1
|
Laysandra L, Rusli RA, Chen YW, Chen SJ, Yeh YW, Tsai TL, Huang JH, Chuang KS, Njotoprajitno A, Chiu YC. Elastic and Self-Healing Copolymer Coatings with Antimicrobial Function. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25194-25209. [PMID: 38684227 PMCID: PMC11103657 DOI: 10.1021/acsami.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The revolutionary self-healing function for long-term and safe service processes has inspired researchers to implement them in various fields, including in the application of antimicrobial protective coatings. Despite the great advances that have been made in the field of fabricating self-healing and antimicrobial polymers, their poor transparency and the trade-off between the mechanical and self-healing properties limit the utility of the materials as transparent antimicrobial protective coatings for wearable optical and display devices. Considering the compatibility in the blending process, our group proposed a self-healing, self-cross-linkable poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} copolymer (AP)-based protective coating combined with two types of commercial cationic antimicrobial agents (i.e., dimethyl octadecyl (3-trimethoxysilylpropyl) ammonium chloride (DTSACL) and chlorhexidine gluconate (CHG)), leading to the fabrication of a multifunctional modified compound film of (AP/b%CHG)-grafted-a%DTSACL. The first highlight of this research is that the reactivity of the hydroxyl group in the N-(hydroxymethyl)acrylamide of the copolymer side chains under thermal conditions facilitates the "grafting to" process with the trimethoxysilane groups of DTSACL to form AP-grafted-DTSACL, yielding favorable thermal stability, improvement in hydrophobicity, and enhancement of mechanical strength. Second, we highlight that the addition of CHG can generate covalent and noncovalent interactions in a complex manner between the two biguanide groups of CHG with the AP and DTSACL via a thermal-triggered cross-linking reaction. The noncovalent interactions synergistically serve as diverse dynamic hydrogen bonds, leading to complete healing upon scratches and even showing over 80% self-healing efficiency on full-cut, while covalent bonding can effectively improve elasticity and mechanical strength. The soft nature of CHG also takes part in improving the self-healing of the copolymer. Moreover, it was discovered that the addition of CHG can enhance antimicrobial effectiveness, as demonstrated by the long-term superior antibacterial activity (100%) against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and the antifouling function on a glass substrate and/or a silica wafer coated by the modified polymer.
Collapse
Affiliation(s)
- Livy Laysandra
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Randy Arthur Rusli
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Wei Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Shi-Ju Chen
- Taipei
Municipal Zhongshan Girls High School, Taipei 10617, Taiwan
| | - Yao-Wei Yeh
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
| | - Tsung-Lin Tsai
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jui-Hsiung Huang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Kao-Shu Chuang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Andreas Njotoprajitno
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Seo J, Choi S, Singh R, Choi JH. Spatial Inhomogeneity and Molecular Aggregation behavior in Aqueous Binary Liquid Mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Vidal-Romero G, Rocha-Pérez V, Zambrano-Zaragoza ML, Del Real A, Martínez-Acevedo L, Galindo-Pérez MJ, Quintanar-Guerrero D. Development and Characterization of pH-Dependent Cellulose Acetate Phthalate Nanofibers by Electrospinning Technique. NANOMATERIALS 2021; 11:nano11123202. [PMID: 34947551 PMCID: PMC8706738 DOI: 10.3390/nano11123202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
The aim of this work was to obtain pH-dependent nanofibers with an electrospinning technique as a novel controlled release system for the treatment of periodontal disease (PD). Cellulose acetate phthalate (CAP) was selected as a pH-sensitive and antimicrobial polymer. The NF was optimized according to polymeric dispersion variables, polymer, and drug concentration, and characterized considering morphology, diameter, entrapment efficiency (EE), process efficiency (PE), thermal properties, and release profiles. Two solvent mixtures were tested, and CHX-CAP-NF prepared with acetone/ethanol at 12% w/v of the polymer showed a diameter size of 934 nm, a uniform morphology with 42% of EE, and 55% of PE. Meanwhile, CHX-CAP-NF prepared with acetone/methanol at 11% w/v of polymer had a diameter of 257 nm, discontinuous nanofiber morphology with 32% of EE, and 40% of PE. EE and PE were dependent on the polymer concentration and the drug used in the formulation. Studies of differential scanning calorimetry (DSC) showed that the drug was dispersed in the NF matrix. The release profiles of CHX from CHX-CAP-NF followed Fickian diffusion dependent on time (t0.43−0.45), suggesting a diffusion–erosion process and a matrix behavior. The NF developed could be employed as a novel drug delivery system in PD.
