1
|
Wu J, Wang J, Liu J, Yang M, Liu C, Guo J, Fang L. Development of levamlodipine long-acting patches based on an ion-pair strategy: Investigation of the mechanism for reducing skin irritation. Int J Pharm 2024; 665:124703. [PMID: 39312986 DOI: 10.1016/j.ijpharm.2024.124703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
The aim of this study was to develop a long-acting transdermal patch of levamlodipine (LAM) using an ion-pair strategy to reduce the skin irritation induced by topical application of LAM and explore the mechanism underlying the improvement of skin irritation. The formulation was optimized through porcine in vitro transdermal experiments and rabbit in vivo skin irritation tests. The obtained formulation consisted of poly (2-Ethylhexyl acrylate-co-N-Vinyl-2-pyrrolidone-co-N-(2-Hydroxyethyl) acrylamide) (PENH) as the adhesive matrix, 13.00 % levamlodipine-sorbic acid ion-pair complex (LAM-SA) (w/w), and 10 % isopropyl myristate (IPM) (w/w), with a patch thickness of 70 μm, achieving an erythema index of 188 for rabbit skin and 117-187 for human skin (264 for rabbit skin and 110-260 for human skin in the absence of sorbic acid (SA)). In vivo rabbit and human skin erythema analysis and H&E staining verified that the optimized ion-pair patch effectively reduced skin irritation. Drug distribution experiments in the skin, ATR-FTIR, and molecular simulation were used to characterize the mechanism by which the ion-pair reduced skin irritation. Excessive accumulation of LAM in the epidermis induced secondary structural changes in keratin, resulting in skin barrier damage and inflammatory response. The formation of the LAM-SA ion pair altered physicochemical properties of LAM, reducing drug retention in the epidermis and, thereby, reducing skin irritation. This study demonstrated the potential of the ion-pair strategy to improve the safety of transdermal drug delivery system (TDDS) and provided a means for reducing skin irritation caused by the active pharmaceutical ingredient (API) itself.
Collapse
Affiliation(s)
- Jiaxu Wu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jingjing Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Muzi Yang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Karve T, Dandekar A, Agrahari V, Melissa Peet M, Banga AK, Doncel GF. Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches. Adv Drug Deliv Rev 2024; 210:115326. [PMID: 38692457 DOI: 10.1016/j.addr.2024.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems. Each subsection describes an approach including key considerations in formulation development, design, and process parameters with schematics. An overview of commercially available conventional (adhesive) patches for long-acting drug delivery (longer than 24 h), the reservoir- and matrix-type systems under preclinical evaluation, as well as the advanced transdermal formulations, such as the core-shell, nanoformulations-incorporated and stimuli-responsive microneedles, and 3D-printed and molecularly imprinted polymers that are in development, is also provided. Finally, we elaborated on translational aspects, challenges in patch formulation development, and future directions for the clinical advancement of new long-acting transdermal products.
Collapse
Affiliation(s)
- Tanvi Karve
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Amruta Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - M Melissa Peet
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | | |
Collapse
|
3
|
Kim EJ, Choi DH. Quality by design approach to the development of transdermal patch systems and regulatory perspective. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00536-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Kumar R, Sinha V, Dahiya L, Sarwal A. Transdermal delivery of duloxetine-sulfobutylether-β-cyclodextrin complex for effective management of depression. Int J Pharm 2021; 594:120129. [DOI: 10.1016/j.ijpharm.2020.120129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/15/2023]
|
5
|
Liu M, Liu ZQ, Zhu H, He CH, Wu KJ. Enantioseparation of racemic amlodipine using immobilized ionic liquid by solid-phase extraction. Chirality 2020; 32:1062-1071. [PMID: 32342529 DOI: 10.1002/chir.23231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
In this paper, a novel l-glutamate based immobilized chiral ionic liquid (SBA-IL (Glu)) was prepared by chemical bonding method and applied as a solid sorbent for chiral separation of amlodipine. The performance of SBA-IL (Glu) was investigated for the absorption of (S)-amlodipine and separation of amlodipine enantiomer. The static experiment showed that equilibrium adsorption was achieved within 80 minutes, and the saturation adsorptions capacity was 12 mg/g. The complex was then packed in a glass chromatographic column for the separation of amlodipine and the enantiomeric excess (%ee) of (S)-amlodipine reached 24.67%. The immobilized ionic liquids exhibit good reusability, and the separation efficiency remains 18.24% after reused five times, which allows potential scale-up for the chiral separation of amlodipine.
