1
|
Wang Y, Wang C, Xia M, Tian Z, Zhou J, Berger JM, Zhang XHF, Xiao H. Engineering small-molecule and protein drugs for targeting bone tumors. Mol Ther 2024; 32:1219-1237. [PMID: 38449313 PMCID: PMC11081876 DOI: 10.1016/j.ymthe.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Chenhang Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Meng Xia
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Joseph Zhou
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Julian Meyer Berger
- Osteologic Therapeutics, Inc., 228 Park Ave S PMB 35546, New York, NY 10003, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; SynthX Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
2
|
Yu P, Liu Y, Xie J, Li J. Spatiotemporally controlled calcitonin delivery: Long-term and targeted therapy of skeletal diseases. J Control Release 2021; 338:486-504. [PMID: 34481022 DOI: 10.1016/j.jconrel.2021.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Bone is a connective tissue that support the entire body and protect the internal organs. However, there are great challenges on curing intractable skeletal diseases such as hypercalcemia, osteoporosis and osteoarthritis. To address these issues, calcitonin (CT) therapy is an effective treatment alternative to regulate calcium metabolism and suppress inflammation response, which are closely related to skeletal diseases. Traditional calcitonin formulation requires frequent administration due to the low bioavailability resulting from the short half-life and abundant calcitonin receptors distributed through the whole body. Therefore, long-term and targeted calcitonin delivery systems (LCDS and TCDS) have been widely explored as the popular strategies to overcome the intrinsic limitations of calcitonin and improve the functions of calcium management and inflammation inhibition in recent years. In this review, we first explain the physiological effects of calcitonin on bone remodeling: (i) inhibitory effects on osteoclasts and (ii) facilitated effects on osteoblasts. Then we summarized four strategies for spatiotemporally controlled delivery of calcitonin: micro-/nanomedicine (e.g. inorganic micro-/nanomedicine, polymeric micro-/nanomedicine and supramolecular assemblies), hydrogels (especially thermosensitive hydrogels), prodrug (PEGylation and targeting design) and hybrid biomaterials. Subsequently, we discussed the application of LCDS and TCDS in treating hypercalcemia, osteoporosis, and arthritis. Understanding and analyzing these advanced calcitonin delivery applications are essential for future development of calcitonin therapies toward skeletal diseases with superior efficacy in clinic.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yanpeng Liu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, PR China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Kaur M, Nagpal M, Singh M. Osteoblast-n-Osteoclast: Making Headway to Osteoporosis Treatment. Curr Drug Targets 2020; 21:1640-1651. [DOI: 10.2174/1389450121666200731173522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022]
Abstract
Background:
Bone is a dynamic tissue that continuously undergoes the modeling and remodeling
process to maintain its strength and firmness. Bone remodeling is determined by the functioning
of osteoblast and osteoclast cells. The imbalance between the functioning of osteoclast and osteoblast
cells leads to osteoporosis. Osteoporosis is divided into primary and secondary osteoporosis.
Generally, osteoporosis is diagnosed by measuring bone mineral density (BMD) and various osteoblast
and osteoclast cell markers.
Methods:
Relevant literature reports have been studied and data has been collected using various
search engines like google scholar, scihub, sciencedirect, pubmed, etc. A thorough understanding of
the mechanism of bone targeting strategies has been discussed and related literature has been studied
and compiled.
Results:
Bone remodeling process has been described in detail including various approaches for targeting
bone. Several bone targeting moieties have been stated in detail along with their mechanisms.
Targeting of osteoclasts and osteoblasts using various nanocarriers has been discussed in separate sections.
The toxicity issues or Biosafety related to the use of nanomaterials have been covered.
Conclusion:
The treatment of osteoporosis targets the inhibition of bone resorption and the use of
agents that promote bone mineralization to slow disease progression. Current osteoporosis therapy involves
the use of targeting moieties such as bisphosphonates and tetracyclines for targeting various
drugs. Nanotechnology has been used for targeting various drug molecules such as RANKLinhibitors,
parathyroid hormone analogues, estrogen agonists and antagonists, Wnt signaling enhancer
and calcitonin specifically to bone tissue (osteoclast and osteoblasts). So, a multicomponent treatment
strategy targeting both the bone cells will be more effective rather than targeting only osteoclasts and
it will be a potential area of research in bone targeting used to treat osteoporosis.