Collapse
Affiliation(s)
- Gustavo Vidal-Romero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54745, Estado de Mexico, Mexico; (G.V.-R.); (L.M.-A.)
| | - Virginia Rocha-Pérez
- Departamento en Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 09230, Mexico; (V.R.-P.); (M.J.G.-P.)
| | - María L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Estado de Mexico, Mexico;
| | - Alicia Del Real
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro C.P. 76230, Querétaro, Mexico;
| | - Lizbeth Martínez-Acevedo
- Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54745, Estado de Mexico, Mexico; (G.V.-R.); (L.M.-A.)
| | - Moisés J. Galindo-Pérez
- Departamento en Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 09230, Mexico; (V.R.-P.); (M.J.G.-P.)
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54745, Estado de Mexico, Mexico; (G.V.-R.); (L.M.-A.)
- Correspondence: ; Tel.: +52-555-623-2065
| |
Collapse
|
4
|
Pouponneau P, Perrey O, Brunon C, Grossiord C, Courtois N, Salles V, Alves A. Electrospun Bioresorbable Membrane Eluting Chlorhexidine for Dental Implants. Polymers (Basel) 2020; 12:polym12010066. [PMID: 31906503 PMCID: PMC7023585 DOI: 10.3390/polym12010066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
To prevent the uncontrolled development of a pathogenic biofilm around a dental implant, an antimicrobial drug-release electrospun membrane, set up between the implant and the gingival tissue, was developed by taking several technical, industrial and regulatory specifications into account. The membrane formulation is made of a blend of poly(l-lactic–co–gycolic acid) (PLGA, 85:15) and poly(l-lactic acide–co–ɛ-caprolactone) (PLC, 70:30) copolymers with chlorhexidine diacetate (CHX) complexed with β-cyclodextrin (CD). The amount of residual solvent, the mechanical properties and the drug release kinetics were tuned by the copolymers’ ratio, between 30% and 100% of PLC, and a CHX loading up to 20% w/w. The membranes were sterilized by γ-irradiation without significant property changes. The fiber′s diameter was between 600 nm and 3 µm, depending on the membrane composition and the electrospinning parameters. CHX was released in vitro over 10 days and the bacterial inhibitory concentration, 80 µg·mL−1, was reached within eight days. The optimal membrane, PGLA/PLC/CHX-CD (60%/40%/4%), exhibited a breaking strain of 50%, allowing its safe handling. This membrane and a membrane without CHX-CD were implanted subcutaneous in a rat model. The cell penetration remained low. The next step will be to increase the porosity of the membrane to improve the dynamic cell penetration and tissue remodeling.
Collapse
Affiliation(s)
- Pierre Pouponneau
- Statice, 25000 Besançon, France;
- Correspondence: ; Tel.: +33-(0)381484343
| | | | - Céline Brunon
- Science et Surface, 69130 Écully, France; (C.B.); (C.G.)
