1
|
Wang Y, Kim SH, Klein ME, Chen J, Gu E, Smith S, Bortsov A, Slade GD, Zhang X, Nackley AG. A mouse model of chronic primary pain that integrates clinically relevant genetic vulnerability, stress, and minor injury. Sci Transl Med 2024; 16:eadj0395. [PMID: 38598615 DOI: 10.1126/scitranslmed.adj0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Chronic primary pain conditions (CPPCs) affect over 100 million Americans, predominantly women. They remain ineffectively treated, in large part because of a lack of valid animal models with translational relevance. Here, we characterized a CPPC mouse model that integrated clinically relevant genetic (catechol-O-methyltransferase; COMT knockdown) and environmental (stress and injury) factors. Compared with wild-type mice, Comt+/- mice undergoing repeated swim stress and molar extraction surgery intervention exhibited pronounced multisite body pain and depressive-like behavior lasting >3 months. Comt+/- mice undergoing the intervention also exhibited enhanced activity of primary afferent nociceptors innervating hindpaw and low back sites and increased plasma concentrations of norepinephrine and pro-inflammatory cytokines interleukin-6 (IL-6) and IL-17A. The pain and depressive-like behavior were of greater magnitude and longer duration (≥12 months) in females versus males. Furthermore, increases in anxiety-like behavior and IL-6 were female-specific. The effect of COMT genotype × stress interactions on pain, IL-6, and IL-17A was validated in a cohort of 549 patients with CPPCs, demonstrating clinical relevance. Last, we assessed the predictive validity of the model for analgesic screening and found that it successfully predicted the lack of efficacy of minocycline and the CB2 agonist GW842166X, which were effective in spared nerve injury and complete Freund's adjuvant models, respectively, but failed in clinical trials. Yet, pain in the CPPC model was alleviated by the beta-3 adrenergic antagonist SR59230A. Thus, the CPPC mouse model reliably recapitulates clinically and biologically relevant features of CPPCs and may be implemented to test underlying mechanisms and find new therapeutics.
Collapse
Affiliation(s)
- Yaomin Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shin Hyung Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Marguerita E Klein
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiegen Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth Gu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shad Smith
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gary D Slade
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Tan YZ, Shi RJ, Ke BW, Tang YL, Liang XH. Paresthesia in dentistry: The ignored neurotoxicity of local anesthetics. Heliyon 2023; 9:e18031. [PMID: 37539316 PMCID: PMC10395355 DOI: 10.1016/j.heliyon.2023.e18031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Local anesthetics are frequently used by dentists to relieve localized discomfort of the patient and improve treatment conditions. The risk of paresthesia after local anesthesia is frequently encountered in dental clinics. The neurotoxicity of local anesthetics is a disregarded factor in paresthesia. The review summarizes the types of common local anesthetics, incidence and influencing factors of paresthesia after local anesthesia, and systematically describes the neurotoxicity mechanisms of dental local anesthetic. Innovative strategies may be developed to lessen the neurotoxicity and prevent paresthesia following local anesthesia with the support of a substantial understanding of paresthesia and neurotoxicity.
Collapse
Affiliation(s)
- Yong-zhen Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong-jia Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo-wen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Castro MAD, Cunha GMF, Andrade GF, Yoshida MI, Faria ALD, Silva-Cunha A. Development and characterization of PLGA-Bupivacaine and PLGA-S75:R25 Bupivacaine (Novabupi®) biodegradable implants for postoperative pain. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
4
|
Li X, Wei Y, Wen K, Han Q, Ogino K, Ma G. Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine. Eur J Pharm Biopharm 2021; 160:143-151. [PMID: 33524537 DOI: 10.1016/j.ejpb.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/25/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
Currently, the influences of free terminal groups (hydroxyl, carboxyl and ester) of PLGA on encapsulating active pharmaceutical ingredient are relatively ambiguous even though PLGA types were defined as critical quality attributes in vast majority of design of experiment process. In this study, emulsion method combined with premix membrane emulsification technique has been used to encapsulate ropivacaine (RVC), a small molecule local anesthetic in clinical. Based on the narrow particle size distribution, the influences and mechanisms of the terminal groups on properties of ropivacaine loaded microspheres have been investigated in detail. It was found that microspheres prepared by PLGA with hydroxyl or ester groups exhibited lower encapsulation efficiency but faster in vitro release rate than that of carboxyl groups. In the meanwhile, on microcosmic level analysis by quartz crystal microbalance with dissipation, atomic force microscope and confocal laser scanning microscopy, we attributed this distinction to the specific interaction between ropivacaine and different terminal groups. Subsequently, the reaction activation centers were verified by density functional simulation calculation and frontier molecular orbital theory at molecular level. Additionally, pharmacokinetics and pharmacodynamic research of infiltration anesthesia model were performed to compare sustained release ability, duration and intensity of the anesthetic effect in vivo. Finally, potential safety and toxicity were evaluated by the biochemical analysis. This study not only provides a novel mechanism of drug encapsulation process but also potential flexible selections in terms of various anesthesia indications in clinical.
