1
|
Goel A, Pendlington R, Glavin S, Chen T, Belsey NA. Characterisation of skin penetration pathways using stimulated Raman scattering microscopy. Eur J Pharm Biopharm 2024; 204:114518. [PMID: 39362383 DOI: 10.1016/j.ejpb.2024.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Understanding the mechanisms governing the penetration of substances into the skin is crucial for the development of safe and effective topical drug delivery systems and skincare products. This study examined the partitioning of model permeants into human skin, by assessing six substances with diverse logP values. We employed stimulated Raman scattering (SRS) microscopy, an ambient, label-free optical imaging technique known for its ability to provide chemical distribution with subcellular resolution. Our investigation assessed partitioning into the two primary pathways through which substances traverse the skin: the intercellular lipid matrix and the intracellular route via corneocyte cells. We observed that the partitioning behaviour was strongly influenced by the lipophilicity of the molecule, with lipophilic compounds showing greater affinity for intercellular matrix with increased lipophilicity. Conversely, hydrophilic molecules demonstrated a preference for corneocyte cells, with their affinity increasing with increased hydrophilicity. The findings contribute to our understanding of the mechanisms underlying topical delivery and offer important implications and new methods beneficial for the development of safe and effective topical products. In addition, the methods presented could be valuable to reveal changes in drug partitioning or to assess targeting approaches in diseased skin models.
Collapse
Affiliation(s)
- Anukrati Goel
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Ruth Pendlington
- Unilever Safety & Environmental Assurance Centre, Colworth Science Park, Bedford MK44 1LQ. UK
| | - Stephen Glavin
- Unilever Safety & Environmental Assurance Centre, Colworth Science Park, Bedford MK44 1LQ. UK
| | - Tao Chen
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Natalie A Belsey
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK; Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| |
Collapse
|
2
|
Deacon BN, Silva S, Lian G, Evans M, Chen T. Computational Modelling of the Impact of Evaporation on In-Vitro Dermal Absorption. Pharm Res 2024; 41:1979-1990. [PMID: 39375242 PMCID: PMC11530481 DOI: 10.1007/s11095-024-03779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Volatiles are common in personal care products and dermatological drugs. Determining the impact of evaporation of volatiles on skin permeation is crucial to evaluate and understand their delivery, bioavailability, efficacy and safety. We aim to develop an in-silico model to simulate the impact of evaporation on the dermal absorption of volatiles. METHOD The evaporation of volatile permeants was modelled using vapour pressure as the main factor. This model considers evaporation as a passive diffusion process driven by the concentration gradient between the air-vehicle interface and the ambient environment. The evaporation model was then integrated with a previously published physiologically based pharmacokinetic (PBPK) model of skin permeation and compared with published in vitro permeation test data from the Cosmetics Europe ADME Task Force. RESULTS The evaporation-PBPK model shows improved predictions when evaporation is considered. In particular, good agreement has been obtained for the distributions in the evaporative loss, and the overall percutaneous absorption. The model is further compared with published in-silico models from the Cosmetics Europe ADME Task Force where favourable results are achieved. CONCLUSION The evaporation of volatile permeants under finite dose in vitro permeation test conditions has been successfully predicted using a mechanistic model with the intrinsic volatility parameter vapour pressure. Integrating evaporation in PBPK modelling significantly improved the prediction of dermal delivery.
Collapse
Affiliation(s)
- Benjamin N Deacon
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, U.K
| | - Samadhi Silva
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, U.K
| | - Guoping Lian
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, U.K
- Unilever R&D Colworth, Unilever, Sharnbrook, MK44 1LQ, U.K
| | - Marina Evans
- Center for Computational Toxicology and Exposure, US EPA, ORD, RTP, NC, USA
| | - Tao Chen
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, U.K..
| |
Collapse
|
3
|
Kahsay BN, Moeller L, Wohlrab J, Neubert RHH, Gebre-Mariam T. Delivery of small hydrophilic molecules across the stratum corneum: Identification of model systems and parameters to study topical delivery of free amino acids. Int J Pharm 2024; 661:124372. [PMID: 38909923 DOI: 10.1016/j.ijpharm.2024.124372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Free amino acids (FAAs) constitute the largest component (∼40 %) of the so-called natural moisturizing factors of the skin. Their level declines in dry skin conditions and one strategy to overcome this problem may involve the topical delivery of FAAs through appropriate strategy. The objective of the present study was therefore to identify alternative skin models and study the corneocyte-water partition coefficients (KCOR/W) and permeation coefficient (KP) of 18 FAAs. The KCOR/W was studied using standard protocols and the permeation studies were conducted using Franz diffusion cell. The results indicate that the FAAs have high partitioning behavior to the corneocytes. The KCOR/W values of the human COR and that of pig ear skin were better correlated with each other than that of keratin isolated from chicken feathers. The presence of lipid in the stratum corneum (SC), initial concentration of the FAAs, and permeation enhancers affect the KCOR/W. The FAAs have low permeation into the SC which suggests the need for permeation enhancers in designing dosage form containing these compounds. Even though the investigated mathematical models show good prediction of the Kp values, better prediction could be obtained by considering factors such as the possible entrapment of the FAAs by the CORs.
Collapse
Affiliation(s)
- Birhanu Nigusse Kahsay
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Weinbergweg 23 06120, Halle (Saale), Germany; Department of Biopharmaceutics & Pharmaceutical Technology, Institute of Pharmaceutical & Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5 D-55099, Mainz, Germany
| | - Lucie Moeller
- Department of Systemic Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstrasse 15 04318, Leipzig, Germany
| | - Johannes Wohlrab
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40 06120, Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Weinbergweg 23 06120, Halle (Saale), Germany.
| | - Tsige Gebre-Mariam
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
Stevens JN, Prockter AK, Fisher HA, Tran H, Evans MV. A database of chemical absorption in human skin with mechanistic modeling applications. Sci Data 2024; 11:755. [PMID: 38987285 PMCID: PMC11237069 DOI: 10.1038/s41597-024-03588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Whether from environmental and occupational hazards or from topical pharmaceuticals, the human skin comes into contact with various chemicals every day. In vivo experiments not only require large investments of both time and money, but in vivo experiments can also be unethical due to the need to intentionally or incidentally expose humans or animals to toxic chemicals. Comparatively, in vitro experiments offer ethical and financial advantages when combined with the opportunity to selectively choose chemicals for experimentation. With in vivo experimentation being so infeasible, many scientists have chosen to make their in vitro data available publicly. Using these data, a detailed database containing 73 chemicals was created with a robust set of descriptors to be used in connection with mathematical modeling to predict diffusion, permeability, and partition coefficients. This resulting database is tailored to be easily used in various coding languages.