| | | | | | - Vincent Salles
- Univ Lyon, Université Claude Bernard Lyon1, Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France;
| | | |
Collapse
|
5
|
Vidal-Romero G, Zambrano-Zaragoza ML, Martínez-Acevedo L, Leyva-Gómez G, Mendoza-Elvira SE, Quintanar-Guerrero D. Design and Evaluation of pH-Dependent Nanosystems Based on Cellulose Acetate Phthalate, Nanoparticles Loaded with Chlorhexidine for Periodontal Treatment. Pharmaceutics 2019; 11:pharmaceutics11110604. [PMID: 31766136 PMCID: PMC6920854 DOI: 10.3390/pharmaceutics11110604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022] Open
Abstract
This work aimed to develop and evaluate pH-dependent systems based on nanospheres (NSphs) and nanocapsules (NCs) loaded with chlorhexidine (CHX) base as a novel formulation for the treatment of periodontal disease. Cellulose acetate phthalate (CAP) was employed as a pH-dependent polymeric material. The NSphs and NCs were prepared using the emulsion-diffusion technique and then characterized according to encapsulation efficiency (EE), size, zeta-potential, morphology, thermal properties, release profiles and a preliminary clinical panel test. The formulations showed 77% and 61% EE and 57% and 84% process efficiency (PE), respectively. Both systems were spherical with an average size of 250–300 nm. Differential scanning calorimetry (DSC) studies showed that the drug has the potential to be dispersed molecularly in the NSph matrix or dissolved in the oily center of the NCs. The CHX release test revealed that the release of NSphs-CHX follows Fickian diffusion involving diffusion-erosion processes. The NCs showed a slower release than the NSphs, following non-Fickian diffusion, which is indicative of anomalous transport. These nanosystems may, therefore, be employed as novel formulations for treating periodontal disease, due to (1) their coverage of a large surface area, (2) the controlled release of active substances at different pH, and (3) potential gingival tissue infiltration.
Collapse
Affiliation(s)
- Gustavo Vidal-Romero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México C.P. 54745, Mexico; (G.V.-R.); (L.M.-A.)
| | - María L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de Mexico CP 54714, Mexico;
| | - Lizbeth Martínez-Acevedo
- Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México C.P. 54745, Mexico; (G.V.-R.); (L.M.-A.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Susana E. Mendoza-Elvira
- Laboratorio de Virología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México C.P. 54745, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México C.P. 54745, Mexico; (G.V.-R.); (L.M.-A.)
- Correspondence: ; Tel.: +52-55-29224153
| |
Collapse
|
6
|
Ghaffari-Bohlouli P, Hamidzadeh F, Zahedi P, Shahrousvand M, Fallah-Darrehchi M. Antibacterial nanofibers based on poly(l-lactide-co-d,l-lactide) and poly(vinyl alcohol) used in wound dressings potentially: a comparison between hybrid and blend properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:219-243. [DOI: 10.1080/09205063.2019.1683265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Hamidzadeh
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, Iran
| | - Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Rossi F, Masi M. On the ability of chromatographic mass balance to predict solute diffusivity in drug delivery systems. AIChE J 2019. [DOI: 10.1002/aic.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Milan Italy
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Milan Italy
| |
Collapse
|
8
|
Cucina A, Filali S, Risler A, Febvay C, Salmon D, Pivot C, Pelandakis M, Pirot F. Dual 0.02% chlorhexidine digluconate - 0.1% disodium EDTA loaded thermosensitive ocular gel for Acanthamoeba keratitis treatment. Int J Pharm 2019; 556:330-337. [PMID: 30553004 DOI: 10.1016/j.ijpharm.2018.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
Poor bioavailability and low residence time limit the efficiency of conventional biguanide-based eye drops against Acanthamoeba keratitis. The aim of this work was to formulate an original anti-amoebic thermoreversible ocular gel combining biguanide and metalloproteases inhibitor - chelating agent. Chlorhexidine digluconate (CHX)-ethylenediaminetetraacetic acid disodium salt (Na2EDTA) were compounded in poloxamer 407 saline solution. 0.02% CHX - 0.1% Na2EDTA loaded thermosensitive ocular gel exhibited appropriate pH (5.73 ± 0.06), iso-osmolality (314 ± 5 mOsm/kg), viscosity (ranged between 15 and 25 mPa.s) and thermal gelation (26.5 °C and 33 °C) properties. Bioadhesion of gel was successfully tested onto isolated bovine eyes as well as the assessment of CHX penetration into the cornea. Intracorneal CHX concentration was found greater than trophozoite minimum amoebicidal concentration and minimal cysticidal concentration after 15-min and 2-h ocular exposure, respectively, while any CHX permeation through the cornea was detected (<51 ng/cm2/h). Improvement of CHX ocular bioavailability was attributed to probable solubilization of tear film lipid layer by poloxamer. In vitro efficiency of CHX-Na2EDTA ocular gel was confirmed from the drastic reduction of trophozoite and cyst survival (to 25% and 2%, respectively), confirming the potential of the multicomponent pharmaceutical material strategy for the treatment of Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Annamaria Cucina
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Samira Filali
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Arnaud Risler
