1
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
2
|
Nainwal N, Jawla S, Singh R, Banerjee S, Saharan VA. Solubility-permeability interplay of hydrotropic solubilization of piroxicam. Drug Dev Ind Pharm 2024; 50:481-494. [PMID: 38717346 DOI: 10.1080/03639045.2024.2349576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
OBJECTIVES In this research paper, an investigation has been made to assess the simultaneous effect of a solubility enhancement approach, i.e., hydrotropy on the solubility and apparent permeability of piroxicam. The solubility of piroxicam (PRX) a BCS (biopharmaceutics classification system) class II drug has been increased using a mixed hydrotropy approach. This study is based on identifying the pattern of solubility-permeability interplay and confirming whether every solubility gain results in a concomitant decrease in permeability or permeability remains unaffected. METHOD Solid dispersions of PRX were formulated using two hydrotropes, viz., sodium benzoate (SB) and piperazine (PP) by solvent evaporation method. A comprehensive 32factorial design was employed to study the effect of hydrotropes on the solubility and permeability of PRX. Subsequently, PRX tablets containing these solid dispersions were formulated and evaluated. KEY FINDINGS SB and PP displayed a significant increase in the solubility of PRX ranging from 0.99 to 2.21 mg/mL for F1-F9 batches attributed to the synergistic effect of hydrotropes. However, there is a reduction in PRX permeability with increasing hydrotrope levels. The decline in permeability was notably less pronounced compared to the simultaneous rise in aqueous solubility of PRX. CONCLUSION An evident tradeoff between permeability and solubility emerged through the mixed hydrotropic solubilization for PRX. As PRX has generally higher intrinsic permeability, it has been assumed that this permeability loss will not affect the overall absorption of PRX. However, it may affect the absorption of drugs with limited permeability. Therefore, solubility permeability interplay should be investigated during solubility enhancement.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Sunil Jawla
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Ranjit Singh
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
| | - Surojit Banerjee
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Guwahati, Assam, India
| |
Collapse
|
3
|
Shen Y, Xiao Y, Edkins RM, Youngs TGA, Hughes TL, Tellam J, Edkins K. Elucidating the hydrotropism behaviour of aqueous caffeine and sodium benzoate solution through NMR and neutron total scattering analysis. Int J Pharm 2023; 647:123520. [PMID: 37858637 DOI: 10.1016/j.ijpharm.2023.123520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Hydrotropism is a convenient way to increase the solubility of drugs by up to several orders of magnitude, and even though it has been researched for decades with both experimental and simulation methods, its mechanism is still unknown. Here, we use caffeine/sodium benzoate (CAF-SB) as model system to explore the behaviour of caffeine solubility enhancement in water through NMR spectroscopy and neutron total scattering. 1H NMR shows strong interaction between caffeine and sodium benzoate in water. Neutron total scattering combined with empirical potential structure refinement, a systematic method to study the solution structure, reveals π-stacking between caffeine and the benzoate anion as well as Coulombic interactions with the sodium cation. The strongest hydrogen bond interaction in the system is between benzoate and water, which help dissolve CAF-SB complex and increase the solubility of CAF in water. Besides, the stronger interaction between CAF and water and the distortion of water structure are further mechanisms of the CAF solubility enhancement. It is likely that the variety of mechanisms for hydrotropism shown in this system can be found for other hydrotropes, and NMR spectroscopy and neutron total scattering can be used as complementary techniques to generate a holistic picture of hydrotropic solutions.
Collapse
Affiliation(s)
- Yichun Shen
- School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Yitian Xiao
- School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Robert M Edkins
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295, Cathedral Street, Glasgow, G1 1XL, UK
| | - Tristan G A Youngs
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Terri-Louise Hughes
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - James Tellam
- ISIS Deuteration Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Katharina Edkins
- School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
4
|
Mitra A, Chattaraj KG, Paul S. Elucidating the Hydrotropic Mechanism of the Antagonistic Salt PPh 4Cl. J Phys Chem B 2023; 127:996-1012. [PMID: 36653942 DOI: 10.1021/acs.jpcb.2c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PPh4Cl is an antagonistic salt that recently showed promise as a hydrotropic agent. Here, we give mechanistic insights into the PPh4Cl-assisted solubility of a dye molecule using molecular dynamics simulations. Our findings reveal that dye molecules aggregate into a cluster which leads to an accumulation of PPh4+ ions in its vicinity and subsequent exclusion of water molecules from the region. The structural organization is attributed to the preferential interaction of dye molecules and PPh4Cl. The origin of such preference arises from the difference in π-π and CH-π interaction among the pairs. The hydrodynamic radius of PPh4Cl indicates a low propensity for cluster formation, which enhances its hydrotropic behavior. The process of dye dissolution is thermodynamically favored and occurs through a cooperative mechanism. Our studies provide molecular insight into experimental observations crucial for the design of novel hydrotropes with enhanced solubilizing properties.