Collapse
Affiliation(s)
- Jessica N Stevens
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA.
| | - Alyson K Prockter
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Hunter A Fisher
- Oak Ridge Associated Universities (ORAU) assigned to United States Environmental Protection Agency (USEPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA
| | - Hien Tran
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Marina V Evans
- United States Environmental Protection Agency (USEPA), Center for Computational Toxicity and Exposure, Office of Research and Development (ORD), Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Lunter D, Klang V, Eichner A, Savic SM, Savic S, Lian G, Erdő F. Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations. Pharmaceutics 2024; 16:817. [PMID: 38931938 PMCID: PMC11207871 DOI: 10.3390/pharmaceutics16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ and a multifunctional interface between the body and its environment. It acts as a barrier against cold, heat, injuries, infections, chemicals, radiations or other exogeneous factors, and it is also known as the mirror of the soul. The skin is involved in body temperature regulation by the storage of fat and water. It is an interesting tissue in regard to the local and transdermal application of active ingredients for prevention or treatment of pathological conditions. Topical and transdermal delivery is an emerging route of drug and cosmetic administration. It is beneficial for avoiding side effects and rapid metabolism. Many pharmaceutical, technological and cosmetic innovations have been described and patented recently in the field. In this review, the main features of skin morphology and physiology are presented and are being followed by the description of classical and novel nanoparticulate dermal and transdermal drug formulations. The biophysical aspects of the penetration of drugs and cosmetics into or across the dermal barrier and their investigation in diffusion chambers, skin-on-a-chip devices, high-throughput measuring systems or with advanced analytical techniques are also shown. The current knowledge about mathematical modeling of skin penetration and the future perspectives are briefly discussed in the end, all also involving nanoparticulated systems.
Collapse
Affiliation(s)
- Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany;
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Adina Eichner
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany;
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) e.V., 06108 Halle, Germany
| | - Sanela M. Savic
- Faculty of Technology in Leskovac, University of Niš, 16000 Leskovac, Serbia;
- R&D Sector, DCP Hemigal, 16000 Leskovac, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK;
- Unilever R&D Colworth, Sharnbrook, Bedford MK44 1LQ, UK
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| |
Collapse
|
6
|
Sebastia-Saez D, Lian G, Chen T. In Silico Study on the Contribution of the Follicular Route to Dermal Permeability of Small Molecules. Pharm Res 2024; 41:567-576. [PMID: 38351229 DOI: 10.1007/s11095-024-03660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE This study investigates in silico the contribution of the hair follicle to the overall dermal permeability of small molecules, as published experimental work provides inconclusive information on whether the follicular route favours the permeation of hydrophobic or hydrophilic permeants. METHOD A study is conducted varying physico-chemical parameters of permeants such as lipophilicity, molecular weight and protein binding. The simulated data is compared to published experimental data to discuss how those properties can modulate the contribution of the hair follicle to the overall dermal permeation. RESULTS The results indicate that the contribution of the follicular route to dermal permeation can range from negligible to notable depending on the combination of lipophilic/hydrophilic properties of the substance filling the follicular route and the permeant. CONCLUSION Characterisation of the substance filling the follicular route is required for analysing the experimental data of dermal permeation of small molecules, as changes between in vivo and in vitro due to handling of samples and cessation of vital functions can modify the contribution of the follicular route to overall dermal permeation, hence hindering data interpretation.
Collapse
Affiliation(s)
- Daniel Sebastia-Saez
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, UK.
| | | | - Tao Chen
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, UK
| |
Collapse
|
7
|
Deacon BN, Piasentin N, Cai Q, Chen T, Lian G. An examination of published datasets of skin permeability and partition coefficients. Toxicol In Vitro 2023; 93:105702. [PMID: 37769857 DOI: 10.1016/j.tiv.2023.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Permeability and partition coefficients of the skin barrier are important for assessing dermal absorption, bioavailability, and safety of cosmetics and medicine. We use the Potts and Guy equation to analyse the dependence of skin permeability on the hydrophobicity of permeants and highlight the significant differences in published datasets. Correlations of solute partition to skin are examined to understand the likely causes of the differences in the skin permeability datasets. Recently published permeability datasets show weak correlation and low dependence on hydrophobicity. As expected, early datasets show good correlation with hydrophobicity due to the related derivation. The weaker correlation of later datasets cannot be explained by the partition to skin lipids. All the datasets of solute partition to skin lipid showed a similar correlation to hydrophobicity where the log-linear correlation coefficient of partition is almost the same of the log-linear coefficient of Potts and Guy equation. Weak correlation and dependence of the late permeability datasets with SC lipid/water partition and that they are significantly under predicted by the Potts and Guy equation suggests either additional non-lipid pathway at play or a weaker skin barrier property.
Collapse
Affiliation(s)
- Benjamin N Deacon
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK
| | - Nicola Piasentin
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK; Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, UK
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK; Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, UK.
| |
Collapse
|
8
|
Wennberg C, Lundborg M, Lindahl E, Norlén L. Understanding Drug Skin Permeation Enhancers Using Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:4900-4911. [PMID: 37462219 PMCID: PMC10428223 DOI: 10.1021/acs.jcim.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/15/2023]
Abstract
Our skin constitutes an effective permeability barrier that protects the body from exogenous substances but concomitantly severely limits the number of pharmaceutical drugs that can be delivered transdermally. In topical formulation design, chemical permeation enhancers (PEs) are used to increase drug skin permeability. In vitro skin permeability experiments can measure net effects of PEs on transdermal drug transport, but they cannot explain the molecular mechanisms of interactions between drugs, permeation enhancers, and skin structure, which limits the possibility to rationally design better new drug formulations. Here we investigate the effect of the PEs water, lauric acid, geraniol, stearic acid, thymol, ethanol, oleic acid, and eucalyptol on the transdermal transport of metronidazole, caffeine, and naproxen. We use atomistic molecular dynamics (MD) simulations in combination with developed molecular models to calculate the free energy difference between 11 PE-containing formulations and the skin's barrier structure. We then utilize the results to calculate the final concentration of PEs in skin. We obtain an RMSE of 0.58 log units for calculated partition coefficients from water into the barrier structure. We then use the modified PE-containing barrier structure to calculate the PEs' permeability enhancement ratios (ERs) on transdermal metronidazole, caffeine, and naproxen transport and compare with the results obtained from in vitro experiments. We show that MD simulations are able to reproduce rankings based on ERs. However, strict quantitative correlation with experimental data needs further refinement, which is complicated by significant deviations between different measurements. Finally, we propose a model for how to use calculations of the potential of mean force of drugs across the skin's barrier structure in a topical formulation design.
