1
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Zheng Y, Sheng F, Wang Z, Yang G, Li C, Wang H, Song Z. Shear Speed-Regulated Properties of Long-Acting Docetaxel Control Release Poly (Lactic- Co-Glycolic Acid) Microspheres. Front Pharmacol 2020; 11:1286. [PMID: 32973517 PMCID: PMC7468411 DOI: 10.3389/fphar.2020.01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Advanced drug carriers for the controlled release of chemotherapeutics in the treatment of malignant tumors have drawn significant notice in recent years. In the current study, microspheres (MPs) loaded with docetaxel (DTX) were prepared using polylactic-co-glycolic acid copolymer (PLGA). The double emulsion solvent evaporation method is simple to perform, and results in high encapsulation efficiency. Electron micrographs of the MPs showed that controlling the shear rate can effectively control the size of the MPs. At present, most DTX sustained-release carriers cannot maintain stable and long-term local drug release. The 1.68 μm DTX-loaded microspheres (MP/DTX) with elastase was completely degraded in 14 d. This controlled degradation period is similar to a course of treatment for most cancers. The drug release profile of all kinds of MP/DTX demonstrated an initial rapid release, then slower and stable release to the end. The current study demonstrates that it is possible to create drug-loaded MPs with specific degradation times and drug release curves, which may be useful in achieving optimal treatment times and drug release rates for different diseases, and different drug delivery routes. The initial burst release reaches the effective concentration of the drug at the beginning of release, and then the drug concentration is maintained by stable release to reduce the number of injections and improve patient compliance.
Collapse
Affiliation(s)
- Yuhao Zheng
- Department of Sports Medicine, First Hospital of Jilin University, Changchun, China
| | - Fan Sheng
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Zihang Wang
- Department of Traumatology, First Hospital of Jilin University, Changchun, China
| | - Guang Yang
- Department of Traumatology, First Hospital of Jilin University, Changchun, China
| | - Chenguang Li
- Department of Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Zhiming Song
- Department of Sports Medicine, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhou Y, Gaucher C, Fries I, Hobekkaya MA, Martin C, Leonard C, Deschamps F, Sapin-Minet A, Parent M. Challenging development of storable particles for oral delivery of a physiological nitric oxide donor. Nitric Oxide 2020; 104-105:1-10. [PMID: 32771473 DOI: 10.1016/j.niox.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) deficiency is often associated with several acute and chronic diseases. NO donors and especially S-nitrosothiols such as S-nitrosoglutathione (GSNO) have been identified as promising therapeutic agents. Although their permeability through the intestinal barrier have recently be proved, suitable drug delivery systems have to be designed for their oral administration. This is especially challenging due to the physico-chemical features of these drugs: high hydrophilicity and high lability. In this paper, three types of particles were prepared with an Eudragit® polymer: nanoparticles and microparticles obtained with a water-in-oil-in-water emulsion/evaporation process versus microparticles obtained with a solid-in-oil-in-water emulsion/evaporation process. They had a similar encapsulation efficiency (around 30%), and could be freeze-dried then be stored at least one month without modification of their critical attributes (size and GSNO content). However, microparticles had a slightly slower in vitro release of GSNO than nanoparticles, and were able to boost by a factor of two the drug intestinal permeability (Caco-2 model). Altogether, this study brings new data about GSNO intestinal permeability and three ready-to-use formulations suitable for further preclinical studies with oral administration.