Collapse
Affiliation(s)
- Min Liu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Zhong-Qian Liu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Hai Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Chao-Hong He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Ke-Jun Wu
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Rastogi V, Yadav P, Husain A, Verma A. Effect of hydrophilic and hydrophobic polymers on permeation of S-amlodipine besylate through intercalated polymeric transdermal matrix: 3(2) designing, optimization and characterization. Drug Dev Ind Pharm 2019; 45:669-682. [PMID: 30633579 DOI: 10.1080/03639045.2019.1569035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Innovation in material science has made it possible to fabricate a pharmaceutical material of modifiable characteristics and utility, in delivering therapeutics at a sustained/controlled rate. The objective of this study is to design and optimize the controlled release transdermal films of S-Amlodipine besylate by intercalating hydrophilic and hydrophobic polymers. METHODS 3(2) factorial design and response surface methodology was utilized to prepare formulations by intercalating the varied concentration of polymers(A) and penetration enhancer(B) in solvent. The effect of these independent factors on drug release and flux was investigated to substantiate the ex-vivo, stability and histological findings of the study. RESULTS FTIR, DSC revealed the compatibility of drug with polymers; however, the semicrystallinity in drug was observed under PXRD. SEM micrographs showed homogeneous dispersion and entanglement of drug throughout the matrix. Results from the permeation study suggested the significant effect of factors on the ex vivo permeation of drug. It was observed that drug release was found to be increased with an increase in hydrophilic polymer concentration and PE. The formulations having polymers (EC:PVPK-30) at 7:3 showed maximum drug release with highest flux (102.60 ± 1.12 µg/cm2/h) and permeability coefficient (32.78 ± 1.38 cm/h). Significant effect of PE on lipid and protein framework of the skin was also observed which is responsible for increased permeation. The optimized formulation was found to be stable and showed no-sign of localized reactions, indicating safety and compatibility with the skin. CONCLUSION Thus, results indicated that the prepared intercalated transdermal matrix can be a promising nonoral carrier to deliver effective amounts of drug.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| | - Pragya Yadav
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| | - Arif Husain
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| | - Anurag Verma
- a Department of Pharmaceutics, Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh , India
| |
Collapse
|
7
|
Ding Q, Cui X, Xu GH, He CH, Wu KJ. Quantum chemistry calculation aided design of chiral ionic liquid-based extraction system for amlodipine separation. AIChE J 2018. [DOI: 10.1002/aic.16372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Ding
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 China
| | - Xing Cui
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 China
| | - Guo-Hua Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 China
| | - Chao-Hong He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 China
| | - Ke-Jun Wu
- Dep. of Engineering and Mathematics; Faculty of Arts, Computing, Engineering and Science, Sheffield Hallam University; City Campus, Howard Street, Sheffield S1 1WB UK
- Materials and Engineering Research Institute; Sheffield Hallam University; Howard Street, Sheffield S1 1WB UK
| |
Collapse
|
8
|
Mittapelly N, Pandey G, Tulsankar SL, Arfi S, Bhatta RS, Mishra PR. In Depth Analysis of Pressure-Sensitive Adhesive Patch-Assisted Delivery of Memantine and Donepezil Using Physiologically Based Pharmacokinetic Modeling and in Vitro/in Vivo Correlations. Mol Pharm 2018; 15:2646-2655. [PMID: 29856631 DOI: 10.1021/acs.molpharmaceut.8b00176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this work was to evaluate the feasibility of transdermal delivery of two widely prescribed dementia drugs for the Alzheimer's disease. In this regard, the drug in adhesive patches of memantine (ME) co-loaded with donepezil (DO) was prepared using an ethylene vinyl acetate polymer and characterized for drug content, the crystallinity of drugs in the polymer matrix, and in vitro permeation. To understand the different physical and chemical processes underlying