- Laboratoire Lorrain de Chimie Moléculaire, Faculté des Sciences et Techniques, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre les Nancy, France
| | - Camille Febvay
- Service d'Ophtalmologie, Groupement Hospitalier Edouard Herriot, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Damien Salmon
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Christine Pivot
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Michel Pelandakis
- Université de Lyon, Laboratoire de Microbiologie, Adaptation et Pathogénie, UMR 5240, ISPB-Faculté de Pharmacie Laboratoire L3, 8, avenue Rockefeller - 69373 Lyon Cedex 08, France
| | - Fabrice Pirot
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France. http://fripharm.com
| |
Collapse
|
9
|
Murawsky M, Kelm GR, Kozak D, Qin B, Zou Y, Li SK. Influencing factors on gelatin matrix for chlorhexidine delivery. Drug Dev Ind Pharm 2018; 45:314-322. [PMID: 30372644 DOI: 10.1080/03639045.2018.1539744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objective was to evaluate the influencing factors in the fabrication of gelatin matrix (gelatin chips) for drug delivery. The attributes affecting drug release characteristics of the gelatin products were examined. SIGNIFICANCE Understanding the attributes that affect drug release from gelatin matrix could provide the knowledge base for the development, manufacturing, and performance evaluation of gelatin-based drug products for sustained drug delivery. METHODS Chlorhexidine (CHX) was the model drug in the gelatin-product testing. The gelatin products were fabricated by two methods: a single-pot mixing of all the components and a two-step gelatin crosslinking followed by drug loading. Different gelatin types (Type A porcine and Type B bovine), glutaraldehyde (GTA) crosslinking conditions, glycerin concentration, and CHX concentration in drug loading and loading time were used to fabricate the products. The cumulative amounts of CHX release from the gelatin products were determined using in vitro release testing (IVRT). RESULTS The attributes affecting CHX release from the gelatin products were gelatin type, GTA crosslinking, and CHX loading concentration. The fabrication methods (two-step method of gelatin crosslinking and drug loading by equilibration vs. direct mixing of the components) also affected CHX release. Other attributes such as glycerin and CHX loading time did not show significant effects on drug release under the conditions studied. In addition, the results in the two IVRT methods employed in this study were comparable. CONCLUSION Gelatin products of qualitative (Q1) and quantitative (Q2) differences could lead to different drug release behaviors. Drug release was also affected by the ingredient mixing steps during gelatin chip fabrication.
Collapse
Affiliation(s)
- Michael Murawsky
- a Division of Pharmaceutical Sciences , James L Winkle College of Pharmacy, University of Cincinnati , Cincinnati , OH , USA
| | - Gary R Kelm
- a Division of Pharmaceutical Sciences , James L Winkle College of Pharmacy, University of Cincinnati , Cincinnati , OH , USA
| | - Darby Kozak
- b Office of Research and Standards, Office of Generic Drugs, U.S. Food and Drug Administration , Silver Spring , MD , USA
| | - Bin Qin
- b Office of Research and Standards, Office of Generic Drugs, U.S. Food and Drug Administration , Silver Spring , MD , USA
| | - Yuan Zou
- b Office of Research and Standards, Office of Generic Drugs, U.S. Food and Drug Administration , Silver Spring , MD , USA
| | - S Kevin Li
- a Division of Pharmaceutical Sciences , James L Winkle College of Pharmacy, University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
10
|
Luo D, Zhang X, Shahid S, Cattell MJ, Gould DJ, Sukhorukov GB. Electrospun poly(lactic acid) fibers containing novel chlorhexidine particles with sustained antibacterial activity. Biomater Sci 2018; 5:111-119. [PMID: 27885369 DOI: 10.1039/c6bm00646a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of persistent infections often requires a high local drug concentration and sustained release of antimicrobial agents. This paper proposes the use of novel electrospinning of poly(lactic acid) (PLA) fibers containing uncoated and encapsulated chlorhexidine particles. Chlorhexidine particles with a mean (SD) diameter of 17.15 ± 1.99 μm were fabricated by the precipitation of chlorhexidine diacetate with calcium chloride. Layer-by-layer (LbL) encapsulation of the chlorhexidine particles was carried out to produce encapsulated particles. The chlorhexidine particles had a high chlorhexidine content (90%), and when they were electrospun into PLA fibers a bead-in-string structure was obtained. The chlorhexidine content in the fibers could be tuned and a sustained release over 650 h was produced, via chlorhexidine particle encapsulation. Chlorhexidine release was governed by the polyelectrolyte multilayer encapsulation as demonstrated by SEM and confocal imaging. The incorporation of uncoated and encapsulated chlorhexidine particles (0.5% and 1% wt/wt chlorhexidine) into the fibers did not cause toxicity to healthy fibroblasts or affect cell adhesion to the fibers over a period of 5 days. The chlorhexidine-containing fibers also demonstrated sustained antibacterial activity against E. coli via an agar diffusion assay and broth transfer assay. Therefore, the chlorhexidine-containing PLA fibers may be useful in the treatment of persistent infections in medicine and dentistry.