Collapse
Affiliation(s)
- Yi Zhou
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | - Isabelle Fries
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | | | - Clément Leonard
- StaniPharm, 5 Rue Jacques Monod, BP 10, 54250, Champigneulles, France
| | - Frantz Deschamps
- StaniPharm, 5 Rue Jacques Monod, BP 10, 54250, Champigneulles, France
| | | | | |
Collapse
|
4
|
Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. Int J Pharm 2020; 585:119516. [DOI: 10.1016/j.ijpharm.2020.119516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023]
|
5
|
Makimori R, Endo E, Makimori J, Zanqueta E, Ueda-Nakamura T, Leimann F, Gonçalves O, Dias Filho B. Preparation, characterization and antidermatophytic activity of free- and microencapsulated cinnamon essential oil. J Mycol Med 2020; 30:100933. [DOI: 10.1016/j.mycmed.2020.100933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
|
6
|
Akhavan Farid E, Davachi SM, Pezeshki-Modaress M, Taranejoo S, Seyfi J, Hejazi I, Tabatabaei Hakim M, Najafi F, D'Amico C, Abbaspourrad A. Preparation and characterization of polylactic-co-glycolic acid/insulin nanoparticles encapsulated in methacrylate coated gelatin with sustained release for specific medical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:910-937. [PMID: 32009574 DOI: 10.1080/09205063.2020.1725863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study aimed to examine the possibility of using insulin orally with gelatin encapsulation to enhance the usefulness of the drug and increase the lifespan of insulin in the body using polylactic-co-glycolic acid (PLGA) nanoparticles alongside gelatin encapsulation. In this regard, PLGA was synthesized via ring opening polymerization, and PLGA/insulin nanoparticles were prepared by a modified emulsification-diffusion process. The resulting nanoparticles with various amounts of insulin were fully characterized using FTIR, DSC, DLS, zeta potential, SEM, and glucose uptake methods, with results indicating the interaction between the insulin and PLGA. The process efficiency of encapsulation was higher than 92%, while the encapsulation efficiency of nanoparticles, based on an insulin content of 20 to 40%, was optimized at 93%. According to the thermal studies, the PLGA encapsulation increases the thermal stability of the insulin. The morphological studies showed the fine dispersion of insulin in the PLGA matrix, which we further confirmed by the Kjeldahl method. According to the release studies and kinetics, in-vitro degradation, and particle size analysis, the sample loaded with 30% insulin showed optimum overall properties, and thus it was encapsulated with gelatin followed by coating with aqueous methacrylate coating. Release studies at pH values of 3 and 7.4, alongside the Kjeldahl method and standard dissolution test at pH 5.5, and glucose uptake assay tests clearly showed the capsules featured 3-4 h biodegradation resistance at a lower pH along with the sustained release, making these gelatin-encapsulated nanoparticles promising alternatives for oral applications.[Figure: see text].
Collapse
Affiliation(s)
- Elham Akhavan Farid
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Davachi
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.,Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Shahrouz Taranejoo
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Javad Seyfi
- Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Iman Hejazi
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Tabatabaei Hakim
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Wu JH, Wang XJ, Li SJ, Ying XY, Hu JB, Xu XL, Kang XQ, You J, Du YZ. Preparation of Ethyl Cellulose Microspheres for Sustained Release of Sodium Bicarbonate. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:556-568. [PMID: 31531041 PMCID: PMC6706755 DOI: 10.22037/ijpr.2019.1100651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sustained release of thermal-instable and water-soluble drugs with low molecule weight is a challenge. In this study, sodium bicarbonate was encapsulated in ethyl cellulose microspheres by a novel solid-in-oil-in-oil (S/O/O) emulsification method using acetonitrile/soybean oil as new solvent pairs. Properties of the microspheres such as size, recovery rate, morphology, drug content, and drug release behavior were evaluated to investigate the suitable preparation techniques. In the case of that the ratio of the internal and external oil phase was 1: 9, Tween 80 as a stabilizer resulted in the highest drug content (2.68%) and a good spherical shape of microspheres. After the ratio increased to 1: 4, the microspheres using Tween 80 as the stabilizer also had high drug content (1.96%) and exhibited a sustained release behavior, with 70% of drug released within 12 h and a sustained release of more than 40 h. Otherwise, different emulsification temperatures at which acetonitrile was evaporated could influence the drug release behaviour of microspheres obtained. This novel method is a potential and effective method to achieve the encapsulation and the sustained release of thermal-instable and water-soluble drugs with low molecule weight.