Collapse
Affiliation(s)
- Xun Li
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Kang Wen
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingzhen Han
- State Key Laboratory of Multiphase Complex Systems, Research Department for Environmental Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Kenji Ogino
- Graduate School of Bio-Applications Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
5
|
Park SY, Kang J, Yoon JY, Chung I. Synthesis and Characterization of Polyfumarateurethane Nanoparticles for Sustained Release of Bupivacaine. Pharmaceutics 2020; 12:pharmaceutics12030281. [PMID: 32245172 PMCID: PMC7151093 DOI: 10.3390/pharmaceutics12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
Biodegradable polyfumarateurethane (PFU) for use as a bupivacaine delivery vehicle, synthesized using di-(2-hydroxypropyl fumarate) (DHPF), polyethylene glycol (PEG) and 1,6-hexamethylene diisocyanate (HMDI), was designed to be degradable through the hydrolysis and enzymatic degradation of the ester bonds in its polymer backbone. Using a water-in-oil-in-water double emulsion techniques, nanoparticles encapsulating water or fluorescein isothiocyanate (FITC) were fabricated to avoid the immune system owing to the presence of PEG on their surface. The morphologies of these nanoparticles were characterized by DLS, TEM, FE-SEM, and fluorescent microscopies. The present study explored the encapsulation, loading efficiency and in vitro drug release of bupivacaine encapsulated with biodegradable PFU nanoparticles for the treatment of local anesthesia. Various concentrations of bupivacaine were encapsulated into nanoparticles and their encapsulation efficiencies and drug loading were investigated. Encapsulation efficiency was highest when 2.5% bupivacaine was encapsulated. Drug release behavior from the bupivacaine-loaded PFU nanoparticles followed a sustained release profile.
Collapse
Affiliation(s)
- Soo-Yong Park
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Jiin Kang
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Ji-Young Yoon
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Gyeongsangnam-do 50612, Korea
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
- Correspondence:
| |
Collapse
|
6
|
Wei Y, Wu Y, Wen K, Bazybek N, Ma G. Recent research and development of local anesthetic-loaded microspheres. J Mater Chem B 2020; 8:6322-6332. [DOI: 10.1039/d0tb01129k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review introduces the recent research and development in local anesthetic-loaded microsphere, as efficient microspheres formulation, the efficient microspheres: optimum preparation method, high loading efficiency, and ideal release rate.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Youbin Wu
- Yichang Humanwell Pharmaceutical Co., Ltd
- Yichang 443008
- P. R. China
| | - Kang Wen
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Nardana Bazybek
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
7
|
Yang Y, Yuan L, Li J, Muhammad I, Cheng P, Xiao T, Zhang X. Preparation and evaluation of tilmicosin microspheres and lung-targeting studies in rabbits. Vet J 2019; 246:27-34. [PMID: 30902186 DOI: 10.1016/j.tvjl.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/15/2022]
Abstract
Tilmicosin (TMS) is a macrolide used extensively for pulmonary infections in clinical veterinary medicine. However, TMS has frequent administration and short elimination half-life. Therefore, tilmicosin-gelatine microspheres (TMS-GMS) were prepared by an emulsion-chemical cross-linking technique as a sustained-release formulation to extend drug half-life. The particle size distribution, in-vitro sustained-release properties, stability, and physical characteristics, as well as pharmacokinetic (PK) characteristics, were evaluated in rabbits. TMS-GMS were spherical in shape and had a mean diameter of 11.34±1.20μm; 95.65% of the microspheres varied in size from 5.0 to 25.0μm. Light and thermal stability tests indicated no significant changes in all observed indices. Importantly, compared to crude TMS, slower release of TMS from TMS-GMS was noted in drug release studies (in vitro). Pharmacokinetic (PK) characteristics were examined in the lung, liver, heart, kidney and muscle tissue of rabbits following IM injection of TMS-GMS or TMS-injection at a dose of 10mg/kg. The elimination half-life of TMS-GMS (59.21±0.21h) was longer than that of TMS-injection (38.56±0.13h) in the lung. The ratio of peak concentration (Ce) of TMS-GMS to TMS-injection was 2.19 (>1) in the lung, demonstrating the selectivity of TMS-GMS to target the lung compared to that of other tissues (Ce<1). Interestingly, the uptake value of TMS from TMS-GMS was 8.48 times higher in the lung than that for the TMS-injection, and was slightly higher than in the liver (1.85), heart (1.72), kidney (2.44) and muscle (2.79) tissues. TMS-GMS is a sustained-release formulation of TMS with potential to be used in veterinary clinical applications; possible benefits include lung-targeting and prolonged elimination half-life.