the percutaneous absorption, it is required to employ a comprehensive model that accounts for the anatomy and physiology of the skin. A transdermal physiologically based pharmacokinetic (TPBPK) model was developed and was integrated in a compartmental pharmacokinetic model to predict the plasma drug concentrations in rats. The model predictions showed a good fit with the experimental data, as evaluated by the prediction error calculated for both drugs. It was evident from the simulations that the drug diffusivity and partition coefficient in the polymer matrix are the critical parameters that affect the drug release from the vehicle and subsequently influence the in vivo pharmacokinetic profile. Moreover, a correlation function was built between the in vitro permeation data and in vivo absorption for both ME and DO. A good point-to-point in vitro/in vivo correlation (IVIVC, Level A correlation) was achieved by predicting the plasma concentrations with convolution for the entire study duration. The results of our study suggested that the implementation of mechanistic modeling along with IVIVC can be a valuable tool to evaluate the relative effects of formulation variables on the bioavailability from transdermal delivery systems.
Collapse
Affiliation(s)
- Naresh Mittapelly
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi 201002 , India
| | - Gitu Pandey
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Sachin Laxman Tulsankar
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Sadaf Arfi
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi 201002 , India
| | - Prabhat Ranjan Mishra
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi 201002 , India
| |
Collapse
|
9
|
Parhi R, Padilam S. In vitro permeation and stability studies on developed drug-in-adhesive transdermal patch of simvastatin. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bfopcu.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Arshad I, Ali S, Amin U, Shabbir M, Raza M, Sharif A, Akhtar MF. Effect of hydrophilic and hydrophobic polymer on the release of ketoprofen and allopurinol from bilayer matrix transdermal patch. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Iram Arshad
- Faculty of Pharmacy; The University of Lahore; Lahore Pakistan
| | - Sajid Ali
- Department of Pharmaceutical Technology and Biopharmaceutics; Philipps University; Marburg Germany
| | - Umair Amin
- Department of Pharmaceutical Technology and Biopharmaceutics; Philipps University; Marburg Germany
| | - Maryam Shabbir
- Faculty of Pharmacy; The University of Lahore; Lahore Pakistan
| | - Moosa Raza
- Faculty of Pharmacy; The University of Lahore; Lahore Pakistan
| | - Ali Sharif
- Faculty of Pharmacy; The University of Lahore; Lahore Pakistan
| | - Muhammad Furqan Akhtar
- Faculty of Pharmaceutical Sciences; Government College University Faisalabad; Faisalabad Pakistan
| |
Collapse
|
11
|
Pu T, Li X, Sun Y, Ding X, Pan Y, Wang Q. Development of a Prolonged-Release Pramipexole Transdermal Patch: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2017; 18:738-748. [PMID: 27245330 DOI: 10.1208/s12249-016-0555-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022] Open
Abstract
The current study aimed to develop a prolonged-release pramipexole (PPX) transdermal patch for the treatment of Parkinson's disease. Permeation parameters of PPX were investigated using human cadaver skin. Pramipexole patches were prepared using DURO-TAK® pressure-sensitive-adhesive (PSA) and evaluated for drug stability, drug loading, in vitro drug release, and in vitro permeation through mouse skin. The results indicated that blends of DURO-TAK® 87-2852 and DURO-TAK® 87-2510 were suitable for creating a prolonged-release PPX patch due to their advantages in drug release, drug loading, and stability. The final formulation consisted of 87-2852/87-2510 (70:30), 10% PG, and 15% PPX and showed a cumulative permeation amount of 1497.19 ± 102.90 μg/cm2 with a continuous flux over 6.0 μg/(cm2·h) across human cadaver skin for 7 days. In vivo studies in rats indicated that PPX patch produced a significantly longer (p < 0.001) half-life (t 1/2, 75.16 ± 17.37 h) and mean residence time (MRT, 135.89 ± 24.12 h) relative to oral tablets (Sifrol®) and had a relative bioavailability of 51.64 ± 21.32%. Therefore, this study demonstrated the feasibility of developing a prolonged-release PPX patch, which proposed the potential to serve as an alternate to conventional oral tablets and may therefore improve patient compliance.