The first section of the review article covers various aspects of bone targeting. Another section comprises
details of various targeting moieties such as bisphosphonates, tetracyclines; and various
nanocarriers developed to target osteoclast and osteoblast cells and summarized data on in vivo models
has been used for assessment of bone targeting, drawbacks of current strategies and future perspectives.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
4
|
Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther 2020; 207:107473. [PMID: 31926198 DOI: 10.1016/j.pharmthera.2020.107473] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
The coordination between bone resorption and bone formation plays an essential role in keeping the mass and microstructure integrity of the bone in a steady state. However, this balance can be disturbed in many pathological conditions of the bone. Nowadays, the classical modalities for treating bone-related disorders are being challenged by severe obstacles owing to low tissue selectivity and considerable safety concerns. Moreover, as a highly mineralized tissue, the bone shows innate rigidity, low permeability, and reduced blood flow, features that further hinder the effective treatment of bone diseases. With the development of bone biology and precision medicine, one novel concept of bone-targeted therapy appears to be promising, with improved therapeutic efficacy and minimized systematic toxicity. Here we focus on the recent advances in bone-targeted treatment based on the unique biology of bone tissues. We summarize commonly used bone-targeting moieties, with an emphasis on bisphosphonates, tetracyclines, and biomimetic bone-targeting moieties. We also introduce potential bone-targeting strategies aimed at the bone matrix and major cell types in the bone. Based on these bone-targeting moieties and strategies, we discuss the potential applications of targeted therapy to treat bone diseases. We expect that this review will put together useful insights to help with the search for therapeutic efficacy in bone-related conditions.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Dehao Fu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China.
| |
Collapse
|
5
|
Farrell KB, Karpeisky A, Thamm DH, Zinnen S. Bisphosphonate conjugation for bone specific drug targeting. Bone Rep 2018; 9:47-60. [PMID: 29992180 PMCID: PMC6037665 DOI: 10.1016/j.bonr.2018.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/26/2022] Open
Abstract
Bones provide essential functions and are sites of unique biochemistry and specialized cells, but can also be sites of disease. The treatment of bone disorders and neoplasia has presented difficulties in the past, and improved delivery of drugs to bone remains an important goal for achieving effective treatments. Drug targeting strategies have improved drug localization to bone by taking advantage of the high mineral concentration unique to the bone hydroxyapatite matrix, as well as tissue-specific cell types. The bisphosphonate molecule class binds specifically to hydroxyapatite and inhibits osteoclast resorption of bone, providing direct treatment for degenerative bone disorders, and as emerging evidence suggests, cancer. These bone-binding molecules also provide the opportunity to deliver other drugs specifically to bone by bisphosphonate conjugation. Bisphosphonate bone-targeted therapies have been successful in treatment of osteoporosis, primary and metastatic neoplasms of the bone, and other bone disorders, as well as refining bone imaging. In this review, we focus upon the use of bisphosphonate conjugates with antineoplastic agents, and overview bisphosphonate based imaging agents, nanoparticles, and other drugs. We also discuss linker design potential and the current state of bisphosphonate conjugate research progress. Ongoing investigations continue to expand the possibilities for bone-targeted therapeutics and for extending their reach into clinical practice.
Collapse
Affiliation(s)
- Kristen B Farrell
- MBC Pharma Inc., 12635 East Montview Blvd., Aurora, CO 80045-0100, United States of America
| | - Alexander Karpeisky
- MBC Pharma Inc., 12635 East Montview Blvd., Aurora, CO 80045-0100, United States of America
| | - Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1620, United States of America
| | - Shawn Zinnen
- MBC Pharma Inc., 12635 East Montview Blvd., Aurora, CO 80045-0100, United States of America
| |
Collapse
|
6
|
Cawthray J, Wasan E, Wasan K. Bone-seeking agents for the treatment of bone disorders. Drug Deliv Transl Res 2018; 7:466-481. [PMID: 28589453 DOI: 10.1007/s13346-017-0394-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The targeting and delivery of therapeutic and diagnostic agents to bone tissue presents both a challenge and opportunity. Osteoporosis, Paget's disease, cancer, and bone metastases are all skeletal diseases whose treatment would benefit from new targeted therapeutic strategies. Osteoporosis, in particular, is a very prevalent disease, affecting over one in three women and one in five men in Canada alone with the cost to the healthcare system estimated at over $2.3 billion in 2010. Bone tissue is often considered a rigid structure when in reality there is a process of continuous remodeling that takes place via complex endocrine-regulated cell signaling pathways in addition to the signaling pathways unique to bone tissue. It is these specific boneremodeling processes that provide unique targeting opportunities but also present a number of challenges.
