1
|
Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021; 26:7264. [PMID: 34885846 PMCID: PMC8659150 DOI: 10.3390/molecules26237264] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Modified alginates have a wide range of applications, including in the manufacture of dressings and scaffolds used for regenerative medicine, in systems for selective drug delivery, and as hydrogel materials. This literature review discusses the methods used to modify alginates and obtain materials with new or improved functional properties. It discusses the diverse biological and functional activity of alginates. It presents methods of modification that utilize both natural and synthetic peptides, and describes their influence on the biological properties of the alginates. The success of functionalization depends on the reaction conditions being sufficient to guarantee the desired transformations and provide modified alginates with new desirable properties, but mild enough to prevent degradation of the alginates. This review is a literature description of efficient methods of alginate functionalization using biologically active ligands. Particular attention was paid to methods of alginate functionalization with peptides, because the combination of the properties of alginates and peptides leads to the obtaining of conjugates with properties resulting from both components as well as a completely new, different functionality.
Collapse
Affiliation(s)
- Piotr Rosiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Ilona Latanska
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Paulina Paul
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Witold Sujka
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| |
Collapse
|
2
|
Lucas N, Legrand R, Breton J, Déchelotte P, Edwards-Lévy F, Fetissov SO. Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight. Neuroscience 2015; 290:445-53. [PMID: 25637491 DOI: 10.1016/j.neuroscience.2015.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 02/08/2023]
Abstract
Chronic delivery of neuropeptides in the brain is a useful experimental approach to study their long-term effects on various biological parameters. In this work, we tested albumin-alginate microparticles, as a potential delivery system, to study if continuous release in the hypothalamus of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, may result in a long-term decrease in food intake and body weight. The 2-week release of α-MSH from peptide-loaded particles was confirmed by an in vitro assay. Then, daily food intake and body weight were studied for 18 days in rats injected bilaterally into the paraventricular hypothalamic nucleus with particles loaded or not with α-MSH. A decrease in body weight gain, persisting throughout the study, was found in rats injected with α-MSH-charged particles as compared with rats receiving non-charged particles and with rats injected with the same dose of α-MSH in solution. Food intake was significantly decreased for 3 days in rats receiving α-MSH-loaded particles and it was not followed by the feeding rebound effect which appears after food restriction. The presence of α-MSH-loaded particles in the hypothalamus was confirmed by immunohistochemistry. In conclusion, our study validates albumin-alginate microparticles as a new carrier system for long-term delivery of neuropeptides in the brain and demonstrates that chronic delivery of α-MSH in the hypothalamus results in a prolonged suppression of food intake and a decrease of body weight gain in rats.
Collapse
Affiliation(s)
- N Lucas
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France
| | - R Legrand
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France
| | - J Breton
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France
| | - P Déchelotte
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France; Rouen University Hospital, CHU Charles Nicolle, Rouen 76183, France
| | - F Edwards-Lévy
- Institute of Molecular Chemistry of Reims (ICMR), UMR CNRS 7312, University of Reims Champagne-Ardenne, 51100, France
| | - S O Fetissov
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France.
| |
Collapse
|
3
|
Amoxicillin-bearing microparticles: potential in the treatment of Listeria monocytogenes infection in Swiss albino mice. Biosci Rep 2011; 31:265-72. [PMID: 20687896 DOI: 10.1042/bsr20100027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study was aimed at evaluating the effectiveness of amoxicillin-bearing HSA (human serum albumin) and PLGA [poly(lactic-co-glycolic acid)] microparticles in combating Listeria monocytogenes infection in Swiss albino mice. Amoxicillin-bearing HSA microspheres were prepared by chemical cross-linking of a drug/albumin mixture with glutaraldehyde, and PLGA microspheres were prepared by the W/O/W (water-in-oil-in-water) emulsion technique. The microspheres were characterized for their size, ζ potential and entrapment efficiency using SEM (scanning electron microscopy) and a Zetasizer. Release kinetics was performed in a phosphate buffer (pH 7.4) at 37°C simulating physiological conditions. Bacterial burden in various vital organs and survival data established enhanced efficacy of PLGA and HSA microspheres as compared with free drug. Among the two delivery systems, PLGA microspheres, when compared with HSA microspheres, imparted better efficacy in terms of reduction in bacterial load as well as increase in survival. The results of the present study clearly demonstrate that microparticles successfully target the infected macrophages and the approach could be well exploited for targeting the intracellular pathogens as well.
Collapse
|
4
|
Perrier T, Saulnier P, Benoît JP. Methods for the Functionalisation of Nanoparticles: New Insights and Perspectives. Chemistry 2010; 16:11516-29. [DOI: 10.1002/chem.201000808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Abdi SIH, Ng SM, Choi JY, Seo JM, Lim JO. Size-controlled microbeads through the influence of the coalescence effect in the emulsification solvent evaporation method. Macromol Res 2010. [DOI: 10.1007/s13233-010-0706-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|