Collapse
Affiliation(s)
- Y Yang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University,600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - L Yuan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University,600 Changjiang Road, Xiangfang District, Harbin, PR China; College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, 510642 Guangzhou, China
| | - J Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University,600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - I Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University,600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - P Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University,600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - T Xiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University,600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - X Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University,600 Changjiang Road, Xiangfang District, Harbin, PR China.
| |
Collapse
|
8
|
De Gregori S, De Gregori M, Bloise N, Bugada D, Molinaro M, Filisetti C, Allegri M, Schatman ME, Cobianchi L. In vitro and in vivo quantification of chloroprocaine release from an implantable device in a piglet postoperative pain model. J Pain Res 2018; 11:2837-2846. [PMID: 30510443 PMCID: PMC6231440 DOI: 10.2147/jpr.s180163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background The pharmacokinetic properties and clinical advantages of the local anesthetic chloroprocaine are well known. Here, we studied the pharmacokinetic profile of a new hydrogel device loaded with chloroprocaine to investigate the potential advantages of this new strategy for postoperative pain (POP) relief. Materials and methods We performed both in vitro and in vivo analyses by considering plasma samples of four piglets receiving slow-release chloroprocaine. To quantify chloroprocaine and its inactive metabolite 4-amino-2-chlorobenzoic acid (ACBA), a HPLC–tandem mass spectrometry (HPLC-MS/MS) analytical method was used. Serial blood samples were collected over 108 hours, according to the exposure time to the device. Results Chloroprocaine was consistently found to be below the lower limit of quantification, even though a well-defined peak was observed in every chromatogram at an unexpected retention time. Concerning ACBA, we found detectable plasma concentrations between T0 and T12h, with a maximum plasma concentration (Cmax) observed 3 hours after the device application. In the in vitro analyses, the nanogel remained in contact with plasma at 37°C for 90 minutes, 3 hours, 1 day, and 7 days. Chloroprocaine Cmax was identified 1 day following exposure and Cmin after 7 days, respectively. Additionally, ACBA reached the Cmax following 7 days of exposure. Conclusion A thorough review of the literature indicates that this is the first study analyzing both in vivo and in vitro pharmacokinetic profiles of a chloroprocaine hydrogel device and is considered as a pilot study on the feasibility of including this approach to the management of POP.