Collapse
Affiliation(s)
- Jia-Hui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Shu-Juan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jing-Bo Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xu-Qi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| |
Collapse
|
8
|
Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina. Adv Drug Deliv Rev 2018; 126:127-144. [PMID: 29339146 DOI: 10.1016/j.addr.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
Abstract
Pathologies affecting the optic nerve and the retina are one of the major causes of blindness. These diseases include age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma, among others. Also, there are genetic disorders that affect the retina causing visual impairment. The prevalence of neurodegenerative diseases of the posterior segment is increased as most of them are related with the elderly. Even with the access to different treatments, there are some challenges in managing patients suffering retinal diseases. One of them is the need for frequent interventions. Also, an unpredictable response to therapy has suggested that different pathways may be playing a role in the development of these diseases. The management of these pathologies requires the development of controlled drug delivery systems able to slow the progression of the disease without the need of frequent invasive interventions, typically related with endophthalmitis, retinal detachment, ocular hypertension, cataract, inflammation, and floaters, among other. Biodegradable microspheres are able to encapsulate low molecular weight substances and large molecules such as biotechnological products. Over the last years, a large variety of active substances has been encapsulated in microspheres with the intention of providing neuroprotection of the optic nerve and the retina. The purpose of the present review is to describe the use of microspheres in chronic neurodegenerative diseases affecting the retina and the optic nerve. The advantage of microencapsulation of low molecular weight drugs as well as therapeutic peptides and proteins to be used as neuroprotective strategy is discussed. Also, a new use of the microspheres in the development of animal models of neurodegeneration of the posterior segment is described.
Collapse
|
9
|
Brambilla LZS, Endo EH, Cortez DAG, Lima MMS, Dias Filho BP. Piper regnellii extract biopolymer-based microparticles: production, characterization and antifungal activity. J Appl Microbiol 2017; 124:75-84. [PMID: 29072357 DOI: 10.1111/jam.13618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 09/30/2017] [Indexed: 12/01/2022]
Abstract
AIMS This study aims to improve characteristics of Piper regnellii extract to make it applicable in formulations to treat dermatophytosis, also known as ringworm. METHODS AND RESULTS Microparticles (MPs) were produced by spray drying with gelatin, alginate and chitosan as encapsulating agents; characterized by scanning electron microscopy, encapsulation efficiency, thermal analyses and X-ray diffraction; and tested against Trichophyton rubrum by broth microdilution. Produced MPs had a mean diameter less than 2 μm, an increase in stability and release of the extract and good results for encapsulation efficiency, being 85·6% to gelatin MP, 71·3% to chitosan MP and 60·6% to alginate. MPs preserved the antifungal activity of P. regnellii extract T. rubrum. CONCLUSION Microencapsulation provided a significant improvement in the stability of the P. regnellii extract and better solubilization of chemical compounds, maintaining the antifungal effect against T. rubrum. SIGNIFICANCE AND IMPACT OF THE STUDY These results are useful for developing a formulation to treat fungal infections caused by dermatophyte species.
Collapse
Affiliation(s)
- L Z S Brambilla
- Post Graduate Program in Pharmaceutical Science, Universidade Estadual de Maringá, Paraná, Brazil
| | - E H Endo
- Post Graduate Program in Pharmaceutical Science, Universidade Estadual de Maringá, Paraná, Brazil
| | - D A G Cortez
- Department of Pharmacy, Universidade Estadual de Maringá, Paraná, Brazil
| | - M M S Lima
- Department of Pharmacy, Universidade Estadual de Maringá, Paraná, Brazil
| | - B P Dias Filho
- Department of Pharmacy, Universidade Estadual de Maringá, Paraná, Brazil
| |
Collapse
|
10
|
Rodrigues de Azevedo C, von Stosch M, Costa MS, Ramos A, Cardoso MM, Danhier F, Préat V, Oliveira R. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm 2017; 532:229-240. [DOI: 10.1016/j.ijpharm.2017.08.118] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
11