Collapse
Affiliation(s)
| | - Magnus Lundborg
- Science
for Life Laboratory, ERCO Pharma AB, 171 65 Solna, Sweden
| | - Erik Lindahl
- Department
of Biophysics and Biochemistry, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Lars Norlén
- Department
of Cell and Molecular Biology (CMB), Karolinska
Institutet, 171 77 Solna, Sweden
- Dermatology
Clinic. Karolinska University Hospital, 171 77 Solna, Sweden
| |
Collapse
|
9
|
Evans MV, Moxon TE, Lian G, Deacon BN, Chen T, Adams LD, Meade A, Wambaugh JF. A regression analysis using simple descriptors for multiple dermal datasets: Going from individual membranes to the full skin. J Appl Toxicol 2023; 43:940-950. [PMID: 36609694 PMCID: PMC10367137 DOI: 10.1002/jat.4435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
In silico methods to estimate and/or quantify skin absorption of chemicals as a function of chemistry are needed to realistically predict pharmacological, occupational, and environmental exposures. The Potts-Guy equation is a well-established approach, using multi-linear regression analysis describing skin permeability (Kp) in terms of the octanol/water partition coefficient (logP) and molecular weight (MW). In this work, we obtained regression equations for different human datasets relevant to environmental and cosmetic chemicals. Since the Potts-Guy equation was published in 1992, we explored recent datasets that include different skin layers, such as dermatomed (including dermis to a defined thickness) and full skin. Our work was consistent with others who have observed that fits to the Potts-Guy equation are stronger for experiments focused on the epidermis. Permeability estimates for dermatomed skin and full skin resulted in low regression coefficients when compared to epidermis datasets. An updated regression equation uses a combination of fitted permeability values obtained with a published 2D compartmental model previously evaluated. The resulting regression equation was: logKp = -2.55 + 0.65logP - 0.0085MW, R2 = 0.91 (applicability domain for all datasets: MW ranges from 18 to >584 g/mol and -4 to >5 for logP). This approach demonstrates the advantage of combining mechanistic with structural activity relationships in a single modeling approach. This combination approach results in an improved regression fit when compared to permeability estimates obtained using the Potts-Guy approach alone. The analysis presented in this work assumes a one-compartment skin absorption route; future modeling work will consider adding multiple compartments.
Collapse
Affiliation(s)
- Marina V. Evans
- Center for Computational Toxicology and Exposure, ORD, RTP, US EPA, Durham, North Carolina, USA
| | - Thomas E. Moxon
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, UK
| | | | - Benjamin N. Deacon
- Department of Chemical and Processing Engineering, UK University of Surrey, Guildford, UK
| | - Tao Chen
- Department of Chemical and Processing Engineering, UK University of Surrey, Guildford, UK
| | - Linda D. Adams
- Center for Computational Toxicology and Exposure, ORD, RTP, US EPA, Durham, North Carolina, USA
| | | | - John F. Wambaugh
- Center for Computational Toxicology and Exposure, ORD, RTP, US EPA, Durham, North Carolina, USA
| |
Collapse
|
10
|
Piasentin N, Lian G, Cai Q. In Silico Prediction of Stratum Corneum Partition Coefficients via COSMOmic and Molecular Dynamics Simulations. J Phys Chem B 2023; 127:2719-2728. [PMID: 36930176 PMCID: PMC10068742 DOI: 10.1021/acs.jpcb.2c08566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stratum corneum (SC) is the main barrier of human skin where the inter-corneocytes lipids provide the main pathway for transdermal permeation of functional actives of skin care and health. Molecular dynamics (MD) has been increasingly used to simulate the SC lipid bilayer structure so that the barrier property and its affecting factors can be elucidated. Among reported MD simulation studies, solute partition in the SC lipids, an important parameter affecting SC permeability, has received limited attention. In this work, we combine MD simulation with COSMOmic to predict the partition coefficients of dermatologically relevant solutes in SC lipid bilayer. Firstly, we run MD simulations to obtain equilibrated SC lipid bilayers with different lipid types, compositions, and structures. Then, the simulated SC lipid bilayer structures are fed to COSMOmic to calculate the partition coefficients of the solutes. The results show that lipid types and bilayer geometries play a minor role in the predicted partition coefficients. For the more lipophilic solutes, the predicted results of solute partition in SC lipid bilayers agree well with reported experimental values of solute partition in extracted SC lipids. For the more hydrophilic molecules, there is a systematical underprediction. Nevertheless, the MD/COSMOmic approach correctly reproduces the phenomenological correlation between the SC lipid/water partition coefficients and the octanol/water partition coefficients. Overall, the results show that the MD/COSMOmic approach is a fast and valid method for predicting solute partitioning into SC lipids and hence supporting the assessment of percutaneous absorption of skin care ingredients, dermatological drugs as well as environmental pollutants.
Collapse
Affiliation(s)
- Nicola Piasentin
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| |
Collapse
|
11
|
Wang J, Nitsche JM, Kasting GB, Wittum G, Nägel A. Transdermal and lateral effective diffusivities for drug transport in stratum corneum from a microscopic anisotropic diffusion model. Eur J Pharm Biopharm 2023:S0939-6411(23)00032-2. [PMID: 36764498 DOI: 10.1016/j.ejpb.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/10/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
This paper presents a computational model of molecular diffusion through the interfollicular stratum corneum. Specifically, it extends an earlier two-dimensional microscopic model for the permeability in two ways: (1) a microporous leakage pathway through the intercellular lipid lamellae allows slow permeation of highly hydrophilic permeants through the tissue; and (2) the model yields explicit predictions of both lateral (D‾‖sc) and transdermal (D‾⊥sc) effective (average, homogenized) diffusivities of solutes within the tissue. We present here the mathematical framework for the analysis and a comparison of the predictions with experimental data on desorption of both hydrophilic and lipophilic solutes from human stratum corneum in vitro. Diffusion in the lipid lamellae is found to make the effective diffusivity highly anisotropic, with the predicted ratio D‾‖sc/D‾⊥sc ranging from 34-39 for fully hydrated skin and 150 to more than 1000 for partially hydrated skin. The diffusivities and their ratio are in accord with both experimental data and the results of mathematical analyses performed by others.