Collapse
Affiliation(s)
- Simona De Gregori
- Clinical and Experimental Pharmacokinetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy,
| | - Manuela De Gregori
- Clinical and Experimental Pharmacokinetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy, .,Pain Therapy Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Study in Multidisciplinary Pain Research Group, Parma, Italy.,Young Against Pain Group, Parma, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies, INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Lab of Nanotechnology, Pavia, Italy
| | - Dario Bugada
- Study in Multidisciplinary Pain Research Group, Parma, Italy.,Young Against Pain Group, Parma, Italy.,Emergency and Intensive Care Department - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy,
| | | | - Massimo Allegri
- Study in Multidisciplinary Pain Research Group, Parma, Italy.,Anesthesia and Intensive Care Service, IRCCS MultiMedica Hospital, Sesto San Giovanni, Milano, Italy
| | - Michael E Schatman
- Study in Multidisciplinary Pain Research Group, Parma, Italy.,Research and Network Development, Boston Pain Care, Waltham, MA, USA.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Lorenzo Cobianchi
- General Surgery Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Zhang X, Hartung JE, Bortsov AV, Kim S, O'Buckley SC, Kozlowski J, Nackley AG. Sustained stimulation of β 2- and β 3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav Immun 2018; 73:520-532. [PMID: 29935309 PMCID: PMC6129429 DOI: 10.1016/j.bbi.2018.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Functional pain syndromes, such as fibromyalgia and temporomandibular disorder, are associated with enhanced catecholamine tone and decreased levels of catechol-O-methyltransferase (COMT; an enzyme that metabolizes catecholamines). Consistent with clinical syndromes, our lab has shown that sustained 14-day delivery of the COMT inhibitor OR486 in rodents results in pain at multiple body sites and pain-related volitional behaviors. The onset of COMT-dependent functional pain is mediated by peripheral β2- and β3-adrenergic receptors (β2- and β3ARs) through the release of the pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Here, we first sought to investigate the role of β2- and β3ARs and downstream mediators in the maintenance of persistent functional pain. We then aimed to characterize the resulting persistent inflammation in neural tissues (neuroinflammation), characterized by activated glial cells and phosphorylation of the mitogen-activated protein kinases (MAPKs) p38 and extracellular signal-regulated kinase (ERK). Separate groups of rats were implanted with subcutaneous osmotic mini-pumps to deliver OR486 (15 mg/kg/day) or vehicle for 14 days. The β2AR antagonist ICI118551 and β3AR antagonist SR59230A were co-administrated subcutaneously with OR486 or vehicle either on day 0 or day 7. The TNFα inhibitor Etanercept, the p38 inhibitor SB203580, or the ERK inhibitor U0126 were delivered intrathecally following OR486 cessation on day 14. Behavioral responses, pro-inflammatory cytokine levels, glial cell activation, and MAPK phosphorylation were measured over the course of 35 days. Our results demonstrate that systemic delivery of OR486 leads to mechanical hypersensitivity that persists for at least 3 weeks after OR486 cessation. Corresponding increases in spinal TNFα, IL-1β, and IL-6 levels, microglia and astrocyte activation, and neuronal p38 and ERK phosphorylation were observed on days 14-35. Persistent functional pain was alleviated by systemic delivery of ICI118551 and SR59230A beginning on day 0, but not day 7, and by spinal delivery of Etanercept or SB203580 beginning on day 14. These results suggest that peripheral β2- and β3ARs drive persistent COMT-dependent functional pain via increased activation of immune cells and production of pro-inflammatory cytokines, which promote neuroinflammation and nociceptor activation. Thus, therapies that resolve neuroinflammation may prove useful in the management of functional pain syndromes.
Collapse
MESH Headings
- Animals
- Catechol O-Methyltransferase/metabolism
- Catechol O-Methyltransferase Inhibitors/metabolism
- Catechols/pharmacology
- Cytokines/metabolism
- Etanercept/pharmacology
- Female
- Fibromyalgia/metabolism
- Fibromyalgia/physiopathology
- Hyperalgesia/metabolism
- Imidazoles/pharmacology
- Interleukin-1beta/metabolism
- Interleukin-6/metabolism
- Male
- Microglia/metabolism
- Mitogen-Activated Protein Kinases
- Neuroglia/metabolism
- Pain/metabolism
- Pain/physiopathology
- Phosphorylation
- Propanolamines/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/physiology
- Spinal Cord/metabolism
- Temporomandibular Joint Disorders/metabolism
- Temporomandibular Joint Disorders/physiopathology
- Tumor Necrosis Factor-alpha/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jane E Hartung
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrey V Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Seungtae Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Sandra C O'Buckley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Julia Kozlowski
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Ortiz de Solorzano I, Alejo T, Abad M, Bueno-Alejo C, Mendoza G, Andreu V, Irusta S, Sebastian V, Arruebo M. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery. J Colloid Interface Sci 2018; 533:171-181. [PMID: 30153594 DOI: 10.1016/j.jcis.2018.08.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/28/2022]
Abstract
By combining the photothermal ability of copper sulphide nanoparticles (NPs) upon excitation with Near Infrared (NIR) Light and the thermo-responsive properties of the homemade oligo (ethylene glycol) methyl ether methacrylate copolymer we have obtained fragmentable nanocomposites able to release a carried drug on-demand after NIR-light triggering. A complete physico-chemical characterization of the resulting nanoparticles has been carried out and their degradation assessed at different temperatures. Herein, we have also evaluated the drug loading capacity of those nanoparticles and the temperature dependence in their drug release kinetics using bupivacaine hydrochloride as a model drug. For those hybrid nanoparticles, subcytotoxic doses on four different cell lines and their potential interference in cell metabolism, induction of apoptosis, and cell cycle have been evaluated by Alamar Blue fluorometry and flow cytometry.