Collapse
|
12
|
Highly efficient chiral separation of amlodipine enantiomers via triple recognition hollow fiber membrane extraction. J Chromatogr A 2017; 1490:63-73. [DOI: 10.1016/j.chroma.2017.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/18/2022]
|
13
|
Zhao C, Quan P, Liu C, Li Q, Fang L. Effect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserinEffect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserinretain-->. Acta Pharm Sin B 2016; 6:623-628. [PMID: 27818930 PMCID: PMC5071634 DOI: 10.1016/j.apsb.2016.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the effect of isopropyl myristate (IPM), a penetration enhancer, on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin. The patches were prepared with DURO-TAK® 87-2287 as a pressure-sensitive adhesive (PSA) containing 5% (w/w) of blonanserin and different concentrations of IPM. An in vitro release experiment was performed and the adhesive performance of the drug-in-adhesive patches with different concentrations of IPM was evaluated by a rolling ball tack test and a shear-adhesion test. The glass transition temperature (Tg) and rheological parameters of the drug-in-adhesive layers were determined to study the effect of IPM on the mechanical properties of the PSA. The results of the in vitro release experiment showed that the release rate of blonanserin increased with an increasing concentration of IPM. The rolling ball tack test and shear-adhesion test showed decreasing values with increasing IPM concentration. The results were interpreted on the basis of the IPM-induced plasticization of the PSA, as evidenced by a depression of the glass transition temperature and a decrease in the elastic modulus. In conclusion, IPM acted as a plasticizer on DURO-TAK® 87-2287, and it increased the release of blonanserin and affected the adhesive properties of the PSA.
Collapse
Affiliation(s)
| | | | | | | | - Liang Fang
- Corresponding author. Tel./fax: +86 24 23986330.
| |
Collapse
|
14
|
Formulations of Amlodipine: A Review. JOURNAL OF PHARMACEUTICS 2016; 2016:8961621. [PMID: 27822402 PMCID: PMC5086392 DOI: 10.1155/2016/8961621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Abstract
Amlodipine (AD) is a calcium channel blocker that is mainly used in the treatment of hypertension and angina. However, latest findings have revealed that its efficacy is not only limited to the treatment of cardiovascular diseases as it has shown to possess antioxidant activity and plays an important role in apoptosis. Therefore, it is also employed in the treatment of cerebrovascular stroke, neurodegenerative diseases, leukemia, breast cancer, and so forth either alone or in combination with other drugs. AD is a photosensitive drug and requires protection from light. A number of workers have tried to formulate various conventional and nonconventional dosage forms of AD. This review highlights all the formulations that have been developed to achieve maximum stability with the desired therapeutic action for the delivery of AD such as fast dissolving tablets, floating tablets, layered tablets, single-pill combinations, capsules, oral and transdermal films, suspensions, emulsions, mucoadhesive microspheres, gels, transdermal patches, and liposomal formulations.