Collapse
Affiliation(s)
- Dong Luo
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
| | - Xi Zhang
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
| | - Saroash Shahid
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, UK
| | - Michael J Cattell
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, UK
| | - David J Gould
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
| |
Collapse
|
11
|
Zadymova NM, Tao M, Poteshnova MV. Tween 85 Oil-in-Water Nanoemulsions with Incorporated Chlorhexidine Base. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x18020138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Luo D, Shahid S, Sukhorukov GB, Cattell MJ. Synthesis of novel chlorhexidine spheres with controlled release from a UDMA–HEMA resin using ultrasound. Dent Mater 2017; 33:713-722. [DOI: 10.1016/j.dental.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
|
13
|
Pharmaceutical salts: Theory, use in solid dosage forms and in situ preparation in an aerosol. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Carrijo-Carvalho LC, Sant'ana VP, Foronda AS, de Freitas D, de Souza Carvalho FR. Therapeutic agents and biocides for ocular infections by free-living amoebae of Acanthamoeba genus. Surv Ophthalmol 2016; 62:203-218. [PMID: 27836717 DOI: 10.1016/j.survophthal.2016.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Acanthamoeba keratitis is a sight-threatening infectious disease. Resistance of the cystic form of the protozoan to biocides and the potential toxicity of chemical compounds to corneal cells are the main concerns related to long-term treatment with the clinically available ophthalmic drugs. Currently, a limited number of recognized antimicrobial agents are available to treat ocular amoebic infections. Topical application of biguanide and diamidine antiseptic solutions is the first-line therapy. We consider the current challenges when treating Acanthamoeba keratitis and review the chemical properties, toxicities, and mechanisms of action of the available biocides. Antimicrobial therapy using anti-inflammatory drugs is controversial, and aspects related to this topic are discussed. Finally, we offer our perspective on potential improvement of the effectiveness and safety of therapeutic profiles, with the focus on the quality of life and the advancement of individualized medicine.
Collapse
Affiliation(s)
- Linda Christian Carrijo-Carvalho
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Viviane Peracini Sant'ana
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Annette Silva Foronda
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Denise de Freitas
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fabio Ramos de Souza Carvalho
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Lascol M, Bourgeois S, Guillière F, Hangouët M, Raffin G, Marote P, Lantéri P, Bordes C. Pectin gelation with chlorhexidine: Physico-chemical studies in dilute solutions. Carbohydr Polym 2016; 150:159-65. [DOI: 10.1016/j.carbpol.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
16
|
Luo D, Shahid S, Wilson RM, Cattell MJ, Sukhorukov GB. Novel Formulation of Chlorhexidine Spheres and Sustained Release with Multilayered Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12652-12660. [PMID: 27176115 DOI: 10.1021/acsami.6b02997] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work demonstrates the synthesis of new chlorhexidine polymorphs with controlled morphology and symmetry, which were used as a template for layer-by-layer (LbL) encapsulation. LbL self-assembly of oppositely charged polyelectrolytes onto the drug surface was used in the current work, as an efficient method to produce a carrier with high drug content, improved drug solubility and sustained release. Coprecipitation of the chlorhexidine polymorphs was performed using chlorhexidine diacetate and calcium chloride solutions. Porous interconnected chlorhexidine spheres were produced by tuning the concentration of calcium chloride. The size of these drug colloids could be further controlled from 5.6 μm to over 20 μm (diameter) by adjusting the coprecipitation temperature. The chlorhexidine content in the spheres was determined to be as high as 90%. These particles were further stabilized by depositing 3.5 bilayers of poly(allylamine hydrochloride) (PAH) and polystyrenesulfonate (PSS) on the surface. In vitro release kinetics of chlorhexidine capsules showed that the multilayer shells could prolong the release, which was further demonstrated by characterizing the remaining chlorhexidine capsules with SEM and confocal microscopy. The new chlorhexidine polymorph and LbL coating has created novel chlorhexidine formulations. Further modification to the chlorhexidine polymorph structure is possible to achieve both sustained and stimuli responsive release, which will enhance its clinical performance in medicine and dentistry.