Collapse
Affiliation(s)
- Junxi Wang
- Goethe Center for Scientific Computing, Kettenhofweg 139, Goethe University, 60325 Frankfurt a.M., Germany
| | - Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Gabriel Wittum
- Goethe Center for Scientific Computing, Kettenhofweg 139, Goethe University, 60325 Frankfurt a.M., Germany; King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi-Arabia
| | - Arne Nägel
- Goethe Center for Scientific Computing, Kettenhofweg 139, Goethe University, 60325 Frankfurt a.M., Germany.
| |
Collapse
|
12
|
Sebastia-Saez D, Benaouda F, Lim CH, Lian G, Jones SA, Cui L, Chen T. In-Silico Modelling of Transdermal Delivery of Macromolecule Drugs Assisted by a Skin Stretching Hypobaric Device. Pharm Res 2023; 40:295-305. [PMID: 36348132 PMCID: PMC9911480 DOI: 10.1007/s11095-022-03423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To develop a simulation model to explore the interplay between mechanical stretch and diffusion of large molecules into the skin under locally applied hypobaric pressure, a novel penetration enhancement method. METHODS Finite element method was used to model the skin mechanical deformation and molecular diffusion processes, with validation against in-vitro transdermal permeation experiments. Simulations and experimental data were used together to investigate the transdermal permeation of large molecules under local hypobaric pressure. RESULTS Mechanical simulations resulted in skin stretching and thinning (20%-26% hair follicle diameter increase, and 21%-27% skin thickness reduction). Concentration of dextrans in the stratum corneum was below detection limit with and without hypobaric pressure. Concentrations in viable epidermis and dermis were not affected by hypobaric pressure (approximately 2 μg [Formula: see text] cm-2). Permeation into the receptor fluid was substantially enhanced from below the detection limit at atmospheric pressure to up to 6 μg [Formula: see text] cm-2 under hypobaric pressure. The in-silico simulations compared satisfactorily with the experimental results at atmospheric conditions. Under hypobaric pressure, satisfactory comparison was attained when the diffusion coefficients of dextrans in the skin layers were increased from [Formula: see text] 10 μm2 [Formula: see text] s-1 to between 200-500 μm2 [Formula: see text] s-1. CONCLUSIONS Application of hypobaric pressure induces skin mechanical stretching and enlarges the hair follicle. This enlargement alone cannot satisfactorily explain the increased transdermal permeation into the receptor fluid under hypobaric pressure. The results from the in-silico simulations suggest that the application of hypobaric pressure increases diffusion in the skin, which leads to improved overall transdermal permeation.
Collapse
Affiliation(s)
- Daniel Sebastia-Saez
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | - Faiza Benaouda
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Chui Hua Lim
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
- Unilever R&D Colworth, Bedford, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Liang Cui
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK.
| |
Collapse
|
13
|
Thermodynamic and kinetic analysis of human epidermal penetration of phenolic compounds: I. Stratum corneum solubility and partitioning. Int J Pharm 2022; 630:122424. [PMID: 36427696 DOI: 10.1016/j.ijpharm.2022.122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Warming of the skin is now an accepted means of promoting skin permeation. Accordingly, the usually quite onerous thermodynamic studies on solute transport through the skin have practical applications. Phenolic compounds permeate through the skin by partitioning into and diffusing through the stratum corneum (SC) intercellular lipids, with their size being the main determinant of their maximal solute flux through skin. This paper sought to characterise the enthalpic and entropic changes associated with the solubility and equilibrium partitioning into the human SC of a series of phenols similar in size but with differing log P from aqueous vehicles. The solubilities of 9 phenolic compounds, covering a range of polarities, were determined in water and SC following 72 h at 4, 24, 32 and 37 °C which allowed the estimation of the SC-water partition coefficients. Van't Hoff plots were then used to estimate the enthalpies and entropies for the SC solubility, water solubility and SC partitioning of phenols. In addition, partition coefficients of 3 of the 9 phenols from mineral oil into hydrated and dehydrated SC were measured at the same temperatures. Van't Hoff plots were then used to estimate the enthalpies and entropies for the SC solubility, water solubility and SC partitioning of phenols from the oil. The SC solubility for the polar phenols increased more with temperature than the non-polar phenols, with the SC-water partition coefficients increasing with temperature for the polar phenols but decreasing with temperature for the non-polar phenols. Thermodynamic analyses suggest that, while enthalpy and entropy effects are involved in the SC partitioning of the non-polar solutes, the SC partitioning of the polar phenols were almost entirely entropy driven. The resultant thermodynamic parameters are consistent with the polar phenols being mainly associated with the SC polar head groups whereas the nonpolar phenols were more likely to be located in the interior interface SC lipid region adjacent to the polar head groups. Further, hydrating the SC led to an increase in the enthalpy of partitioning for both the polar and non-polar phenols studied. The estimated entropy of the partitioning for solutes from dehydrated SC suggests this is not only a hydrophobic effect in water but that the partitioning arises from the nature of phenolic compound - SC intercellular lipid interactions and SC intercellular lipid entropy. This partitioning process is dominated more by the extent of interaction between the SC and solute than the hydrophobic effect in water and is likely to be even greater above the SC lipid phase transition at around 36 °C for hydrated epidermal membranes.
Collapse
|
14
|
Nitsche JM, Kasting GB. A Framework for Incorporating Transient Solute-Keratin Binding Into Dermal Absorption Models. J Pharm Sci 2022; 111:2093-2106. [DOI: 10.1016/j.xphs.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
|
15
|
Piasentin N, Lian G, Cai Q. Evaluation of Constrained and Restrained Molecular Dynamics Simulation Methods for Predicting Skin Lipid Permeability. ACS OMEGA 2021; 6:35363-35374. [PMID: 34984268 PMCID: PMC8717400 DOI: 10.1021/acsomega.1c04684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 05/05/2023]
Abstract
Recently, molecular dynamics (MD) simulations have been utilized to investigate the barrier properties of human skin stratum corneum (SC) lipid bilayers. Different MD methods and force fields have been utilized, with predicted permeabilities varying by few orders of magnitude. In this work, we compare constrained MD simulations with restrained MD simulations to obtain the potential of the mean force and the diffusion coefficient profile for the case of a water molecule permeating across an SC lipid bilayer. Corresponding permeabilities of the simulated lipid bilayer are calculated via the inhomogeneous solubility diffusion model. Results show that both methods perform similarly, but restrained MD simulations have proven to be the more robust approach for predicting the potential of the mean force profile. Critical to both methods are the sampling of the whole trans-bilayer axis and the following symmetrization process. Re-analysis of the previously reported free energy profiles showed that some of the discrepancies in the reported permeability values is due to misquotation of units, while some are due to the inaccurately obtained potential of the mean force. By using the existing microscopic geometrical models via the intercellular lipid pathway, the permeation through the whole SC is predicted from the MD simulation results, and the predicted barrier properties have been compared to experimental data from the literature with good agreement.