|
Bai X, Kong M, Xia G, Bi S, Zhou Z, Feng C, Cheng X, Chen X. Systematic investigation of fabrication conditions of nanocarrier based on carboxymethyl chitosan for sustained release of insulin. Int J Biol Macromol 2017; 102:468-474. [DOI: 10.1016/j.ijbiomac.2017.03.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
12
|
Li H, Lv N, Li X, Liu B, Feng J, Ren X, Guo T, Chen D, Fraser Stoddart J, Gref R, Zhang J. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. NANOSCALE 2017; 9:7454-7463. [PMID: 28530283 DOI: 10.1039/c6nr07593b] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Metal-organic frameworks (MOFs), which are typically embedded in polymer matrices as composites, are emerging as a new class of carriers for sustained drug delivery. Most of the MOFs and the polymers used so far in these composites, however, are not pharmaceutically acceptable. In the investigation reported herein, composites of γ-cyclodextrin (γ-CD)-based MOFs (CD-MOFs) and polyacrylic acid (PAA) were prepared by a solid in oil-in-oil (s/o/o) emulsifying solvent evaporation method. A modified hydrothermal protocol has been established which produces efficiently at 50 °C in 6 h micron (5-10 μm) and nanometer (500-700 nm) diameter CD-MOF particles of uniform size with smooth surfaces and powder X-ray diffraction patterns that are identical with those reported in the literature. Ibuprofen (IBU) and Lansoprazole (LPZ), both insoluble in water and lacking in stability, were entrapped with high drug loading in nanometer-sized CD-MOFs by co-crystallisation (that is more effective than impregnation) without causing MOF crystal degradation during the loading process. On account of the good dispersion of drug-loaded CD-MOF nanocrystals inside polyacrylic acid (PAA) matrices and the homogeneous distribution of the drug molecules within these crystals, the composite microspheres exhibit not only spherical shapes and sustained drug release over a prolonged period of time, but they also demonstrate reduced cell toxicity. The cumulative release rate for IBU (and LPZ) follows the trend: IBU-γ-CD complex microspheres (ca. 80% in 2 h) > IBU microspheres > IBU-CD-MOF/PAA composite microspheres (ca. 50% in 24 h). Importantly, no burst release of IBU (and LPZ) was observed from the CD-MOF/PAA composite microspheres, suggesting an even distribution of the drug as well as strong drug carrier interactions inside the CD-MOF. In summary, these composite microspheres, composed of CD-MOF nanocrystals embedded in a biocompatible polymer (PAA) matrix, constitute an efficient and pharmaceutically acceptable MOF-based carrier for sustained drug release.
Collapse
Affiliation(s)
- Haiyan Li
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Guerreiro LH, Silva DD, Girard-Dias W, Mascarenhas CM, Miranda K, Sola-Penna M, Ricci Júnior E, Lima LMTDRE. Macromolecular confinement of therapeutic protein in polymeric particles for controlled release: insulin as a case study. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Luiz Henrique Guerreiro
- Federal University of Rio de Janeiro, Brazil; Rural Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv Transl Res 2016; 6:308-18. [DOI: 10.1007/s13346-016-0278-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Sharma G, Sharma AR, Nam JS, Doss GPC, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 2015; 13:74. [PMID: 26498972 PMCID: PMC4619439 DOI: 10.1186/s12951-015-0136-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
Diabetic cases have increased rapidly in recent years throughout the world. Currently, for type-1 diabetes mellitus (T1DM), multiple daily insulin (MDI) injections is the most popular treatment throughout the world. At this juncture, researchers are trying to develop different insulin delivery systems, especially through oral and pulmonary route using nanocarrier based delivery system. This next generation efficient therapy for T1DM may help to improve the quality of life of diabetic patients who routinely employ insulin by the subcutaneous route. In this paper, we have depicted various next generation nanocarrier based insulin delivery systems such as chitosan-insulin nanoparticles, PLGA-insulin nanoparticles, dextran-insulin nanoparticles, polyalkylcyanoacrylated-insulin nanoparticles and solid lipid-insulin nanoparticles. Modulation of these insulin nanocarriers may lead to successful oral or pulmonary insulin nanoformulations in future clinical settings. Therefore, applications and limitations of these nanoparticles in delivering insulin to the targeted site have been thoroughly discussed.