Collapse
Affiliation(s)
- Aritra Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam781039, India
| | | | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam781039, India
| |
Collapse
|
5
|
Ya. Zakharova L, Vasilieva EA, Mirgorodskaya AB, Zakharov SV, Pavlov RV, Kashapova NE, Gaynanova GA. Hydrotropes: solubilization of nonpolar compounds and modification of surfactant solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Devi M, Paul S. The chaotropic effect of ions on the self-aggregating propensity of Whitlock's molecular tweezers. Phys Chem Chem Phys 2022; 24:14452-14471. [PMID: 35661176 DOI: 10.1039/d2cp00033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular tweezers feature the first class of artificial receptors to pique the interest of researchers and emerge as an effective therapeutic candidate. The exceptional structure and exquisite binding specificity of tweezers establish this overall class of receptors as a promising tool, with abundant applications. However, their inclination to self-aggregate by mutual π-π stacking interactions of their aromatic arms diminishes their efficacy as a therapeutic candidate. Therefore, following up on sporadic studies, since the discovery of the Hofmeister series, on the ability of ions to either solvate (salting-in) or induce aggregation (salting-out) of hydrophobic solutes, the notions of ion-specificity effects are utilized on tweezer moieties. The impacts of three different aluminum salts bearing anions Cl-, ClO4- and SCN- on the self-association propensity of Whitlock's caffeine-pincered molecular tweezers are investigated, with a specific emphasis placed on elucidating the varied behavior of the ions on the hydration ability of tweezers. The comparative investigation is conducted employing a series of all-atom molecular dynamics simulations of five tweezer molecules in pure water and three salt solutions, at two different concentrations each, maintaining a temperature of 300 K and a pressure of 1 atm, respectively. Radial distribution functions, coordination numbers, and SASA calculations display a steady reduction in the aggregation proclivity of the receptor molecules with an increase in salt concentration, as progressed along the Hofmeister series. Orientational preferences between the tweezer arms reveal a disruptive effect in the regular π-π stacking interactions, in the presence of high concentrations of ClO4- and SCN- ions, while preferential interactions and tetrahedral order parameters unveil the underlying mechanism, by which the anions alter the solubility of the hydrophobic molecules. Overall, it is observed that SCN- exhibits the highest salting-in effect, followed by ClO4-, with both anions inhibiting tweezer aggregation through different mechanisms. ClO4- ions impart an effect by moderately interacting with the solute molecules as well as modifying the water structure of the bulk solution promoting solvation, whereas, SCN- ions engage entirely in interaction with specific tweezer sites. Cl- being the most charge-dense of the three anionic species experiences stronger hydration and therefore, imparts a very negligible salting-in effect.
Collapse
Affiliation(s)
- Madhusmita Devi
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| |
Collapse
|
7
|
Paul R, Chattaraj KG, Paul S. Role of Hydrotropes in Sparingly Soluble Drug Solubilization: Insight from a Molecular Dynamics Simulation and Experimental Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4745-4762. [PMID: 33853331 DOI: 10.1021/acs.langmuir.1c00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug molecules' therapeutic efficacy depends on their bioavailability and solubility. But more than 70% of the formulated drug molecules show limited effectiveness due to low water solubility. Thus, the water solubility enhancement technique of drug molecules becomes the need of time. One such way is hydrotropy. The solubilizing agent of a hydrophobic molecule is generally referred to as a hydrotrope, and this phenomenon is termed hydrotropy. This method has high industrial demand, as hydrotropes are noninflammable, readily available, environmentally friendly, quickly recovered, cost-effective, and not involved in solid emulsification. The endless importance of hydrotropes in industry (especially in the pharmaceutical industry) motivated us to prepare a feature article with a clear introduction, detailed mechanistic insights into the hydrotropic solubilization of drug molecules, applications in pharma industries, and some future directions of this technique. Thus, we believe that this feature article will become an adequate manual for the pharmaceutical researchers who want to explore all of the past perspectives of the hydrotropic action of hydrotropes in pharmaceutics.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | | | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Abranches DO, Benfica J, Soares BP, Leal-Duaso A, Sintra TE, Pires E, Pinho SP, Shimizu S, Coutinho JAP. Unveiling the mechanism of hydrotropy: evidence for water-mediated aggregation of hydrotropes around the solute. Chem Commun (Camb) 2020; 56:7143-7146. [DOI: 10.1039/d0cc03217d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of hydrotropy is experimentally proven in this work. Apolarity is shown to be the driving force of hydrotropy.