Collapse
Affiliation(s)
- Nicola Piasentin
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU27XH, U.K..
- Unilever
R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K..
| | - Guoping Lian
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU27XH, U.K..
- Unilever
R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K..
- . Phone: +44 1234 222741
| | - Qiong Cai
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU27XH, U.K..
| |
Collapse
|
16
|
Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y, Holmes A, van der Hoek J, Pastore M, Grice JE. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177:113929. [PMID: 34403750 DOI: 10.1016/j.addr.2021.113929] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Topical products, widely used to manage skin conditions, have evolved from simple potions to sophisticated delivery systems. Their development has been facilitated by advances in percutaneous absorption and product design based on an increasingly mechanistic understanding of drug-product-skin interactions, associated experiments, and a quality-by-design framework. Topical drug delivery involves drug transport from a product on the skin to a local target site and then clearance by diffusion, metabolism, and the dermal circulation to the rest of the body and deeper tissues. Insights have been provided by Quantitative Structure Permeability Relationships (QSPR), molecular dynamics simulations, and dermal Physiologically Based PharmacoKinetics (PBPK). Currently, generic product equivalents of reference-listed products dominate the topical delivery market. There is an increasing regulatory interest in understanding topical product delivery behavior under 'in use' conditions and predicting in vivo response for population variations in skin barrier function and response using in silico and in vitro findings.
Collapse
|
17
|
Calorimetric and spectroscopic studies of interactions of PPI G4 dendrimer with tegafur in aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
RP-18 TLC Chromatographic and Computational Study of Skin Permeability of Steroids. Pharmaceuticals (Basel) 2021; 14:ph14070600. [PMID: 34206570 PMCID: PMC8308496 DOI: 10.3390/ph14070600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
The skin permeability of steroids, as investigated in this study, is important because some of these compounds are, or could, be used in preparations applied topically. Several models of skin permeability, involving thin layer chromatographic and calculated descriptors, were generated and validated using Kp reference values obtained in silico and then tested on a group of solutes whose experimental Kp values could be found (log Kpexp). The study established that the most applicable log Kp model is based on RP-18 thin layer chromatographic data (RM) and the calculated descriptors VM (molar volume) and PSA (polar surface area). Two less efficient, yet simple, equations based on PSA or VM combined with HD (H-donor count) can be used with caution for rapid, rough estimations of compounds’ skin permeability prior to their chemical synthesis.
Collapse
|
19
|
Chen L, Fu W, Tan Y, Zhang X. Emerging organic contaminants and odorous compounds in secondary effluent wastewater: Identification and advanced treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124817. [PMID: 33370690 DOI: 10.1016/j.jhazmat.2020.124817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
This study aims to address organic micropollutants in secondary effluents from municipal wastewater treatment plants (WWTPs) by first identification of micropollutants in different treatment units, and second by evaluating an advanced treatment process for removals of micropollutants. In secondary effluents, 28 types of pharmaceutical and personal care products (PPCPs), 5 types of endocrine disrupting chemicals (EDCs) and 3 types of odorous compounds are detected with total concentrations of 513 ± 57.8 ng/L, 991 ± 36.5 ng/L, 553 ± 48.3 ng/L, respectively. An integrated process consisting of in-situ ozonation, ceramic membrane filtration (CMF) and biological active carbon (BAC) filtration is investigated in a pilot scale (1000 m3/d) for removal of micropollutants in secondary effluents. The total removal efficiencies of PPCPs, EDCs and odorous compounds are 98.5%, 95.4%, and 91.1%, respectively. Removal mechanisms of emerging organic contaminants (EOCs) and odorous compounds are discussed based on their physicochemical properties. The remarkable removal efficiencies of micropollutants by the pilot system is attributed to synergistic effects of combining ozonation, ceramic membrane filtration and BAC filtration. This study provides a cost-effective and robust technology with the capability of treating secondary effluents for reuse applications.
Collapse
Affiliation(s)
- Li Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Wanyi Fu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China.
| | - Yu Tan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xihui Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
20
|
Mercuri M, Fernandez Rivas D. Challenges and opportunities for small volumes delivery into the skin. BIOMICROFLUIDICS 2021; 15:011301. [PMID: 33532017 PMCID: PMC7826167 DOI: 10.1063/5.0030163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Each individual's skin has its own features, such as strength, elasticity, or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transdermal therapies. However, the large difference between transport timescales and length scales of disparate molecules needed for medical therapies makes it difficult to address fundamental questions. Thus, this lack of fundamental knowledge has limited the efficacy of bioengineering equipment and medical treatments. In this article, we provide an overview of the most important microfluidics-related transport phenomena through the skin and versatile tools to study them. Moreover, we provide a summary of challenges and opportunities faced by advanced transdermal delivery methods, such as needle-free jet injectors, microneedles, and tattooing, which could pave the way to the implementation of better therapies and new methods.
Collapse
Affiliation(s)
- Magalí Mercuri
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
21
|
Coleman L, Lian G, Glavin S, Sorrell I, Chen T. In Silico Simulation of Simultaneous Percutaneous Absorption and Xenobiotic Metabolism: Model Development and a Case Study on Aromatic Amines. Pharm Res 2020; 37:241. [DOI: 10.1007/s11095-020-02967-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
|
22
|
Amézqueta S, Fernández-Pumarega A, Farré S, Luna D, Fuguet E, Rosés M. Lecithin liposomes and microemulsions as new chromatographic phases. J Chromatogr A 2020; 1611:460596. [DOI: 10.1016/j.chroma.2019.460596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
|
23
|
Pecoraro B, Tutone M, Hoffman E, Hutter V, Almerico AM, Traynor M. Predicting Skin Permeability by Means of Computational Approaches: Reliability and Caveats in Pharmaceutical Studies. J Chem Inf Model 2019; 59:1759-1771. [PMID: 30658035 DOI: 10.1021/acs.jcim.8b00934] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.