Collapse
Affiliation(s)
- Isabel Ortiz de Solorzano
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Miriam Abad
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Carlos Bueno-Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Vanesa Andreu
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
11
|
A moldable sustained release bupivacaine formulation for tailored treatment of postoperative dental pain. Sci Rep 2018; 8:12172. [PMID: 30111777 PMCID: PMC6093872 DOI: 10.1038/s41598-018-29696-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022] Open
Abstract
A moldable and biodegradable dental material was designed for customized placement and sustained delivery of bupivacaine (BP) within an extraction cavity. Microparticles comprising poly(lactic-co-glycolic acid) (PLGA) containing BP were generated via solvent-evaporation and combined with absorbable hemostat Gelfoam®. Kinetics of drug release were evaluated by in vitro dialysis assays, showing higher release within the first 24 hours, with subsequent tapering of release kinetics. Formulations of Gelfoam® and BP-PLGA microparticles (GelBP), with three targeted dosing profiles (0.25, 0.5, and 1 mg/kg/day), were evaluated alongside acute subcutaneous BP injections (2 mg/kg) to determine analgesic efficacy in a rat model of tooth extraction pain. Molar extraction resulted in mechanical and thermal cold hyperalgesia in male and female rats. GelBP outperformed acute BP in blocking post-surgical dental pain, with the 0.25 mg/kg GelBP dose preventing hypersensitivity to mechanical (p < 0.01) and thermal cold stimuli (p = 0.05). Molar extraction also resulted in decreased food consumption and weight. Males receiving acute BP and 0.25 mg/kg GelBP maintained normal food consumption (p < 0.002) and weight (p < 0.0001) throughout 7 days. Females, receiving 0.25 mg/kg GelBP maintained weight on days 5-7 (p < 0.04). Customized, sustained release formulation of anesthetic within a tooth extraction cavity holds potential to eliminate post-operative dental pain over several days.
Collapse
|
12
|
Mei L, Xie Y, Huang Y, Wang B, Chen J, Quan G, Pan X, Liu H, Wang L, Liu X, Wu C. Injectable in situ forming gel based on lyotropic liquid crystal for persistent postoperative analgesia. Acta Biomater 2018; 67:99-110. [PMID: 29225151 DOI: 10.1016/j.actbio.2017.11.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022]
Abstract
Local anesthetics have been widely used for postoperative analgesia. However, multiple injections or local infiltration is required due to the short half-lives of local anesthetics after single injection, which results in poor compliance and increasing medical expense. In this study, an in situ forming gel (ISFG) based on lyotropic liquid crystal was developed to deliver bupivacaine hydrochloride (BUP) for long-acting postoperative analgesia. BUP-ISFG was designed to be administrated as a precursor solution which would spontaneously transform into gel with well-defined internal nanostructures for sustained drug release at the site of administration when exposed to physiological fluid. A lamellar-hexagonal-cubic phase transition occurred during the in situ gelation. The lamellar phase of the precursor solution endows it with low viscosity for good syringeability while the unique nanostructures of hexagonal and cubic phases of the in situ gel provide sustained drug release. Persistent analgesia effect in vivo was achieved with BUP-ISFG, and the plasma BUP concentration was found to be steadier compared to commercially available BUP for injection. In addition, the ISFG displayed acceptable biocompatibility and good biodegradability. The findings are positive about ISFG as a sustained release system for persistent postoperative analgesia. STATEMENT OF SIGNIFICANCE To address the issue of insufficient postoperative analgesia associated with short half-lives of local anesthetics after single injection, an in situ forming gel (ISFG) based on lyotropic liquid crystal was developed to deliver bupivacaine hydrochloride (BUP) for postoperative analgesia over three days. The results demonstrated that persistent analgesia effect in vivo was achieved with single injection of BUP-ISFG, and the plasma BUP concentration was found to be steadier compared to commercially available BUP injection. The BUP-ISFG possessed a lamellar-hexagonal-cubic phase transition with corresponding crystal change in 3D nanostructure during the in situ gelation. The relationship between crystal nanostructure and carrier function, might provide some insights to the design and clinical applications of the drug delivery systems based on lyotropic liquid crystal.