Collapse
Affiliation(s)
- Garima Sharma
- Institute For Skeletal Aging, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea. .,Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.
| | - Ju-Suk Nam
- Institute For Skeletal Aging, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.
| | - George Priya C Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| | - Sang-Soo Lee
- Institute For Skeletal Aging, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.
| | - Chiranjib Chakraborty
- Institute For Skeletal Aging, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea. .,Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India.
| |
Collapse
|
17
|
Ansari M. Oral Delivery of Insulin for Treatment of Diabetes: Classical Challenges and Current Opportunities. JOURNAL OF MEDICAL SCIENCES 2015. [DOI: 10.3923/jms.2015.209.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Ojha VK, Jackowski K, Abraham A, Snášel V. Dimensionality reduction, and function approximation of poly(lactic-co-glycolic acid) micro- and nanoparticle dissolution rate. Int J Nanomedicine 2015; 10:1119-29. [PMID: 25709436 PMCID: PMC4327564 DOI: 10.2147/ijn.s71847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.
Collapse
Affiliation(s)
- Varun Kumar Ojha
- IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Department of Computer Science, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Konrad Jackowski
- Department of Systems and Computer Networks, Wrocław University of Technology, Wrocław, Poland
| | - Ajith Abraham
- IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Machine Intelligence Research Labs, Auburn, WA, USA
| | - Václav Snášel
- IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Department of Computer Science, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
19
|
Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, Reis S, Sarmento B. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm 2013; 456:370-81. [DOI: 10.1016/j.ijpharm.2013.08.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022]
|
20
|
Miao-qing L, Jian-jun L, Li L, Wei H. PREPARATION OF POROUS POLYIMIDE MICROSPHERES IN NON-AQUEOUS INVERSE EMULSION. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Manosroi A, Chankhampan C, Manosroi W, Manosroi J. Anti-proliferative and matrix metalloproteinase-2 inhibition of Longkong (Lansium domesticum) extracts on human mouth epidermal carcinoma. PHARMACEUTICAL BIOLOGY 2013; 51:1311-1320. [PMID: 23763335 DOI: 10.3109/13880209.2013.790064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Longkong [Lansium domesticum Corr. (Meliaceae)] is a popular tropical plant producing economic edible fruits found mainly in Southeast Asia. However, limited information is available concerning anticancer activity of Longkong. OBJECTIVE To investigate anticancer activities in human mouth epidermal carcinoma (KB) of Longkong extracts. MATERIALS AND METHODS Various parts of Longkong which was collected from Northern and Eastern of Thailand were extracted by the hot and cold processes using water, chloroform, and methanol. The extracts were tested for anti-oxidative activities and anti-proliferation as well as matrix metalloproteinase inhibition on KB cells. RESULTS The hot water extract of seeds from Northern region (NSEWH), the cold water extract of old leaves from Northern region (NOLWC), and the hot chloroform extract of young leaves from Eastern region (EYLCH) showed the highest free radical scavenging, metal ion chelating, and lipid peroxidation inhibition with SC50, MC50 and IPC50 values of 0.34 ± 0.03, 0.47 ± 1.60 and 0.86 ± 0.31 mg/ml, respectively. The hot and cold chloroform extract of young fruits from Northern region (NYFCH and NYFCC) exhibited anti-proliferation effect against KB cells with IC50 values of 603.45 ± 55.35 and 765.06 ± 46.19 mg/ml, respectively. NYFCC exhibited the highest pro- and active MMP-2 inhibition at 53.03 ± 2.65 and 31.30 ± 0.43%, more than all tested standard anticancer drugs except cisplatin. DISCUSSION AND CONCLUSION The cold chloroform extract of young fruits from Northern region appeared to contain anticancer active compounds against KB cells because of its high anti-proliferation and MMP-2 inhibition activities.