Collapse
Affiliation(s)
- Beatrice Pecoraro
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Marco Tutone
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , 90123 Palermo , Italy
| | - Ewelina Hoffman
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Victoria Hutter
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Anna Maria Almerico
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , 90123 Palermo , Italy
| | - Matthew Traynor
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| |
Collapse
|
24
|
Li BS, Cary JH, Maibach HI. Should we instruct patients to rub topical agents into skin? The evidence. J DERMATOL TREAT 2018; 30:328-332. [PMID: 30247942 DOI: 10.1080/09546634.2018.1527997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Background: At least 15 factors influence the ability of compounds to penetrate the skin. Massage (rubbing) may be another factor that has gone relatively unrecognized. Method: PubMed, Google Scholar, and EMBASE databases were accessed online in March 2018 in search of studies measuring absorption through skin with and without rubbing or massage. Results: While some studies noted no difference in dermal absorption with regards to rubbing, others have demonstrated the opposite. In general, massage technique does indeed sometimes enhance dermal absorption. In addition to increase skin temperature and blood flow, rubbing likely modifies stratum corneum (SC) structure to enhance diffusion rates and increase retained penetrant amount within the skin. Conclusions: Understanding the mechanism of massage and its role in percutaneous penetration may help elucidate skin barrier function, dermal absorption, skin decontamination, and dermatotoxicology. To achieve such goals, an in vitro model that models in vivo behaviors must first be established. Subsequently, experiments with different penetrants, vehicles, massage time, and other variables may be considered.
Collapse
Affiliation(s)
- Becky S Li
- a Howard University College of Medicine , Washington , DC , USA.,b Department of Dermatology, San Francisco School of Medicine , University of California San Francisco , San Francisco , CA , USA
| | - John Havens Cary
- b Department of Dermatology, San Francisco School of Medicine , University of California San Francisco , San Francisco , CA , USA.,c Louisiana State University School of Medicine , New Orleans , LA , USA
| | - Howard I Maibach
- b Department of Dermatology, San Francisco School of Medicine , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
25
|
Determining the Effect of pH on the Partitioning of Neutral, Cationic and Anionic Chemicals to Artificial Sebum: New Physicochemical Insight and QSPR Model. Pharm Res 2018; 35:141. [PMID: 29761237 DOI: 10.1007/s11095-018-2411-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/16/2018] [Indexed: 10/16/2022]
Abstract
PURPOSE Sebum is an important shunt pathway for transdermal permeation and targeted delivery, but there have been limited studies on its permeation properties. Here we report a measurement and modelling study of solute partition to artificial sebum. METHODS Equilibrium experiments were carried out for the sebum-water partition coefficients of 23 neutral, cationic and anionic compounds at different pH. RESULTS Sebum-water partition coefficients not only depend on the hydrophobicity of the chemical but also on pH. As pH increases from 4.2 to 7.4, the partition of cationic chemicals to sebum increased rapidly. This appears to be due to increased electrostatic attraction between the cationic chemical and the fatty acids in sebum. Whereas for anionic chemicals, their sebum partition coefficients are negligibly small, which might result from their electrostatic repulsion to fatty acids. Increase in pH also resulted in a slight decrease of sebum partition of neutral chemicals. CONCLUSIONS Based on the observed pH impact on the sebum-water partition of neutral, cationic and anionic compounds, a new quantitative structure-property relationship (QSPR) model has been proposed. This mathematical model considers the hydrophobic interaction and electrostatic interaction as the main mechanisms for the partition of neutral, cationic and anionic chemicals to sebum.
Collapse
|
26
|
Li L, Yang S, Chen T, Han L, Lian G. A Measurement and Modeling Study of Hair Partition of Neutral, Cationic, and Anionic Chemicals. J Pharm Sci 2017; 107:1122-1130. [PMID: 29269270 DOI: 10.1016/j.xphs.2017.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/09/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Various neutral, cationic, and anionic chemicals contained in hair care products can be absorbed into hair fiber to modulate physicochemical properties such as color, strength, style, and volume. For environmental safety, there is also an interest in understanding hair absorption to wide chemical pollutants. There have been very limited studies on the absorption properties of chemicals into hair. Here, an experimental and modeling study has been carried out for the hair-water partition of a range of neutral, cationic, and anionic chemicals at different pH. The data showed that hair-water partition not only depends on the hydrophobicity of the chemical but also the pH. The partition of cationic chemicals to hair increased with pH, and this is due to their electrostatic interaction with hair increased from repulsion to attraction. For anionic chemicals, their hair-water partition coefficients decreased with increasing pH due to their electrostatic interaction with hair decreased from attraction to repulsion. Increase in pH did not change the partition of neutral chemicals significantly. Based on the new physicochemical insight of the pH effect on hair-water partition, a new quantitative structure property relationship model has been proposed, taking into account of both the hydrophobic interaction and electrostatic interaction of chemical with hair fiber.
Collapse
Affiliation(s)
- Lingyi Li
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Senpei Yang
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, P. R. China.
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK; Unilever R&D Colworth, Colworth Park, Sharnbrook, Bedfordshire MK441LQ, UK.
| |
Collapse
|
27
|
Nitsche JM, Kasting GB. How Predictable Are Human Stratum Corneum Lipid/Water Partition Coefficients? Assessment and Useful Correlations for Dermal Absorption. J Pharm Sci 2017; 107:727-738. [PMID: 28818392 DOI: 10.1016/j.xphs.2017.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Partition coefficients between human stratum corneum lipids and water (Ksclip/w) are collected or deduced from a variety of sources in a manner that approximately doubles the available data compared to the current state-of-the-art model (Hansen et al., Adv Drug Deliv Rev. 2013;65(2):251-264). An additional datum for water itself in porcine SC that considerably extends the molecular size and lipophilicity range of the data set is considered. The data are analyzed in terms of an extended linear free energy relationship involving octanol/water partition coefficients, Abraham solvation parameters, and a secondary, power law molecular weight dependence. The optimum fit to log Ksclip/w for the full data set reduces the standard error of prediction from 0.50 for a Hansen-like model to 0.39; corresponding multiplicative errors in Ksclip/w are reduced from a factor of 3.1 to one of 2.5. The difference in performance is driven by the water datum, which requires a more complex dependence on molecular size than that afforded by Abraham parameters. In the absence of the water value, the Hansen-like model, which does not include a dependence on molecular size, is essentially optimum. A comparison is presented to fluid-phase phospholipid-water systems, which have a demonstrably different structure-property relationship.
