into infected erythrocytes was visualized using fluorescent microscopy. No hemolysis was observed in uninfected erythrocytes, and slight hemolysis was noted in infected erythrocytes at high concentrations of SPC-SA liposomes. Overall, our data suggested SA in SPC-liposomes might have potential application in malaria chemotherapy.
Collapse
|
10
|
Tyagi N, Ghosh PC. Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: effect of monensin intercalated into folate-tagged liposomes. Eur J Pharm Sci 2011; 43:343-53. [PMID: 21621613 DOI: 10.1016/j.ejps.2011.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/11/2011] [Accepted: 05/15/2011] [Indexed: 11/24/2022]
Abstract
Ricin was encapsulated into various sterically stabilized liposomes having different density of folate on the surface and the cytotoxicity of ricin in these liposomes was examined in KB cells. The effect of monensin in free and various sterically stabilized liposomal forms having different density of folate on the surface on the enhancement of cytotoxicity of ricin entrapped in these liposomes was also examined. It was observed that liposomal ricin having 0.5 mol% folate-PEG on the surface exhibits maximum cytotoxicity (IC(50)=1274 ng/ml) in KB cells as compared to non-targeted liposomes (IC(50)=3274 ng/ml). Monensin either in free form (266.2-fold) or liposomal form (291.5-fold) enhances the cytotoxicity of this targeted liposomal ricin significantly. This enhancement of the cytotoxicity of ricin entrapped in folate-targeted liposomes is further enhanced to 557.7-fold by monensin when it was delivered through folate-targeted (0.5 mol% folate-PEG) liposomes. The present study has clearly demonstrated that ricin entrapped in folate-tagged-sterically stabilized liposomes in combination with monensin intercalated in folate-tagged-sterically stabilized liposomes may have potential application for the treatment of cancer cells over-expressing folate receptors on the cell surface.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | |
Collapse
|
11
|
Tyagi N, Rathore SS, Ghosh PC. Enhanced killing of human epidermoid carcinoma (KB) cells by treatment with ricin encapsulated into sterically stabilized liposomes in combination with monensin. Drug Deliv 2011; 18:394-404. [PMID: 21438723 DOI: 10.3109/10717544.2011.567309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ricin was encapsulated in various charged liposomes having 5 mol% PEG of different chain length on the surface. The cytotoxicity of ricin entrapped in these liposomal formulations was examined in human epidermoid carcinoma (KB) cells with a view to develop an optimum delivery system for ricin in vivo. It was observed that the cytotoxicity of ricin entrapped in various charged liposomes was significantly dependent on the surface charge as well as chain length of PEG. The maximum cytotoxicity of ricin was observed when it was delivered through negatively charged liposomes having 5 mol% PEG-2000 on the surface. Monensin enhances the cytotoxicity of ricin entrapped in various charged liposomes depending on the surface charge. Maximum potentiation of cytotoxicity of ricin was observed when it was delivered through negatively charged liposomes having 5 mol% PEG-2000 on the surface. Studies on the kinetics of inhibition of protein synthesis by ricin revealed that the lag period of inhibition of protein synthesis is significantly lengthened following its delivery through various charged liposomes. Monensin significantly reduced the lag period of action of ricin. It was also observed that the efficacies of monensin on the enhancement of cytotoxicity of ricin entrapped in various charged PEG-liposomes were highly related to their amount of cell association. The current study has demonstrated that by suitable adjustment of charge, density, and chain length of PEG on the surface of liposomes it would be possible to direct liposomal ricin to human tumor cells for their selective elimination in combination with monensin.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | | | | |
Collapse
|
12
|
Du B, Li Y, Li X, A Y, Chen C, Zhang Z. Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes. Int J Pharm 2010; 384:140-7. [DOI: 10.1016/j.ijpharm.2009.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/06/2009] [Accepted: 09/11/2009] [Indexed: 12/16/2022]
|
13
|
Zaru M, Manca ML, Fadda AM, Antimisiaris SG. Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloids Surf B Biointerfaces 2009; 71:88-95. [DOI: 10.1016/j.colsurfb.2009.01.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/05/2009] [Accepted: 01/10/2009] [Indexed: 11/25/2022]
|