Collapse
|
22
|
He P, Liu H, Tang Z, Deng M, Yang Y, Pang X, Chen X. Poly(ester amide) blend microspheres for oral insulin delivery. Int J Pharm 2013; 455:259-66. [DOI: 10.1016/j.ijpharm.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/13/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
23
|
Vanea E, Moraru C, Vulpoi A, Cavalu S, Simon V. Freeze-dried and spray-dried zinc-containing silica microparticles entrapping insulin. J Biomater Appl 2013; 28:1190-9. [DOI: 10.1177/0885328213501216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New approaches for oral administration of insulin are strongly related to novel insulin carriers. The aim of this study was the insulin microencapsulation in a new zinc-silica matrix for drug protection and controlled release. Zinc-silica microparticles loaded with insulin were obtained by sol-gel process via spray drying and freeze drying methods. Inorganic silica matrix isolates and constrains the movement of the biomolecules preventing their aggregation and denaturation, while the zinc oxide improves the system stability. Moreover, formation of insulin hexamers in the presence of zinc ions leads to an increased stability of the insulin three-dimensional structure during preparation, storage and release. The particles were characterized with respect to average size, specific surface area, porosity and morphology. In vitro behavior of insulin-loaded particles together with protein structural conformation was also evaluated. The release profile can be adapted by synthesis route of microparticles.
Collapse
Affiliation(s)
- Emilia Vanea
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Corina Moraru
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Viorica Simon
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Hong X, Wei L, Ma L, Chen Y, Liu Z, Yuan W. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion. Int J Nanomedicine 2013; 8:2433-41. [PMID: 23882140 PMCID: PMC3709647 DOI: 10.2147/ijn.s45186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An increasing number of drugs are needing improved formulations to optimize patient compliance because of their short half-lives in blood. Sustained-release formulations of drugs are often required for long-term efficacy, and microspheres are among the most popular ones. When drugs are encapsulated into microsphere formulations, different methods of preparation need to be used according to specific clinical requirements and the differing physicochemical characteristics of individual drugs. In this work, we developed a novel method for sustained-release drug delivery using a water-in-oil-in-hydrophilic oil-in-water (w/o/oh/w) emulsion to encapsulate a drug into poly(lactic-co-glycolic acid) (PLGA) microspheres. Different effects were achieved by varying the proportions and concentrations of hydrophilic oil and PLGA. Scanning electron and optical microscopic images showed the surfaces of the microspheres to be smooth and that their morphology was spherical. Microspheres prepared using the w/o/oh/w emulsion were able to load protein efficiently and had sustained-release properties. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future.
Collapse
Affiliation(s)
- Xiaoyun Hong
- Department of Neurology, Xinhua Hospital affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Vanea E, Gruian C, Rickert C, Steinhoff HJ, Simon V. Structure and Dynamics of Spin-Labeled Insulin Entrapped in a Silica Matrix by the Sol–Gel Method. Biomacromolecules 2013; 14:2582-92. [DOI: 10.1021/bm4003893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E. Vanea
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - C. Gruian
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - C. Rickert
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - H.-J. Steinhoff
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - V. Simon
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Li B, Li T, Chen G, Li X, Yan L, Xie Z, Jing X, Huang Y. Regulation of Conjugated Hemoglobin on Micelles through Copolymer Chain Sequences and the Protein's Isoelectric Aggregation. Macromol Biosci 2013; 13:893-902. [DOI: 10.1002/mabi.201300012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/08/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Bin Li
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
- Graduate School of Chinese Academy of Sciences; Beijing 100049; China
| | - Taihang Li
- Zhejiang Hisun Pharmaceutical Co. Ltd; Taizhou 318000; China
| | - Gao Chen
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
- Graduate School of Chinese Academy of Sciences; Beijing 100049; China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Lesan Yan
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
- Graduate School of Chinese Academy of Sciences; Beijing 100049; China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| |
Collapse
|
27
|
Microencapsulated chitosan–dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.10.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Liu R, Wang LB, Huang RL, Su RX, Qi W, Yu YJ, He ZM. Self-assembled oligomeric procyanidin–insulin hybrid nanoparticles: a novel strategy for controllable insulin delivery. Biomater Sci 2013; 1:834-841. [DOI: 10.1039/c3bm60066a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Manosroi A, Chankhampan C, Ofoghi H, Manosroi W, Manosroi J. Low cytotoxic elastic niosomes loaded with salmon calcitonin on human skin fibroblasts. Hum Exp Toxicol 2012; 32:31-44. [DOI: 10.1177/0960327112454892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A low cytotoxic elastic niosomal formulation loaded with salmon calcitonin was developed. The elastic niosomes were prepared from Tween 61 mixed with cholesterol at various concentrations of the edge activators (sodium cholate (NaC) and sodium deoxycholate (NaDC); 0.25, 0.5, 2.5, 5 and 10% mole) or ethanol (10–30% v/v). The effects of the niosomal concentrations (5, 10 and 20 mM) and phosphate buffer at pH 7.0 (5, 10, 20 and 30 mM) on the physical characteristics of niosomes were investigated. The 5 mM elastic niosomes in 5 mM phosphate buffer containing calcitonin 0.22 mg/mL gave the highest elasticity (deformability index (DI)) at 6.79 ± 2.03 determined by the extrusion method. The blank elastic niosomes comprised 2.5% mole NaDC, 5% mole NaC or 20% v/v ethanol showed the highest elasticity. The 5% mole NaC elastic niosomes loaded with calcitonin gave the highest DI (21.59 ± 0.91) and percentages of calcitonin entrapment efficiency (60.11 ± 4.98). This study has demonstrated that this NaC elastic niosome did not only reduce the cytotoxicity of the loaded calcitonin but also gave superior cell viability to the ethanolic elastic niosome as well.