Collapse
|
13
|
Silk fibroin-coated PLGA dimpled microspheres for retarded release of simvastatin. Colloids Surf B Biointerfaces 2017; 158:112-118. [DOI: 10.1016/j.colsurfb.2017.06.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|
14
|
Preda G, Rogobete AF, Săndesc D, Bedreag OH, Cradigati CA, Sarandan M, Papurica M, Popovici SE, Dragomirescu M. An in vitro study of the release capacity of the local anaesthetics from siloxane matrices. Rom J Anaesth Intensive Care 2017; 23:123-131. [PMID: 28913485 DOI: 10.21454/rjaic.7518/232.vit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS In the field of anaesthesia and intensive care, the controlled release systems capable of delivering constantly local anaesthetics are of interest because of the advantages brought to pain management. In this paper we presented the release profiles by usage of siloxane matrices of two common local anaesthetics, lidocaine and bupivacaine, analysed in vitro. METHODS The siloxane matrices were obtained in accordance with the methods described in the specialized literature, tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) were used as precursors. Lidocaine and bupivacaine were encapsulated in the synthesized gels. The controlled release was performed in vitro artificial systems in which temperature (30°C, 36.5°C, 40°C) and pH (6, 7, 8) have varied. RESULTS Following the analysis of the artificial systems similar profiles were highlighted for both local anaesthetics. Statistically significant differences were identified (p < 0.05) for systems where the release occurred at temperatures above 36.5°C. There were no statistically significant differences regarding the influence of pH, the type of the entrapped anaesthetic or the type of the precursor used in the synthesis of siloxane matrices. CONCLUSIONS According to this experimental study, the pH, the type of precursor or the type of anaesthetic does not statistically influence the release profile from the studied system. In conclusion, these systems are promising for obtaining pharmaceutical preparations which can be used in current clinical practice. Several studies on controlled release siloxane systems should be carried out both in vitro and in vivo in order to exclude possible toxicity and histopathological effects.
Collapse
Affiliation(s)
- Gabriela Preda
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Alexandru Florin Rogobete
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania.,Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Dorel Săndesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Carmen Alina Cradigati
- Clinic of Anaesthesia and Intensive Care "Casa Austria", Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Mirela Sarandan
- Clinic of Anaesthesia and Intensive Care "Casa Austria", Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Marius Papurica
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Monica Dragomirescu
- Faculty of Animal Science and Biotechnology, Banat University of Agricultural Sciences and Veterinary Medicine, Timisoara, Romania
| |
Collapse
|
15
|
Rogobete AF, Dragomirescu M, Bedreag OH, Sandesc D, Cradigati CA, Sarandan M, Papurica M, Popovici SE, Vernic C, Preda G. New aspects of controlled release systems for local anaesthetics: A review. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2016. [DOI: 10.1016/j.tacc.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zorzetto L, Brambilla P, Marcello E, Bloise N, De Gregori M, Cobianchi L, Peloso A, Allegri M, Visai L, Petrini P. From micro- to nanostructured implantable device for local anesthetic delivery. Int J Nanomedicine 2016; 11:2695-709. [PMID: 27354799 PMCID: PMC4907738 DOI: 10.2147/ijn.s99028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies could involve specific binding between the drug and the material chosen for the device, and a multiscale approach to reach a tailored, prolonged drug release.
Collapse
Affiliation(s)
- Laura Zorzetto
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Paola Brambilla
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Elena Marcello
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
| | - Manuela De Gregori
- Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Peloso
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
17
|
Pek YS, Pitukmanorom P, Ying JY. Sustained release of bupivacaine for post-surgical pain relief using core–shell microspheres. J Mater Chem B 2014; 2:8194-8200. [DOI: 10.1039/c4tb00948g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Core–shell PLGA/PLLA polymer microspheres sustained 2 weeks in vivo bupivacaine release, providing extended postoperative analgesia without infection or joint damage.