Collapse
Affiliation(s)
- Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Ellen Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kishor Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 2017; 269:88-99. [PMID: 29127000 DOI: 10.1016/j.jconrel.2017.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/28/2023]
Abstract
The systemic administration of drugs to treat bone diseases is often associated with poor uptake of the drug in the targeted tissue, potential systemic toxicity and suboptimal efficacy. In order to overcome these limitations, many micro- and nano-sized drug carriers have been developed for the treatment of bone pathologies that exhibit specific affinity for bone. Drug carriers can be functionalized with bone mineral seekers (BMS), creating a targeted drug delivery system (DDS) which is able to bind to bone and release therapeutics directly at the site of interest. This class of advanced DDS is of tremendous interest due to their strong affinity to bone, with great expectation to treat life-threatening bone disorders such as osteomyelitis, osteosarcoma or even osteoporosis. In this review, we first explain the mechanisms behind the affinity of several well-known BMS to bone, and then we present several effective approaches allowing the incorporation BMS into advanced DDS. Finally, we report the therapeutic applications of BMS based DDS under development or already established. Understanding the mechanisms behind the biological activity of recently developed BMS and their integration into advanced therapeutic delivery systems are essential prerequisites for further development of bone-targeting therapies with optimal efficacy.
Collapse
Affiliation(s)
- S G Rotman
- AO Research Institute Davos, Switzerland; MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - D W Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | - D Eglin
- AO Research Institute Davos, Switzerland
| | | |
Collapse
|
8
|
Raichur V, Vemula KD, Bhadri N, Razdan R. Zolendronic Acid-Conjugated PLGA Ultrasmall Nanoparticle Loaded with Methotrexate as a Supercarrier for Bone-Targeted Drug Delivery. AAPS PharmSciTech 2017; 18:2227-2239. [PMID: 28070850 DOI: 10.1208/s12249-016-0691-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022] Open
Abstract
Drug delivery to deep-seated tissues such as bone has been a major complication till date. This preferential drug delivery is further important in targeting anti-tumour agents to bone metastasis owing to its complexity. The present study involves the formulation of PLGA nanoparticles and conjugation with zolendronic acid-a bisphosphonate which will anchor the nanosystem to bone due to its selective bone affinity. The conjugated nanosystem was characterized for particle size by TEM (average 36 nm) and morphology by AFM depicting surface irregularities due to ZOL conjugation on the surface of nanoparticles. NMR spectral data also showed the involvement of terminal -OH group of PLGA in bond formation with ZOL. Bone localization studies showed higher accumulation of the ZOL-conjugated nanosystem in bone than non-conjugated nanoparticles. This was confirmed with bone mineral affinity and specificity assay wherein the conjugated nanosystem was found to selectively bind to hydroxyapatite in comparison to other bone minerals. The biodistribution studies depicted that the conjugated nanosystem was selectively targeted to the bone area with concentrations of methotrexate reaching up to 127.4 ± 1.41 μg in 1 h. Hence, this multipronged approach using (1) ultrasmall size of nanoparticles, (2) bone selective polymer and (3) suitable bone-targeting agent resulted in mutual synergism for the specific delivery of the anti-tumour agent to the bone.