Collapse
Affiliation(s)
- Aranya Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Natural Products Research and Development Center (NPRDC), Science and Technology Research Institute (STRI), Chiang Mai University, Chiang Mai, Thailand
| | - C Chankhampan
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - H Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, (IROST), Tehran, Islamic Republic of Iran
| | - W Manosroi
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - J Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Natural Products Research and Development Center (NPRDC), Science and Technology Research Institute (STRI), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 2012; 112:4507-40. [PMID: 22621236 DOI: 10.1021/cr3000169] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, 32001 Taiwan.
| | | | | | | |
Collapse
|
31
|
Chen C, Liu M, Lii S, Gao C, Chen J. In vitro degradation and drug-release properties of water-soluble chitosan cross-linked oxidized sodium alginate core-shell microgels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:2007-24. [PMID: 21967992 DOI: 10.1163/092050611x601720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hydrogels based on sodium alginate (SA) have already been widely used in biomedical applications using Ca(2+) as a cross-linker; however, these hydrogels tend to disintegrate in electrolyte solutions. To solve this problem, we present a kind of oxidized sodium alginate (OSA) microgel using water-soluble chitosan (WSC) as a cross-linker. This microgel was successfully prepared via an emulsion cross-linking technique at room temperature. The microgel was cross-linked by the formation of both Schiff base bonds and inter-polyelectrolyte complexes, which can efficiently eliminate the disintegration of the microgel in electrolyte solutions. Morphological properties of the resulting microgels were determined by transmission electron microscopy (TEM), hydrodynamic diameters of the microgels were characterized by dynamic light scattering (DLS). The objective of this work was to achieve the colon-specific delivery of an anti-ulcerative colitis drug. 5-Aminosalicylic acid (5-ASA) was chosen as a model drug and the in vitro drug-release profile was established in buffer solutions with 0.1 M HCl/NaCl (pH 1.2) and 0.1 M phosphate-buffered saline (PBS, pH 7.4) at 37°C. The microgel was incubated in 0.1 M PBS (pH 7.4) at 37°C to determine its degradation behavior. Cell cytotoxicity (tested by MTT assay) showed that this microgel had no significant cytotoxicity. These results indicated that this microgel prepared by introducing WSC into OSA may have potential applications in oral controlled drug-delivery systems. Therefore, the OSA/WSC microgel may be a useful carrier for the colon-specific delivery of anti-inflammatory drugs including 5-ASA and the enhanced therapeutic effect of ulcerative colitis.