Collapse
|
15
|
Liu C, Fang L. Drug in Adhesive Patch of Zolmitriptan: Formulation and In vitro /In vivo Correlation. AAPS PharmSciTech 2015; 16:1245-53. [PMID: 25771739 DOI: 10.1208/s12249-015-0303-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/27/2015] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to develop transdermal patch for zolmitriptan, determine its in vivo absorption using the rabbit skin. Solvent evaporation technique prepared zolmitriptan patch was settled in two-chamber diffusion cell combined with excised rabbit abdomen skin for permeation study. A sufficient cumulative penetration amount of zolmitriptan (258.5 ± 26.9 μg/cm(2) in 24 h) was achieved by the formulation of 4% zolmitriptan, 10% Azone, and adhesive of DURO-TAK® 87-4098. Pharmacokinetic parameters were determined via i.v. and transdermal administrations using animal model of rabbit. The results revealed that the absolute bioavailability was about 63%. Zolmitriptan could be detected with drug level of 88 ± 51 ng/mL after transdermal administration of 15 min. The in vivo absorption curve obtained by deconvolution approach using WinNonlin® program was correlated well with the in vitro permeation curve, the correlation coefficient R is 0.84, and the result indicated that in vitro skin permeation experiments were useful to predict the in vivo performance. In addition, little skin irritation was found in the irritation study. As a conclusion, the optimized zolmitriptan transdermal patches could effectively deliver adequate drug into systemic circulation in short time without producing any irritation phenomenon and worth to be developed.
Collapse
|
16
|
Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. A monolithic drug-in-adhesive patch of methoxyflavones from Kaempferia parviflora: In vitro and in vivo evaluation. Int J Pharm 2015; 478:486-95. [DOI: 10.1016/j.ijpharm.2014.11.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/13/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022]
|
17
|
Pharmacokinetic and biodistribution study of eserine and pralidoxime chloride in rabbits following a single application of a transdermal patch. Eur J Drug Metab Pharmacokinet 2014; 41:219-30. [DOI: 10.1007/s13318-014-0250-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/19/2014] [Indexed: 11/25/2022]
|
18
|
Qi Y, Zhang X. Determination of Enantiomeric Impurity of Levamlodipine Besylate Bulk Drug by Capillary Electrophoresis Using Carboxymethyl-β-Cyclodextrin. Cell Biochem Biophys 2014; 70:1633-7. [DOI: 10.1007/s12013-014-0106-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Monti D, Tampucci S, Burgalassi S, Chetoni P, Lenzi C, Pirone A, Mailland F. Topical Formulations Containing Finasteride. Part I: In Vitro Permeation/Penetration Study and In Vivo Pharmacokinetics in Hairless Rat. J Pharm Sci 2014; 103:2307-14. [DOI: 10.1002/jps.24028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 11/09/2022]
|
20
|
Saturated Long-Chain Esters of Isopulegol as Novel Permeation Enhancers for Transdermal Drug Delivery. Pharm Res 2014; 31:1907-18. [DOI: 10.1007/s11095-013-1292-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
|
21
|
Sunsandee N, Pancharoen U, Rashatasakhon P, Ramakul P, Leepipatpiboon N. Enantioselective Separation of Racemic Amlodipine by Two-Phase Chiral Extraction ContainingO,O′-Dibenzoyl-(2S,3S)-Tartaric Acid as Chiral Selector. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.804088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Jung E, Kang YP, Yoon IS, Kim JS, Kwon SW, Chung SJ, Shim CK, Kim DD. Effect of permeation enhancers on transdermal delivery of fluoxetine: in vitro and in vivo evaluation. Int J Pharm 2013; 456:362-9. [PMID: 24012861 DOI: 10.1016/j.ijpharm.2013.08.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/24/2013] [Accepted: 08/28/2013] [Indexed: 12/01/2022]
Abstract
The aim of this study was to investigate the feasibility of transdermal fluoxetine (FX) delivery. The effects of chemical forms (base or salt) and permeation enhancers on in vitro skin permeation of FX were assessed using hairless mouse, rat and human cadaver skin. The optimized formulations from the in vitro studies were then evaluated in an in vivo pharmacokinetic study in rats. The in vitro skin permeation studies suggested that the FX base (FXB) and isopropyl myristate (IPM)-limonene mixture could be suitable for transdermal delivery of FX. The permeation parameters of FX through human cadaver skin were well correlated with that through hairless mouse and rat skin, suggesting that these animal models can be used for predicting the permeability of FX through human skin. After transdermal administration of FX with IPM or the IPM-limonene mixture to rats, the mean steady-state plasma concentration (Css) was 66.20 or 77.55 ng/mL, respectively, which was maintained over 36 h and had a good correlation with the predicted Css from the in vitro data. These in vitro and in vivo data demonstrated that permeation enhancers could be a potential strategy for transdermal delivery of FX.