Collapse
Affiliation(s)
- Dinis O. Abranches
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Jordana Benfica
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Bruna P. Soares
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Alejandro Leal-Duaso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) Facultad de Ciencias, C. S. I. C. – Universidad de Zaragoza
- E-50009 Zaragoza
- Spain
| | - Tânia E. Sintra
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Elísabet Pires
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) Facultad de Ciencias, C. S. I. C. – Universidad de Zaragoza
- E-50009 Zaragoza
- Spain
| | - Simão P. Pinho
- Centro de Investigação de Montanha (CIMO)
- Instituto Politécnico de Bragança
- 5300-253 Bragança
- Portugal
| | - Seishi Shimizu
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- York YO10 5DD
- UK
| | - João A. P. Coutinho
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
9
|
Wysoczanska K, Macedo EA, Sadowski G, Held C. Solubility Enhancement of Vitamins in Water in the Presence of Covitamins: Measurements and ePC-SAFT Predictions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kamila Wysoczanska
- Associate Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eugénia A. Macedo
- Associate Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| |
Collapse
|
10
|
Butt S, Hasan SMF, Hassan MM, Alkharfy KM, Neau SH. Directly compressed rosuvastatin calcium tablets that offer hydrotropic and micellar solubilization for improved dissolution rate and extent of drug release. Saudi Pharm J 2019; 27:619-628. [PMID: 31297015 PMCID: PMC6598454 DOI: 10.1016/j.jsps.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
The objective was to use caffeine and Soluplus® to improve the dissolution rate and to maintain a concentration of BCS Class II rosuvastatin calcium that exceeds its solubility. Caffeine and Soluplus® together substantially improved the dissolution rate and the extent of rosuvastatin release. Formulations for direct compression tablets included Formulation F1, a control with drug but with neither caffeine nor Soluplus® present; F2 with drug-caffeine complex; F3 with drug and Soluplus® and F4 with drug-caffeine complex and Soluplus®. Each formulation blend provided satisfactory flow properties. Tablets were comparable in mass, hardness and friability. A marked decrease in disintegration time occurred when the hydrotropic or micellar agent was included in the formulation. Assay (98–100%) and content uniformity (99–100%) results met requirements. Release studies in pH 1.2, 6.6, and 6.8 buffers revealed the superiority of F4. At 45 min sampling time, F3 and F4 tablets each provided a cumulative drug release greater than 70% in each medium. F2 tablets exhibited compliance to official standards in pH 6.6 and 6.8 buffers but not in pH 1.2 buffer, whereas tablets based on F1 failed in each medium. Two-factor ANOVA of the release data revealed a statistical difference across the four formulations in each release medium. Pairwise comparison of release profiles demonstrated that, of the four formulations, F4 provided the most effectively enhanced dissolution rate, improvement to the extent of drug release and support of a concentration higher than the solubility of rosuvastatin calcium.
Collapse
Affiliation(s)
- Sharonia Butt
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Pakistan
| | - Syed Muhammad Farid Hasan
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Pakistan
| | | | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Steven Henry Neau
- Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
11
|
Damiati SA, Martini LG, Smith NW, Lawrence MJ, Barlow DJ. Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin. Int J Pharm 2017; 530:99-106. [DOI: 10.1016/j.ijpharm.2017.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
|
12
|
Zeindlhofer V, Khlan D, Bica K, Schröder C. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures. RSC Adv 2017; 7:3495-3504. [PMID: 28496974 PMCID: PMC5361174 DOI: 10.1039/c6ra24736a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| | - Diana Khlan
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Katharina Bica
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Christian Schröder
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| |
Collapse
|
13
|
Winkler R, Buchecker T, Hastreiter F, Touraud D, Kunz W. PPh4Cl in aqueous solution – the aggregation behavior of an antagonistic salt. Phys Chem Chem Phys 2017; 19:25463-25470. [DOI: 10.1039/c7cp02677c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of the antagonistic salt PPh4Cl was investigated. This salt was found to be an excellent hydrotrope which does not aggregate in binary aqueous solutions or in a ternary one, upon the addition of the exemplary hydrophobic molecule DR-13.