Collapse
Affiliation(s)
- Chen Chen
- a State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou , 730000 , P. R. China
| | | | | | | | | |
Collapse
|
32
|
He P, Tang Z, Lin L, Deng M, Pang X, Zhuang X, Chen X. Novel Biodegradable and pH-Sensitive Poly(ester amide) Microspheres for Oral Insulin Delivery. Macromol Biosci 2012; 12:547-56. [DOI: 10.1002/mabi.201100358] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/07/2011] [Indexed: 12/18/2022]
|
33
|
Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martínez IT, Young MJ, Herrero-Vanrell R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release 2011; 156:92-100. [DOI: 10.1016/j.jconrel.2011.06.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/05/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
34
|
Yan S, Zhu J, Wang Z, Yin J, Zheng Y, Chen X. Layer-by-layer assembly of poly(L-glutamic acid)/chitosan microcapsules for high loading and sustained release of 5-fluorouracil. Eur J Pharm Biopharm 2010; 78:336-45. [PMID: 21195174 DOI: 10.1016/j.ejpb.2010.12.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/11/2010] [Accepted: 12/17/2010] [Indexed: 01/05/2023]
Abstract
Hollow polyelectrolyte microcapsules based on poly(l-glutamic acid) (PLGA) and chitosan (CS) with opposite charges were fabricated by layer-by-layer (LbL) assembly technique using melamine formaldehyde (MF) microparticles as sacrificial templates. The LbL assembly of polyelectrolytes and the resultant PLGA/CS microcapsules were characterized. A hydrophilic anticancer drug, 5-fluorouracil (5-FU), was chosen to investigate the loading and release properties of the microcapsules. The PLGA/CS microcapsules show high loading capacity of 5-FU under conditions of high drug concentration and salt adding. The high loading can be ascribed to spontaneous deposition of 5-FU induced by hydrogen bonding between 5-FU and PLGA/CS microcapsules. The PLGA/CS microcapsules show sustained release behavior. The release rate of 5-FU drastically slows down after loading in PLGA/CS microcapsules. The 5-FU release from PLGA/CS microcapsules can be best described using Ritger-Peppas or Baker-Londale models, indicating the diffusion mechanism of 5-FU release from the PLGA/CS microcapsules. In vitro cytotoxicity evaluation by the MTT assay shows good cell viability over the entire concentration range of PLGA/CS microcapsules. Therefore, the novel PLGA/CS microcapsules are expected to find application in drug delivery systems because of the properties of biodegradability, high loading, sustained release and cell compatibility.
Collapse
Affiliation(s)
- Shifeng Yan
- Department of Polymer Materials, Shanghai University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
35
|
Tiwari AK, Gajbhiye V, Sharma R, Jain NK. Carrier mediated protein and peptide stabilization. Drug Deliv 2010; 17:605-16. [DOI: 10.3109/10717544.2010.509359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
PLGA microparticles in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen TB10.4-Ag85B. Pharm Res 2009; 27:350-60. [PMID: 20024670 DOI: 10.1007/s11095-009-0028-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To study the use of poly (lactide-co-glycolide) (PLGA) microparticles in respirable sizes as carriers for recombinant tuberculosis (TB) antigen, TB10.4-Ag85B, with the ultimate goal of pulmonary delivery as vaccine for the prevention of TB. MATERIALS AND METHODS Recombinant TB antigens were purified from E. coli by FPLC and encapsulated into PLGA microparticles by emulsion/spray-drying. Spray-drying condition was optimized by half-factorial design. Microparticles encapsulating TB antigens were assessed for their ability to deliver antigens to macrophages for subsequent presentation by employing an in vitro antigen presentation assay specific to an Ag85B epitope. RESULTS Spray-drying condition was optimized to prepare PLGA microparticles suitable for pulmonary delivery (aerodynamic diameter of 3.3 microm). Antigen release from particles exhibited an initial burst release followed by sustained release up to 10 days. Antigens encapsulated into PLGA microparticles induced much stronger interleukin-2 secretion in a T-lymphocyte assay compared to antigen solutions for three particle formulations. Macrophages pulsed with PLGA-MDP-TB10.4-Ag85B demonstrated extended epitope presentation. CONCLUSION PLGA microparticles in respirable sizes were effective in delivering recombinant TB10.4-Ag85B in an immunologically relevant manner to macrophages. These results set the foundation for further investigation into the potential use of PLGA particles for pulmonary delivery of vaccines to prevent Mycobacterium tuberculosis infection.
Collapse
|