Collapse
Affiliation(s)
- Eunjae Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Enantioseparation of (S)-amlodipine from pharmaceutical industry wastewater by stripping phase recovery via HFSLM: Polarity of diluent and membrane stability investigation. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ma J, Wang C, Luo H, Zhu Z, Wu Y, Wang H. Design and evaluation of a monolithic drug-in-adhesive patch for testosterone based on styrene-isoprene-styrene block copolymer. J Pharm Sci 2013; 102:2221-34. [PMID: 23650152 DOI: 10.1002/jps.23576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/05/2013] [Accepted: 04/12/2013] [Indexed: 11/11/2022]
Abstract
The purpose of the present study was to design and evaluate a monolithic drug-in-adhesive patch with a novel pressure-sensitive adhesive (PSA) matrix based on styrene-isoprene-styrene (SIS) block copolymer. Testosterone was selected as the model drug. The orthogonal array design for ternary mixtures was employed to optimize the amounts of SIS, C-5 hydrocarbon resin, and liquid paraffin. The drug release percentage, water vapor permeability, adhesive properties were chosen as response variables. The patch formulation was optimized by investigating the effects of the drug loading capacity, the type, and amount of permeation enhancer on the adhesive properties and skin permeation. The compositions of the optimal matrix were: 120 g of SIS copolymer, 120 g of C-5 hydrocarbon resin, 60 g of liquid paraffin. An optimized formulation with maximum skin permeation and acceptable adhesive properties was developed incorporating 2% testosterone and 6% isopropyl myristate. No significant differences for in vitro release, skin permeation, and in vivo absorption were observed between the optimal formulation and Testopatch®. The stability evaluation showed that the patches were stable at 25°C/60% relative humidity for 6 months. The result indicated that SIS copolymer was a suitable and compatible polymer for the development of PSA.
Collapse
Affiliation(s)
- Jianfang Ma
- National Pharmaceutical Engineering and Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
25
|
Ahad A, Al-Jenoobi FI, Al-Mohizea AM, Aqil M, Kohli K. Transdermal delivery of calcium channel blockers for hypertension. Expert Opin Drug Deliv 2013; 10:1137-53. [DOI: 10.1517/17425247.2013.783562] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Sunsandee N, Leepipatpiboon N, Ramakul P, Wongsawa T, Pancharoen U. The effects of thermodynamics on mass transfer and enantioseparation of (R,S)-amlodipine across a hollow fiber supported liquid membrane. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2012.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Wang C, Liu R, Tang X, Han W. A drug-in-adhesive matrix based on thermoplastic elastomer: evaluation of percutaneous absorption, adhesion, and skin irritation. AAPS PharmSciTech 2012; 13:1179-89. [PMID: 22961413 DOI: 10.1208/s12249-012-9849-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022] Open
Abstract
A novel drug-in-adhesive matrix was designed and prepared. A thermoplastic elastomer, styrene-isoprene-styrene (SIS) block copolymer, in combination with tackifying resin and plasticizer, was employed to compose the matrix. Capsaicin was selected as the model drug. The drug percutaneous absorption, adhesion properties, and skin irritation were investigated. The results suggested that the diffusion through SIS matrix was the rate-limiting step of capsaicin percutaneous absorption. [SI] content in SIS and SIS proportions put important effects on drug penetration and adhesion properties. The chemical enhancers had strong interactions with the matrix and gave small effect on enhancement of drug skin permeation. The in vivo absorption of samples showed low drug plasma peaks and a steady and constant plasma level for a long period. These results suggested that the possible side effects of drug were attenuated, and the pharmacological effects were enhanced with an extended therapeutic period after application of SIS matrix. The significant differences in pharmacokinetic parameters produced by different formulations demonstrated the influences of SIS copolymer on drug penetrability. Furthermore, the result of skin toxicity test showed that no skin irritation occurred in guinea pig skin after transdermal administration of formulations.