Collapse
Affiliation(s)
- Y. Shona Pek
- Institute of Bioengineering and Nanotechnology
- , Singapore 138669
| | | | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology
- , Singapore 138669
| |
Collapse
|
18
|
Cohen B, Shefy-Peleg A, Zilberman M. Novel gelatin/alginate soft tissue adhesives loaded with drugs for pain management: structure and properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 25:224-40. [DOI: 10.1080/09205063.2013.849904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2488-98. [DOI: 10.1016/j.msec.2012.12.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 11/23/2022]
|
20
|
Mirdailami O, Khoshayand MR, Soleimani M, Dinarvand R, Atyabi F. Release optimization of epidermal growth factor from PLGA microparticles. Pharm Dev Technol 2013; 19:539-47. [DOI: 10.3109/10837450.2013.805776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Enayati M, Mohazey DA, Edirisinghe M, Stride E. Ultrasound-stimulated drug release from polymer micro and nanoparticles. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.12.00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Regnier-Delplace C, Thillaye du Boullay O, Siepmann F, Martin-Vaca B, Demonchaux P, Jentzer O, Danède F, Descamps M, Siepmann J, Bourissou D. PLGAs bearing carboxylated side chains: Novel matrix formers with improved properties for controlled drug delivery. J Control Release 2013; 166:256-67. [DOI: 10.1016/j.jconrel.2012.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/08/2012] [Accepted: 12/18/2012] [Indexed: 01/12/2023]
|
23
|
Regnier-Delplace C, Thillaye du Boullay O, Siepmann F, Martin-Vaca B, Degrave N, Demonchaux P, Jentzer O, Bourissou D, Siepmann J. PLGA microparticles with zero-order release of the labile anti-Parkinson drug apomorphine. Int J Pharm 2013; 443:68-79. [DOI: 10.1016/j.ijpharm.2013.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|
24
|
de Paula E, Cereda CMS, Fraceto LF, de Araújo DR, Franz-Montan M, Tofoli GR, Ranali J, Volpato MC, Groppo FC. Micro and nanosystems for delivering local anesthetics. Expert Opin Drug Deliv 2012; 9:1505-24. [DOI: 10.1517/17425247.2012.738664] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Song X, Song SK, Zhao P, Wei LM, Jiao HS. β-methasone-containing biodegradable poly(lactide-co-glycolide) acid microspheres for intraarticular injection: effect of formulation parameters on characteristics andin vitrorelease. Pharm Dev Technol 2012; 18:1220-9. [DOI: 10.3109/10837450.2011.635152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Garg Y, Pathak K. Design and in vitro performance evaluation of purified microparticles of pravastatin sodium for intestinal delivery. AAPS PharmSciTech 2011; 12:673-82. [PMID: 21594729 PMCID: PMC3134671 DOI: 10.1208/s12249-011-9626-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/27/2011] [Indexed: 11/30/2022] Open
Abstract
The purpose of research was to develop a mucoadhesive multiparticulate sustained drug delivery system of pravastatin sodium, a highly water-soluble and poorly bioavailable drug, unstable at gastric pH. Mucoadhesive microparticles were formulated using eudragit S100 and ethyl cellulose as mucoadhesive polymers. End-step modification of w/o/o double emulsion solvent diffusion method was attempted to improve the purity of the product, that can affect the dose calculations of sustained release formulations and hence bioavailability. Microparticles formed were discrete, free flowing, and exhibited good mucoadhesive properties. DSC and DRS showed stable character of drug in microparticles and absence of drug polymer interaction. The drug to polymer ratio and surfactant concentration had significant effect on mean particle size, drug release, and entrapment efficiency. Microparticles made with drug: eudragit S100 ratio of 1:3 (F6) exhibited maximum entrapment efficiency of 72.7% and ex vivo mucoadhesion time of 4.15 h. In vitro permeation studies on goat intestinal mucosa demonstrated a flux rate (1,243 μg/cm(2)/h) that was 169 times higher than the flux of pure drug. The gastric instability problem was overcome by formulating the optimized microparticles as enteric-coated capsules that provided a sustained delivery of the highly water-soluble drug for 12 h beyond the gastric region. The release mechanism was identified as fickian diffusion (n = 0.4137) for the optimized formulation F6. Conclusively, a drug delivery system was successfully developed that showed delayed and sustained release up to 12 h and could be potentially useful to overcome poor bioavailability problems associated with pravastatin sodium.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, P.O. Chattikkara, Mathura, 281001 India
| | - Kamla Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, P.O. Chattikkara, Mathura, 281001 India
| |
Collapse
|
27
|