Collapse
|
9
|
Xing JZ, Lu L, Unsworth LD, Major PW, Doschak MR, Kaipatur NR. RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro. Acta Biomater 2017; 49:306-315. [PMID: 27940164 DOI: 10.1016/j.actbio.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023]
Abstract
PURPOSE To develop a nanofiber hydrogel (NF-hydrogel) for sustained and controlled release of the recombinant receptor activator of NF-kB ligand; (RANKL) and to characterize the release kinetics and bioactivity of the released RANKL. METHODS Various concentrations of fluorescently-labelled RANKL protein were added to NF-hydrogels, composed of Acetyl-(Arg-Ala-Asp-Ala)4-CONH2 [(RADA)4] of different concentrations, to investigate the resulting in vitro release rates. The nano-structures of NF-hydrogel, with and without RANKL, were determined using atomic force microscopy (AFM). Released RANKL was further analyzed for changes in secondary and tertiary structure using CD spectroscopy and fluorescent emission spectroscopy, respectively. Bioactivity of released RANKL protein was determined using NFATc1 gene expression and tartrate resistant acid phosphatase (TRAP) activity of osteoclast cells as biomarkers. RESULTS NF-hydrogel concentration dependent sustained release of RANKL protein was measured at concentrations between 0.5 and 2%(w/v). NF-hydrogel at 2%(w/v) concentration exhibited a sustained and slow-release of RANKL protein up to 48h. Secondary and tertiary structure analyses confirmed no changes to the RANKL protein released from NF-hydrogel in comparison to native RANKL. The results of NFATc1 gene mRNA expression and TRAP activities of osteoclast, showed that the release process did not affect the bioactivity of released RANKL. CONCLUSIONS This novel study is the first of its kind to attempt in vitro characterization of NF-hydrogel based delivery of RANKL protein to induce osteoclastogenesis. We have shown the self-assembling NF-hydrogel peptide system is amenable to the sustained and controlled release of RANKL locally; that could in turn increase local concentration of RANKL to induce osteoclastogenesis, for application to the controlled mobilization of tooth movement in orthodontic procedures. STATEMENT OF SIGNIFICANCE Orthodontic tooth movement (OTM) occurs through controlled application of light forces to teeth, facilitating the required changes in the surrounding alveolar bone through the process of bone remodelling. The RANKL system regulates alveolar bone remodelling and controls root resorption during OTM. The use of exogenous RANKL to accelerate OTM has not been attempted to date because large quantities of RANKL for systemic therapy may subsequently cause serious systemic loss of skeletal bone. The controlled and sustained local release of RANKL from a carrier matrix could maximize its therapeutic benefit whilst minimizing systemic side effects. In this study a NF-hydrogel was used for sustained and controlled release of RANKL and the release kinetics and biofunctionality of the released RANKL was characterized. Our results provide fundamental insight for further investigating the role of RANKL NF-hydrogel release systems for inducing osteoclastogenesis in vivo.
Collapse
|
10
|
Formulation and evaluation of osteotropic drug delivery system of methotrexate with a potential for passive bone targeting. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0265-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev 2016; 99:12-27. [PMID: 26482186 DOI: 10.1016/j.addr.2015.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 01/07/2023]
Abstract
The high concentration of mineral present in bone and pathological calcifications is unique compared with all other tissues and thus provides opportunity for targeted delivery of pharmaceutical drugs, including radiosensitizers and imaging probes. Targeted delivery enables accumulation of a high local dose of a therapeutic or imaging contrast agent to diseased bone or pathological calcifications. Bisphosphonates (BPs) are the most widely utilized bone-targeting ligand due to exhibiting high binding affinity to hydroxyapatite mineral. BPs can be conjugated to an agent that would otherwise have little or no affinity for the sites of interest. This article summarizes the current state of knowledge and practice for the use of BPs as ligands for targeted delivery to bone and mineral deposits. The clinical history of BPs is briefly summarized to emphasize the success of these molecules as therapeutics for metabolic bone diseases. Mechanisms of binding and the relative binding affinity of various BPs to bone mineral are introduced, including common methods for measuring binding affinity in vitro and in vivo. Current research is highlighted for the use of BP ligands for targeted delivery of BP conjugates in various applications, including (1) therapeutic drug delivery for metabolic bone diseases, bone cancer, other bone diseases, and engineered drug delivery platforms; (2) imaging probes for scintigraphy, fluorescence, positron emission tomography, magnetic resonance imaging, and computed tomography; and (3) radiotherapy. Last, and perhaps most importantly, key structure-function relationships are considered for the design of drugs with BP ligands, including the tether length between the BP and drug, the size of the drug, the number of BP ligands per drug, cleavable tethers between the BP and drug, and conjugation schemes.