Collapse
Affiliation(s)
- Dong Luo
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| | - Saroash Shahid
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London E1 2AD, United Kingdom
| | - Rory M Wilson
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| | - Michael J Cattell
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London E1 2AD, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| |
Collapse
|
17
|
Alawi MA, Hamdan II, Sallam ALSA, Heshmeh NA. Solubility enhancement of glibenclamide in choline–tryptophan ionic liquid: Preparation, characterization and mechanism of solubilization. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Briffitt R, Day IJ. Influence of structural isomerism and fluorine atom substitution on the self-association of naphthoic acid. J Phys Chem B 2015; 119:6703-10. [PMID: 25973655 DOI: 10.1021/acs.jpcb.5b02381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The self-association of small aromatic systems driven by π-π stacking and hydrophobic interactions is well-known. Understanding the nature of these interactions is important if they are to be used to control association. Here, we present results of an NMR study into the self-association of two isomers of naphthoic acid along with an investigation into the role of a fluorine substituent on that self-association. We interpret the results in terms of a simple isodesmic model of self-association and show that the addition of the fluorine atom appears to increase the stability of the aggregates by an order of magnitude (e.g., 1-naphthoic acid vs 4-fluoro-1-naphthoic acid, Keq = 0.05 increases to 0.35 M(-1)), a result which is supported by computational studies in the literature on the role of substituent effects on interaction energy. The use of fluorinated isomers to probe the assembly is also presented, with differing trends in fluorine-19 chemical shifts observed depending on the isomer substitution pattern.
Collapse
Affiliation(s)
- Roseanne Briffitt
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Iain J Day
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| |
Collapse
|
19
|
Katz JR, Day LJ, Day IJ. NMR Investigations of the Interaction Between the Azo-Dye Sunset Yellow and Fluorophenol. J Phys Chem B 2013; 117:11793-800. [DOI: 10.1021/jp407686p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jonathan R. Katz
- School
of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom
| | - Lucy J. Day
- BHASVIC, 205 Dyke Road, Hove, East Sussex, BN3
6EG, United Kingdom
| | - Iain J. Day
- School
of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom
| |
Collapse
|
20
|
Padois K, Bertholle V, Pirot F, Hyunh TTN, Rossi A, Colombo P, Falson F, Sonvico F. Chlorhexidine salt-loaded polyurethane orthodontic chains: in vitro release and antibacterial activity studies. AAPS PharmSciTech 2012; 13:1446-50. [PMID: 23090109 DOI: 10.1208/s12249-012-9872-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/05/2012] [Indexed: 11/30/2022] Open
Abstract
The widespread use of indwelling medical devices has enormously increased the interest in materials incorporating antibiotics and antimicrobial agents as a means to prevent dangerous device-related infections. Recently, chlorhexidine-loaded polyurethane has been proposed as a material suitable for the production of devices which are able to resist microbial contamination. The aim of the present study was to characterize the in vitro release of chlorhexidine from new polymeric orthodontic chains realized with polyurethane loaded with two different chlorhexidine salts: chlorhexidine diacetate or chlorhexidine digluconate. The orthodontic chains constituted of three layers: a middle polyurethane layer loaded with chlorhexidine salt inserted between two layers of unloaded polymer. In vitro release of chlorhexidine diacetate and digluconate from orthodontic chains loaded with 10% or 20% (w/w) chlorhexidine salt was sustained for 42 days and followed Fickian diffusion. The drug diffusion through the polyurethane was found to be dependent not only on chlorhexidine loading, but also on the type of chlorhexidine salt. The antibacterial activity of 0.2% (w/w) chlorhexidine diacetate-loaded orthodontic chain was successfully tested towards clinically isolated biofilm forming ica-positive Staphylococcus epidermidis via agar diffusion test. In conclusion, the chlorhexidine salt-loaded chains could provide an innovative approach in the prevention of oral infections related to the use of orthodontic devices.