Collapse
|
28
|
Sun L, Cun D, Yuan B, Cui H, Xi H, Mu L, Chen Y, Liu C, Wang Z, Fang L. Formulation and in vitro/in vivo correlation of a drug‐in‐adhesive transdermal patch containing azasetron. J Pharm Sci 2012; 101:4540-8. [DOI: 10.1002/jps.23317] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/13/2012] [Accepted: 08/17/2012] [Indexed: 11/10/2022]
|
29
|
Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 2012; 164:26-40. [DOI: 10.1016/j.jconrel.2012.09.017] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/11/2023]
|
30
|
Abstract
Hypertension is a chronic disease with one of the highest chances of causing death, and long-term treatment is required. The antihypertensive drugs used in the treatment are generally administered orally. The limitations of the oral route make transdermal delivery of drugs more attractive. The transdermal route offers numerous advantages including avoidance of systemic first-pass metabolism and high patient compliance. The transdermal therapeutic systems, popularly known as ‘patches’, deliver drugs across the skin with a constant release rate. However, skin is a unique membrane having excellent barrier properties. Either chemical enhancers or physical methods such as iontophoresis and electroporation have been used to provide effective plasma drug concentrations. This review article focuses on the approaches to enhance skin permeability of antihypertensive drugs for the optimization of transdermal therapeutic systems of these drugs and the research studies intended for the optimization of transdermal dosage forms of antihypertensive drugs are summarized.
Collapse
|
31
|
Ammar HO, Ghorab M, Mahmoud AA, Makram TS, Ghoneim AM. Rapid pain relief using transdermal film forming polymeric solution of ketorolac. Pharm Dev Technol 2011; 18:1005-16. [DOI: 10.3109/10837450.2011.627867] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Aggarwal G, Dhawan S, Harikumar SL. Formulation, in vitro, and in vivo evaluation of matrix-type transdermal patches containing olanzapine. Pharm Dev Technol 2011; 18:916-25. [PMID: 21913873 DOI: 10.3109/10837450.2011.609993] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transdermal patches of olanzapine were aimed to be prepared to overcome the side effects by oral application. The strategy was formulation of eudragit-based polymeric films to prepare transdermal patches by using nonionic (span-20), anionic (sodium lauryl sulfate), cationic surfactant (benzalkonium chloride), and vegetable oil (olive oil) as permeation enhancers. The patches were subjected to physicochemical, in vitro release and ex vivo permeation studies. On the basis of in vitro release performance, ERL 100:ERS 100 in the ratio of 3:2 was selected for incorporation of permeation enhancers. The permeation studies showed that formulation containing 10% span 20 (OD3) exhibited greatest cumulative amount of drug permeated (19.02 ± 0.21 mg) in 72 h, so OD3 was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic, and skin irritation potential. In vivo studies of optimized olanzapine patch in rabbit model revealed prolongation of action with Frel 116.09% during 72-h study period. Neuroleptic efficacy of transdermal patch was comparable to oral formulation during rotarod and grip test in Wistar albino rats with no skin irritation. Thus, developed formulation of olanzapine is expected to improve the patient compliance, form better dosage regimen, and provide maintenance therapy to psychotic patients.
Collapse
Affiliation(s)
- Geeta Aggarwal
- Rayat and Bahra Institute of Pharmacy, Sahauran, Mohali, Punjab, India
| | | | | |
Collapse
|