Collapse
Affiliation(s)
- Robert Winkler
- Institute of Physical and Theoretical Chemistry
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Thomas Buchecker
- Institute of Inorganic Chemistry
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Florian Hastreiter
- Institute of Organic Chemistry
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry
- University of Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
14
|
Li H, Ma L, Li X, Cui X, Yang W, Shen S, Chen M. A simple and effective method to improve bioavailability of glimepiride by utilizing hydrotropy technique. Eur J Pharm Sci 2015; 77:154-60. [PMID: 26093052 DOI: 10.1016/j.ejps.2015.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to improve the solubility and bioavailability of glimepiride (GLMP) by utilizing hydrotropy technique. Meglumine (MU) as a hydrotrope could form the stable complex with glimepiride. The optimal glimepiride and meglumine (GLMP-MU) complex powder was obtained by using lyophilization. GLMP-MU powder was characterized by Fourier transform infrared spectroscopy (FT IR), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The formation of hydrogen bond between glimepiride and meglumine was confirmed by FT IR. The XRD studies indicated the amorphous state of glimepiride was appeared in the GLMP-MU. The DSC results were further confirmed GLMP-MU complex was prepared successfully. Moreover, the in vitro drug release rate of GLMP-MU powder was dramatically faster than that of glimepiride. Meanwhile, the AUC of GLMP-MU solution at an i.g./or i.v. dose of 5mg/kg in rat was significantly higher than that of the glimepiride suspensions. Together our results showed that hydrotropy technique was a simple and effective method to increase the solubility of glimepiride.
Collapse
Affiliation(s)
- Haiying Li
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Lilan Ma
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Xiaxia Li
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Xin Cui
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Wenzhi Yang
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| | - Shigang Shen
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Mingmao Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
15
|
Shimizu S, Matubayasi N. Hydrotropy: monomer-micelle equilibrium and minimum hydrotrope concentration. J Phys Chem B 2014; 118:10515-24. [PMID: 25144510 DOI: 10.1021/jp505869m] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug molecules with low aqueous solubility can be solubilized by a class of cosolvents, known as hydrotropes. Their action has often been explained by an analogy with micelle formation, which exhibits critical micelle concentration (CMC). Indeed, hydrotropes also exhibit "minimum hydrotrope concentration" (MHC), a threshold concentration for solubilization. However, MHC is observed even for nonaggregating monomeric hydrotropes (such as urea); this raises questions over the validity of this analogy. Here we clarify the effect of micellization on hydrotropy, as well as the origin of MHC when micellization is not accompanied. On the basis of the rigorous Kirkwood-Buff (KB) theory of solutions, we show that (i) micellar hydrotropy is explained also from preferential drug-hydrotrope interaction; (ii) yet micelle formation reduces solubilization effeciency per hydrotrope molecule; (iii) MHC is caused by hydrotrope-hydrotrope self-association induced by the solute (drug) molecule; and (iv) MHC is prevented by hydrotrope self-aggregation in the bulk solution. We thus need a departure from the traditional view; the structure of hydrotrope-water mixture around the drug molecule, not the structure of the aqueous hydrotrope solutions in the bulk phase, is the true key toward understanding the origin of MHC.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York , Heslington, York YO10 5YW, United Kingdom
| | | |
Collapse
|
16
|
Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014; 15:862-71. [PMID: 24700296 DOI: 10.1208/s12249-014-0113-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10-100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity.
Collapse
|
17
|
|
18
|
Sharma B, Paul S. Effects of dilute aqueous NaCl solution on caffeine aggregation. J Chem Phys 2013; 139:194504. [DOI: 10.1063/1.4830414] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Hydrotropic Solubilization by Urea Derivatives: A Molecular Dynamics Simulation Study. JOURNAL OF PHARMACEUTICS 2013; 2013:791370. [PMID: 26555993 PMCID: PMC4590820 DOI: 10.1155/2013/791370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022]
Abstract
Hydrotropy is a phenomenon where the presence of a large quantity of one solute enhances the solubility of another solute. The mechanism of this phenomenon remains a topic of debate. This study employed molecular dynamics simulation to investigate the hydrotropic mechanism of a series of urea derivatives, that is, urea (UR), methylurea (MU), ethylurea (EU), and butylurea (BU). A poorly water-soluble compound, nifedipine (NF), was used as the model solute that was solubilized. Structural, dynamic, and energetic changes upon equilibration were analyzed to supply insights to the solubilization mechanism. The study demonstrated that NF and urea derivatives underwent significant nonstoichiometric molecular aggregation in the aqueous solution, a result consistent with the self-aggregation of urea derivatives under the same conditions. The analysis of hydrogen bonding and energy changes revealed that the aggregation was driven by the partial restoration of normal water structure. The energetic data also suggested that the promoted solubilization of NF is favored in the presence of urea derivatives. While the solutes aggregated to a varying degree, the systems were still in single-phase liquid state as attested by their active dynamics.