Collapse
Affiliation(s)
- Lisa E Cole
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Tracy Vargo-Gogola
- Department of Biochemistry and Molecular Biology, Indiana University Simon Cancer Center, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
12
|
Cheung CSF, Zhu Z, Lui JCK, Dimitrov D, Baron J. Human monoclonal antibody fragments targeting matrilin-3 in growth plate cartilage. Pharm Res 2015; 32:2439-49. [PMID: 25690340 DOI: 10.1007/s11095-015-1636-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Many genetic disorders, including chondrodysplasias, and acquired disorders impair growth plate function, resulting in short and sometimes malformed bones. There are multiple endocrine and paracrine factors that promote chondrogenesis at the growth plate, which could potentially be used to treat these disorders. Targeting these growth factors specifically to the growth plate might augment the therapeutic skeletal effect while diminishing undesirable effects on non-target tissues. METHODS Using yeast display technology, we selected single-chain variable antibody fragments that bound to human and mouse matrilin-3, an extracellular matrix protein specifically expressed in cartilage tissue. The ability of the selected antibody fragments to bind matrilin-3 and to bind cartilage tissue in vitro and in vivo was assessed by ELISA and immunohistochemistry. RESULTS We identified antibody fragments that bound matrilin-3 with high affinity and also bound with high tissue specificity to cartilage homogenates and to cartilage structures in mouse embryo sections. When injected intravenously in mice, the antibody fragments specifically homed to cartilage. CONCLUSIONS Yeast display successfully selected antibody fragments that are able to target cartilage tissue in vivo. Coupling these antibodies to chondrogenic endocrine and paracrine signaling molecules has the potential to open up new pharmacological approaches to treat childhood skeletal growth disorders.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Section on Growth and Development, National Institute of Child Health and Development, National Institutes of Health, Bldg. 10 CRC, Rm. 1-3330, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
13
|
Yang Y, Bhandari KH, Panahifar A, Doschak MR. Synthesis, characterization and biodistribution studies of (125)I-radioiodinated di-PEGylated bone targeting salmon calcitonin analogue in healthy rats. Pharm Res 2013; 31:1146-57. [PMID: 24357414 DOI: 10.1007/s11095-013-1237-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/20/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The objective of this study was to prepare a bisphosphonate (BP) mediated bone targeting di-PEGylated salmon calcitonin analogue sCT-2(PEG-BP) as a novel bone targeting pharmaceutical. METHODS HPLC was used for isolation of sCT-2(PEG-BP) from the reaction mixture, followed by determination of possible PEGylation sites by trypsin digestion. Stability of the compound over time, bone mineral affinity using hydroxyapatite, and biodistribution in normal rats after radiolabeling of sCT-2(PEG-BP) or control sCT with (125)I was evaluated. RESULTS PEGylated sCT analogues were synthesized, and sCT-2(PEG-BP) was isolated by HPLC and confirmed by MALDI-TOF and ICP-MS. MALDI-TOF analysis of trypsinized fragments suggested Cys(1) (or Lys(11)) and Lys(18) to be the two PEGylation sites. Bone mineral affinity test showed sCT-2(PEG-BP) or (125)I-sCT-2(PEG-BP) exhibited significantly increased bone mineral affinity over sCT or (125)I-sCT, respectively. sCT-2(PEG-BP) remained stable for at least 1 month. In vivo biodistribution study showed significantly increased bone retention and prolonged plasma circulation time for sCT-2(PEG-BP) compared to the control sCT. CONCLUSION Those results support sCT-2(PEG-BP) as a promising new drug candidate for the treatment of resorptive and/or maladaptive bone conditions, such as Osteoporosis, Osteoarthritis, Rheumatoid Arthritis, Paget's disease and bone cancers.