Collapse
Affiliation(s)
- Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200.
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio 45267-0514
| |
Collapse
|
28
|
Rothe H, Obringer C, Manwaring J, Avci C, Wargniez W, Eilstein J, Hewitt N, Cubberley R, Duplan H, Lange D, Jacques‐Jamin C, Klaric M, Schepky A, Grégoire S. Comparison of protocols measuring diffusion and partition coefficients in the stratum corneum. J Appl Toxicol 2017; 37:806-816. [PMID: 28139006 PMCID: PMC5484360 DOI: 10.1002/jat.3427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022]
Abstract
Partition (K) and diffusion (D) coefficients are important to measure for the modelling of skin penetration of chemicals through the stratum corneum (SC). We compared the feasibility of three protocols for the testing of 50 chemicals in our main studies, using three cosmetics-relevant model chemicals with a wide range of logP values. Protocol 1: SC concentration-depth profile using tape-stripping (measures KSC/v and DSC /HSC2 , where HSC is the SC thickness); Protocol 2A: incubation of isolated SC with chemical (direct measurement of KSC/v only) and Protocol 2B: diffusion through isolated SC mounted on a Franz cell (measures KSC/v and DSC /HSC2 , and is based on Fick's laws). KSC/v values for caffeine and resorcinol using Protocol 1 and 2B were within 30% of each other, values using Protocol 2A were ~two-fold higher, and all values were within 10-fold of each other. Only indirect determination of KSC/v by Protocol 2B was different from the direct measurement of KSC/v by Protocol 2A and Protocol 1 for 7-EC. The variability of KSC/v for all three chemicals using Protocol 2B was higher compared to Protocol 1 and 2A. DSC /HSC2 values for the three chemicals were of the same order of magnitude using all three protocols. Additionally, using Protocol 1, there was very little difference between parameters measured in pig and human SC. In conclusion, KSC/v, and DSC values were comparable using different methods. Pig skin might be a good surrogate for human skin for the three chemicals tested. Copyright © 2017 The Authors Journal of Applied Toxicology published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- H. Rothe
- Procter & Gamble Service GmbH, (currently HFC Prestige Service Germany GmbH)Berliner Allee 6564295DarmstadtGermany
- Present address: Coty, Berliner Allee6564295DarmstadtGermany
| | - C. Obringer
- Procter & Gamble Inc., Mason Business CenterMasonOH45040USA
| | - J. Manwaring
- Procter & Gamble Inc., Mason Business CenterMasonOH45040USA
| | - C. Avci
- L'Oreal Research & Innovation1, avenue Eugène Schueller93601Aulnay‐sous‐BoisFrance
| | - W. Wargniez
- L'Oreal Research & Innovation1, avenue Eugène Schueller93601Aulnay‐sous‐BoisFrance
| | - J. Eilstein
- L'Oreal Research & Innovation1, avenue Eugène Schueller93601Aulnay‐sous‐BoisFrance
| | - N. Hewitt
- Cosmetics EuropeAvenue Herrmann‐Debroux 40B‐1160BrusselsBelgium
| | - R. Cubberley
- Unilever, Colworth Science ParkSharnbrookBedfordMK44 1LQUK
| | - H. Duplan
- Pierre Fabre Dermo‐Cosmétique3, avenue Hubert Curien31035Toulouse Cedex 1France
| | - D. Lange
- Beiersdorf AGUnnastrasse 48D‐20245HamburgGermany
| | - C. Jacques‐Jamin
- Pierre Fabre Dermo‐Cosmétique3, avenue Hubert Curien31035Toulouse Cedex 1France
| | - M. Klaric
- Cosmetics EuropeAvenue Herrmann‐Debroux 40B‐1160BrusselsBelgium
| | - A. Schepky
- Beiersdorf AGUnnastrasse 48D‐20245HamburgGermany
| | - S. Grégoire
- L'Oreal Research & Innovation1, avenue Eugène Schueller93601Aulnay‐sous‐BoisFrance
| |
Collapse
|
29
|
Barbero AM, Frasch HF. Effect of stratum corneum heterogeneity, anisotropy, asymmetry and follicular pathway on transdermal penetration. J Control Release 2017; 260:234-246. [PMID: 28596104 DOI: 10.1016/j.jconrel.2017.05.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 01/19/2023]
Abstract
The impact of the complex structure of the stratum corneum on transdermal penetration is not yet fully described by existing models. A quantitative and thorough study of skin permeation is essential for chemical exposure assessment and transdermal delivery of drugs. The objective of this study is to analyze the effects of heterogeneity, anisotropy, asymmetry, follicular diffusion, and location of the main barrier of diffusion on percutaneous permeation. In the current study, the solution of the transient diffusion through a two-dimensional-anisotropic brick-and-mortar geometry of the stratum corneum is obtained using the commercial finite element program COMSOL Multiphysics. First, analytical solutions of an equivalent multilayer geometry are used to determine whether the lipids or corneocytes constitute the main permeation barrier. Also these analytical solutions are applied for validations of the finite element solutions. Three illustrative compounds are analyzed in these sections: diethyl phthalate, caffeine and nicotine. Then, asymmetry with depth and follicular diffusion are studied using caffeine as an illustrative compound. The following findings are drawn from this study: the main permeation barrier is located in the lipid layers; the flux and lag time of diffusion through a brick-and-mortar geometry are almost identical to the values corresponding to a multilayer geometry; the flux and lag time are affected when the lipid transbilayer diffusivity or the partition coefficients vary with depth, but are not affected by depth-dependent corneocyte diffusivity; and the follicular contribution has significance for low transbilayer lipid diffusivity, especially when flux between the follicle and the surrounding stratum corneum is involved. This study demonstrates that the diffusion is primarily transcellular and the main barrier is located in the lipid layers.