Enayati M, Chang MW, Bragman F, Edirisinghe M, Stride E. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2010.11.038] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Rothstein SN, Little SR. A “tool box” for rational design of degradable controlled release formulations. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm01668c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Weiniger CF, Golovanevski M, Sokolsky-Papkov M, Domb AJ. Review of prolonged local anesthetic action. Expert Opin Drug Deliv 2010; 7:737-52. [PMID: 20408748 DOI: 10.1517/17425241003767383] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Pain following surgery is often treated by local anesthetic agents. Duration of the analgesia can be extended safely following administration of encapsulated large doses of local anesthetic agents. AREAS COVERED IN THIS REVIEW This review considers formulations used for encapsulation of local anesthetic agents for prolonged anesthesia effect. All studies describing encapsulation of a commercial local anesthetic agent for providing prolonged analgesia were considered using the NCBI Medline site. of local anesthetic, prolonged anesthesia, polymers and liposomes were entered in order to retrieve appropriate articles and reviews from 1966 to 2010, with emphasis on the last 10 years. Reference pages were searched manually for other relevant articles. The topics covered include an overview of local anesthetic agents and a review of local anesthetic carrier agents, with emphasis on liposomes and polymer carriers. Articles were limited to the English language. WHAT THE READER WILL GAIN The current research areas for prolongation of local anesthetic effect are evaluated, along with their limitations. Each topic has been summarized, and the review has attempted to cover all current laboratory and clinical studies in a simple manner that should also be useful for readers without a pharmacology background. The direction of research is promising and exciting, and this review should be a useful up-to-date reference. TAKE HOME MESSAGE Many formulations including polymer and liposome carriers have facilitated prolonged local anesthetic action for several days, although few clinical studies have been performed. This field promises a safe way to deliver local anesthetics for effect far beyond that of commercially available agents, with potential cost and health benefits for patients suffering chronic or postoperative pain.
Collapse
Affiliation(s)
- Carolyn F Weiniger
- Hadassah Hebrew University Medical Center, Department of Anesthesiology and Critical Care Medicine, Jerusalem, POB 12000, Israel.
| | | | | | | |
Collapse
|
30
|
ZHOU Z, YE J, CHEN L, MA A, ZOU F. Simultaneous Determination of Ropivacaine, Bupivacaine and Dexamethasone in Biodegradable PLGA Microspheres by High Performance Liquid Chromatography. YAKUGAKU ZASSHI 2010; 130:1061-8. [DOI: 10.1248/yakushi.130.1061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhifeng ZHOU
- School of Public Health and Tropical Medicine, Southern Medical University
| | - Jufeng YE
- School of Public Health and Tropical Medicine, Southern Medical University
| | - Lingyun CHEN
- School of Public Health and Tropical Medicine, Southern Medical University
| | - Ande MA
- School of Public Health and Tropical Medicine, Southern Medical University
| | - Fei ZOU
- School of Public Health and Tropical Medicine, Southern Medical University
| |
Collapse
|
31
|
Grillo R, de Melo NFS, de Araújo DR, de Paula E, Rosa AH, Fraceto LF. Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. J Drug Target 2010; 18:688-99. [DOI: 10.3109/10611861003649738] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Enayati M, Ahmad Z, Stride E, Edirisinghe M. One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. J R Soc Interface 2009; 7:667-75. [PMID: 19828501 DOI: 10.1098/rsif.2009.0348] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this work was to produce drug-loaded nanometre- and micrometre-scale particles using a single-step process that provides control over particle size and size distribution. Co-axial electrohydrodynamic processing was used, at ambient temperature and pressure, with poly(lactic-co-glycolic acid) as the polymeric coating material and oestradiol as the encapsulated drug. The particle diameter was varied from less than 120 nm to a few micrometres, by simple methodical adjustments in the processing parameters (polymer concentration and applied voltage). In vitro studies were performed to determine the drug release profile from the particles during unassisted and ultrasound-stimulated degradation in simulated body fluid. An encapsulation efficiency of approximately 70% was achieved and release of the drug was sustained for a period of over 20 days. Exposing the particles to ultrasound (22.5 kHz) increased the rate of release by approximately 8 per cent. This processing method offers several advantages over conventional emulsification techniques for the preparation of drug-loaded particles. Most significantly, process efficiency and the drug's functionality are preserved, as complex multistep processing involving harsh solvents, other additives and elevated temperatures or pressures are avoided. Production rates of 10(12) particles min(-1) can be achieved with a single pair of co-axial needles and the process is amenable to being scaled up by using multiple sets.
Collapse
Affiliation(s)
- Marjan Enayati
- Department of Mechanical Engineering, University College London, London, UK
| | | | | | | |
Collapse
|