Collapse
Affiliation(s)
- Yang Yang
- Pharmaceutical Orthopaedic Research Laboratory Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | | | | | | |
Collapse
|
14
|
Newa M, Lam M, Bhandari KH, Xu B, Doschak MR. Expression, Characterization, and Evaluation of a RANK-Binding Single Chain Fraction Variable: An Osteoclast Targeting Drug Delivery Strategy. Mol Pharm 2013; 11:81-9. [DOI: 10.1021/mp400188r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Madhuri Newa
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - Michael Lam
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - Krishna Hari Bhandari
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - Biwen Xu
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - Michael R. Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| |
Collapse
|
15
|
Kim SH, Moon SH. Osteoclast differentiation inhibitors: a patent review (2008 – 2012). Expert Opin Ther Pat 2013; 23:1591-610. [DOI: 10.1517/13543776.2013.842556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Biomedical applications of bisphosphonates. J Control Release 2013; 167:175-88. [PMID: 23395668 DOI: 10.1016/j.jconrel.2013.01.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/24/2012] [Accepted: 01/30/2013] [Indexed: 02/08/2023]
Abstract
Since their discovery over 100 years ago, bisphosphonates have been used industrially as corrosion inhibitors and complexing agents. With the discovery of their pharmacological activity in the late 1960s, implicating their high affinity for hydroxyapatite, bisphosphonates have been employed in the treatment of bone diseases and as targeting agents for colloids and drugs. They have notably been investigated for the treatment of Paget's disease, osteoporosis, bone metastases, malignancy-associated hypercalcemia, and pediatric bone diseases. Currently, they are first-line medications for several of these diseases and are taken by millions of patients worldwide, mostly postmenopausal women. A major problem associated with their use is their low oral bioavailability. Several delivery systems have been proposed to improve their absorption and to direct them to sites other than bone tissues. Beyond their important pharmacological role, the medical applications of bisphosphonates are numerous. In addition, their metal-chelating properties have been exploited to coat and stabilize implants, nanoparticulates, and contrast agents. In this contribution, we review the pharmacological and clinical uses of bisphosphonates and highlight their novel applications in the pharmaceutical and biomedical fields.
Collapse
|
17
|
Luhmann T, Germershaus O, Groll J, Meinel L. Bone targeting for the treatment of osteoporosis. J Control Release 2011; 161:198-213. [PMID: 22016072 DOI: 10.1016/j.jconrel.2011.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/01/2011] [Accepted: 10/03/2011] [Indexed: 11/19/2022]
Abstract
Osteoporosis represents a major public health burden especially considering the aging populations worldwide. Drug targeting will be important to better meet these challenges and direct the full therapeutic potential of therapeutics to their intended site of action. This review has been organized in modules, such that scientists working in the field can easily gain specific insight in the field of bone targeting for the drug class they are interested in. We review currently approved and emerging treatment options for osteoporosis and discuss these in light of the benefit these would gain from advanced targeting. In addition, established targeting strategies are reviewed and novel opportunities as well as promising areas are presented along with pharmaceutical strategies how to render novel composites consisting of a drug and a targeting moiety responsive to bone-specific or disease-specific environmental stimuli. Successful implementation of these principles into drug development programs for osteoporosis will substantially contribute to the clinical success of anti-catabolic and anabolic drugs of the future.
Collapse
Affiliation(s)
- Tessa Luhmann
- Institute for Pharmacy and Food Chemistry, University of Wurzburg, Am Hubland, DE-97074 Wurzburg, Germany
| | | | | | | |
Collapse
|
18
|
Bhandari KH, Newa M, Chapman J, Doschak MR. Synthesis, characterization and evaluation of bone targeting salmon calcitonin analogs in normal and osteoporotic rats. J Control Release 2011; 158:44-52. [PMID: 22001608 DOI: 10.1016/j.jconrel.2011.09.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