Collapse
|
20
|
Shimizu S, Booth JJ, Abbott S. Hydrotropy: binding models vs. statistical thermodynamics. Phys Chem Chem Phys 2013; 15:20625-32. [DOI: 10.1039/c3cp53791a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Use of Molecular Dynamics for the Refinement of an Electrostatic Model for the In Silico Design of a Polymer Antidote for the Anticoagulant Fondaparinux. J Med Eng 2013; 2013:487387. [PMID: 27006916 PMCID: PMC4782625 DOI: 10.1155/2013/487387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 06/06/2013] [Indexed: 11/30/2022] Open
Abstract
Molecular dynamics (MD) simulations results are herein incorporated into an electrostatic model used to determine the structure of an effective polymer-based antidote to the anticoagulant fondaparinux. In silico data for the polymer or its cationic binding groups has not, up to now, been available, and experimental data on the structure of the polymer-fondaparinux complex is extremely limited. Consequently, the task of optimizing the polymer structure is a daunting challenge. MD simulations provided a means to gain microscopic information on the interactions of the binding groups and fondaparinux that would have otherwise been inaccessible. This was used to refine the electrostatic model and improve the quantitative model predictions of binding affinity. Once refined, the model provided guidelines to improve electrostatic forces between candidate polymers and fondaparinux in order to increase association rate constants.
Collapse
|
22
|
Booth JJ, Abbott S, Shimizu S. Mechanism of hydrophobic drug solubilization by small molecule hydrotropes. J Phys Chem B 2012; 116:14915-21. [PMID: 23236952 DOI: 10.1021/jp309819r] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs that are poorly soluble in water can be solubilized by the addition of hydrotropes. Albeit known for almost a century, how they work at a molecular basis is still controversial due to the lack of a rigorous theoretical basis. To clear up this situation, a combination of experimental data and Fluctuation Theory of Solutions (FTS) has been employed; information on the interactions between all the molecular species present in the solution has been evaluated directly. FTS has identified two major factors of hydrotrope-induced solubilization: preferential hydrotrope-solute interaction and water activity depression. The former is dominated by hydrotrope-solute association, and the latter is enhanced by ionic dissociation and hindered by the self-aggregation of the hydrotropes. Moreover, in stark contrast to previous hypotheses, neither the change of solute hydration nor the water structure accounts for hydrotropy. Indeed, the rigorous FTS poses serious doubts over the other common hypothesis: self-aggregation of the hydrotrope hinders, rather than promotes, solubilization.
Collapse
Affiliation(s)
- Jonathan J Booth
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
| | | | | |
Collapse
|
23
|
Collinet-Fressancourt M, Leclercq L, Bauduin P, Aubry JM, Nardello-Rataj V. Counter Anion Effect on the Self-Aggregation of Dimethyl-di-N-octylammonium Cation: A Dual Behavior between Hydrotropes and Surfactants. J Phys Chem B 2011; 115:11619-30. [DOI: 10.1021/jp201590x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marion Collinet-Fressancourt
- Université Lille Nord de France, F-59000 Lille, France
- Université Lille 1 and ENSCL, EA 4478 Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| | - Loïc Leclercq
- Université Lille Nord de France, F-59000 Lille, France
- Université Lille 1 and ENSCL, EA 4478 Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| | - Pierre Bauduin
- Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/UM2/ENSCM, BP 17171 CEA Marcoule, F-30207 Bagnols-sur-Cèze, France
| | - Jean-Marie Aubry
- Université Lille Nord de France, F-59000 Lille, France
- Université Lille 1 and ENSCL, EA 4478 Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| | - Véronique Nardello-Rataj
- Université Lille Nord de France, F-59000 Lille, France
- Université Lille 1 and ENSCL, EA 4478 Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
24
|
Cui Y. Using Molecular Simulations to Probe Pharmaceutical Materials. J Pharm Sci 2011; 100:2000-19. [DOI: 10.1002/jps.22392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/06/2022]
|