Collapse
|
21
|
Complex formation of chlorhexidine gluconate with hydroxypropyl-β-cyclodextrin (HPβCD) by proton nuclear magnetic resonance spectroscopy (1H NMR). Carbohydr Res 2011; 346:1037-46. [DOI: 10.1016/j.carres.2011.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/09/2011] [Accepted: 03/16/2011] [Indexed: 11/23/2022]
|
22
|
de Souza CAS, Colombo APV, Souto RM, Silva-Boghossian CM, Granjeiro JM, Alves GG, Rossi AM, Rocha-Leão MHM. Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity. Colloids Surf B Biointerfaces 2011; 87:310-8. [PMID: 21676601 DOI: 10.1016/j.colsurfb.2011.05.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/14/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
The kinetic of chlorhexidine digluconate (CHXDG) uptake from aqueous solution by hydroxyapatite (HA) was investigated by ultraviolet (UV) analysis performed in HA powder (UV-solid) after the CHX adsorption. Adsorption isotherm of chlorhexidine (CHX) uptake was modeled by a combination of Languimir and Langmuir-Freundlich mechanisms. Strong molecule-molecule interactions and positive cooperativity predominated in the surface when CHX concentration was above 8.6 μg(CHX)/mg(HA). UV-solid spectra (shape, intensity and band position) of CHX bound to HA revealed that long-range molecular structures, such as aggregates or micelles, started to be formed at low CHX concentrations (1.52 μg(CHX)/mg(HA)) and predominated at high concentrations. Grazing-incidence X-ray diffraction (GIXRD) analysis from synchrotron radiation discarded the formation of crystalline structures on HA surface or precipitation of CHX crystalline salts, as suggested in previous works. The effect of the HA/CHX association on HA in vitro bioactivity, cytotoxicity and CHX antimicrobial activity was evaluated. It was shown that CHX did not inhibit the precipitation of a poorly crystalline apatite at HA/CHX surface after soaking in simulating body fluid (SBF). Cell viability studies after exposure to extracts of HA and HA/CHX showed that both biomaterials did not present significant in vitro toxicity. Moreover, HA/CHX inhibited Enterococcus faecalis growth for up to 6 days, revealing that binding to HA did not affect antimicrobial activity of CHX and reduced bacterial adhesion. These results suggested that HA/CHX association could result in a potential adjuvant antimicrobial system for clinical use.
Collapse
|
23
|
Shen C, Zhang NZ, Anusavice KJ. Fluoride and chlorhexidine release from filled resins. J Dent Res 2010; 89:1002-6. [PMID: 20581354 DOI: 10.1177/0022034510374055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Resin-based materials that release either fluoride or chlorhexidine have been formulated for inhibiting caries activity. It is not known if the two agents, when incorporated into one material, would interact and affect their release potential. We hypothesized that the ratio of fluoride to chlorhexidine incorporated into a resin, and the pH of the storage medium, will affect their releases from the material. The material investigated contained 23 wt% of filler, and the ratios of calcium fluoride to chlorhexidine diacetate were 8/2, 5/5, and 2/8. The release was conducted in pH 4, 5, and 6 acetate buffers. The results showed that release of either agent increased as the pH of the medium decreased. The presence of fluoride salt substantially reduced the chlorhexidine release, while the presence of a specific quantity of chlorhexidine significantly increased fluoride release. This interaction can be utilized to optimize the release of either agent for therapeutic purposes.
Collapse
Affiliation(s)
- C Shen
- Department of Prosthodontics, College of Dentistry, University of Florida, PO Box 100435, 1600 SW Archer Rd., Gainesville, FL 32610-0435, USA.
| | | | | |
Collapse
|
24
|
|