In order to assess the therapeutic efficacy of an antiresorptive drug with imparted bone targeting potential using bisphosphonate (BP) conjugation and an improved pharmacokinetic profile using PEGylation, we synthesized, characterized and evaluated in vivo efficacy of bone-targeting PEGylated salmon calcitonin (sCT) analog (sCT-PEG-BP). sCT-PEG-BP was compared with non-PEGylated bone targeting sCT analog (sCT-BP) and unmodified, commercially available sCT. sCT-PEG-BP conjugates were characterized by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis. The effect of PEG-BP or BP upon sCT secondary structure was examined by Circular Dichroism and sCT-PEG-BP was evaluated for in vitro bone mineral Hydroxyapatite (HA) binding ability and calcium salts specificity using a binding assay for bone HA and several calcium salts. Anti-calcitonin antibody binding ability of these analogs was determined using enzyme-linked immunosorbent assay (ELISA), by reacting bone targeting sCT analogs with calcium phosphate coated Osteologic® plates and detecting the bound sCT using anti-sCT antibody. Potential cytotoxicity of these compounds was evaluated in monocytic RAW 264.7 cells, and sCT bioactivity was evaluated using an in vitro intracellular cAMP stimulation assay in human T47D breast cancer cells. Finally, in vivo efficacy of each compound was evaluated by determining the plasma levels of calcium after s.c. administration in normal rats, and in a rat model of Osteoporosis, secondary to ovariectomy (OVX). In vivo micro-computed tomography (micro-CT) was used to temporally map and quantify alterations in bone volume and bone mineral density (BMD) in the same animals at 1, 4, 8 and 12 weeks after OVX surgery. Sixteen 6 week old virgin female rats underwent OVX surgery followed by the daily s.c. injection of 2.5IU/kg/day sCT or equivalent analogs, and compared to four sham-operated, placebo treated control rats. Our results showed the chemical coupling of PEG-BP or BP to sCT altered its secondary structure without altering its antibody binding ability. sCT analogs retained strong sCT bioactivity, were non-toxic to RAW 264.7 cells in culture and elicited a comparable hypocalcemic effect to that of unmodified sCT in normal rats. Compared to marketed unmodified sCT, sCT-PEG-BP showed significantly improved efficacy in terms of preserving bone volume, BMD and trabecular micro-architecture in osteoporotic rats at the initial dose tested. Bisphosphonate-mediated targeting of PEGylated sCT to bone represents a new class of targeted antiresorptive compounds that has not previously been attempted.
Collapse
Affiliation(s)
- Krishna Hari Bhandari
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Wang R, Lockney DM, Goshe MB, Franzen S. Mass Spectrometric Detection of Targeting Peptide Bioconjugation to Red clover necrotic mosaic virus. Bioconjug Chem 2011; 22:1970-82. [DOI: 10.1021/bc2001769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Newa M, Bhandari KH, Tang L, Kalvapalle R, Suresh M, Doschak MR. Antibody-mediated "universal" osteoclast targeting platform using calcitonin as a model drug. Pharm Res 2011; 28:1131-43. [PMID: 21301934 PMCID: PMC3073043 DOI: 10.1007/s11095-011-0376-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/19/2011] [Indexed: 11/30/2022]
Abstract
Purpose To generate and characterize a specific monoclonal antibody (mAb) against recombinant human RANK receptor and to develop an antiresorptive strategy using this mAb as an osteoclast-targeting platform that selectively targets osteoclast cells whilst delivering an attached (i.e. chemically conjugated) active drug cargo. Methods Using hybridoma technology, we generated a specific monoclonal antibody (mAb) against recombinant human RANK receptor and characterized by SDS PAGE, ELISA, Western Blot and immunocytochemistry, then synthesized osteoclast-targeting bioconjugates of salmon calcitonin (sCT) using this antibody by generating thiol groups on mAb using 2-Iminothiolane and subsequently reacting them with sCT-PEG-MAL synthesised from sCT and NHS-PEG-MAL. To test the efficacy of the conjugate in vitro, osteoclasts were generated from precursor RAW 264.7 cells by dosing with the cytokines macrophage-colony-stimulating factor (M-CSF), and RANK Ligand (RANKL) and TRAP activity assay, Resorption Pit Assay, TRAP staining were performed. Cytotoxicity of the mAb-sCT conjugate was also evaluated in RAW 264.7 cells; sCT bioactivity and CTR binding potential were evaluated by in vitro intracellular cAMP stimulation assay in human T47D breast cancer cells. Results Generation of antibody against human RANK receptor was confirmed by SDS PAGE, ELISA and Western Blot. Immunocytochemistry confirmed the osteoclast targeting potential of the antibody. Successful conjugation of the antibody with sCT was confirmed by SDS PAGE and ELISA.Multinucleated osteoclast formation was confirmed by staining for tartrate-resistant acid phosphatase (TRAP). Conjugate functionality was confirmed by TRAP activity and Resorption Pit assay, showing the inhibitory effect on osteoclast differentiation. cAMP assay confirmed the retention of calcitonin bioactivity after conjugation. Conclusions Our strategy offers the potential for a “universal” osteoclast-targeting platform—one that targets the RANK receptor on osteoclast cells by simply altering the conjugated cargo in order to affect the specific regulation of osteoclast cells.
Collapse
Affiliation(s)
- Madhuri Newa
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G2N8, Canada
| | | | | | | | | | | |
Collapse
|