Collapse
Affiliation(s)
- Ana M Barbero
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| | - H Frederick Frasch
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| |
Collapse
|
30
|
Kattou P, Lian G, Glavin S, Sorrell I, Chen T. Development of a Two-Dimensional Model for Predicting Transdermal Permeation with the Follicular Pathway: Demonstration with a Caffeine Study. Pharm Res 2017; 34:2036-2048. [PMID: 28660400 PMCID: PMC5579157 DOI: 10.1007/s11095-017-2209-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 01/03/2023]
Abstract
Purpose The development of a new two-dimensional (2D) model to predict follicular permeation, with integration into a recently reported multi-scale model of transdermal permeation is presented. Methods The follicular pathway is modelled by diffusion in sebum. The mass transfer and partition properties of solutes in lipid, corneocytes, viable dermis, dermis and systemic circulation are calculated as reported previously [Pharm Res 33 (2016) 1602]. The mass transfer and partition properties in sebum are collected from existing literature. None of the model input parameters was fit to the clinical data with which the model prediction is compared. Results The integrated model has been applied to predict the published clinical data of transdermal permeation of caffeine. The relative importance of the follicular pathway is analysed. Good agreement of the model prediction with the clinical data has been obtained. The simulation confirms that for caffeine the follicular route is important; the maximum bioavailable concentration of caffeine in systemic circulation with open hair follicles is predicted to be 20% higher than that when hair follicles are blocked. Conclusions The follicular pathway contributes to not only short time fast penetration, but also the overall systemic bioavailability. With such in silico model, useful information can be obtained for caffeine disposition and localised delivery in lipid, corneocytes, viable dermis, dermis and the hair follicle. Such detailed information is difficult to obtain experimentally.
Collapse
Affiliation(s)
- Panayiotis Kattou
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Stephen Glavin
- Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Ian Sorrell
- Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
31
|
Kodiweera C, Romonchuk WJ, Yang Y, Bunge AL. Characterization of Water and a Model Lipophilic Compound in Human Stratum Corneum by NMR Spectroscopy and Equilibrium Sorption. J Pharm Sci 2016; 105:3376-3386. [PMID: 27671234 DOI: 10.1016/j.xphs.2016.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 11/27/2022]
Abstract
The stratum corneum (SC) is the outermost skin layer in humans and other mammals and the primary barrier to water loss and environmental exposure to chemicals and microorganisms. It consists of flattened, keratin-filled corneocytes surrounded by well-organized lipid layers. Human SC at varying degrees of hydration with and without addition of a model lipophilic compound, 2-(trifluoromethyl) benzonitrile (TFMB), was studied using proton (1H) and fluorine (19F) nuclear magnetic resonance techniques. Proton spectral analyses revealed that water mainly occupies the corneocytes in agreement with prior studies. Observations from 19F spectral and spin-lattice relaxation time (T1) analyses showed that TFMB is primarily present in the lipids with small amounts in water, which is located within the corneocytes. This is consistent with TFMB sorption, which was measured in SC with and without lipid extraction. The presence of TFMB within the corneocytes supports the hypothesis that transcellular diffusion of a lipophilic compound like TFMB may contribute to SC permeation.
Collapse
Affiliation(s)
- Chandana Kodiweera
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401; Department of Psychological and Brain Sciences and Dartmouth Brain Imaging Center, Dartmouth College, Hanover, New Hampshire 03755
| | - Wayne J Romonchuk
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
| | - Yuan Yang
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401
| | - Annette L Bunge
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401.
| |
Collapse
|
32
|
Zhang A, Jung EC, Zhu H, Zou Y, Hui X, Maibach H. Vehicle effects on human stratum corneum absorption and skin penetration. Toxicol Ind Health 2016; 33:416-425. [PMID: 27436841 DOI: 10.1177/0748233716656119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [14C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.
Collapse
Affiliation(s)
- Alissa Zhang
- 1 Department of Chemical and Physical Biology, Harvard University, Cambridge, MA, USA
| | - Eui-Chang Jung
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Hanjiang Zhu
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Ying Zou
- 3 Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, China
| | - Xiaoying Hui
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Howard Maibach
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Henneberger L, Goss KU, Endo S. Partitioning of Organic Ions to Muscle Protein: Experimental Data, Modeling, and Implications for in Vivo Distribution of Organic Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7029-36. [PMID: 27265315 DOI: 10.1021/acs.est.6b01417] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The in vivo partitioning behavior of ionogenic organic chemicals (IOCs) is of paramount importance for their toxicokinetics and bioaccumulation. Among other proteins, structural proteins including muscle proteins could be an important sorption phase for IOCs, because of their high quantity in the human and other animals' body and their polar nature. Binding data for IOCs to structural proteins are, however, severely limited. Therefore, in this study muscle protein-water partition coefficients (KMP/w) of 51 systematically selected organic anions and cations were determined experimentally. A comparison of the measured KMP/w with bovine serum albumin (BSA)-water partition coefficients showed that anionic chemicals sorb more strongly to BSA than to muscle protein (by up to 3.5 orders of magnitude), while cations sorb similarly to both proteins. Sorption isotherms of selected IOCs to muscle protein are linear (i.e., KMP/w is concentration independent), and KMP/w is only marginally influenced by pH value and salt concentration. Using the obtained data set of KMP/w a polyparameter linear free energy relationship (PP-LFER) model was established. The derived equation fits the data well (R(2) = 0.89, RMSE = 0.29). Finally, it was demonstrated that the in vitro measured KMP/w values of this study have the potential to be used to evaluate tissue-plasma partitioning of IOCs in vivo.
Collapse
Affiliation(s)
- Luise Henneberger
- Helmholtz Centre for Environmental Research UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Helmholtz Centre for Environmental Research UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
- Institute of Chemistry, University of Halle-Wittenberg , Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
| | - Satoshi Endo
- Helmholtz Centre for Environmental Research UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
- Urban Research Plaza & Graduate School of Engineering, Osaka City University , Sugimoto 3-3-138, Sumiyoshi-ku, 558-8585 Osaka, Japan
| |
Collapse
|
34
|
Chen T, Lian G, Kattou P. In Silico Modelling of Transdermal and Systemic Kinetics of Topically Applied Solutes: Model Development and Initial Validation for Transdermal Nicotine. Pharm Res 2016; 33:1602-14. [DOI: 10.1007/s11095-016-1900-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
|
35
|
Hafeez F, Chiang A, Hui X, Zhu H, Kamili F, Maibach HI. Stratum corneum reservoir as a predictive method for
in vitro
percutaneous absorption. J Appl Toxicol 2015; 36:1003-10. [DOI: 10.1002/jat.3262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/28/2015] [Accepted: 10/10/2015] [Indexed: 11/10/2022]
|
36
|
Zhu H, Jung EC, Hui X, Maibach H. Proposed human stratum corneum water domain in chemical absorption. J Appl Toxicol 2015. [PMID: 26206725 DOI: 10.1002/jat.3208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Compounds with varying physical and chemical properties may have different affinities to the stratum corneum (SC) and/or its intercellular lipids, keratin protein, and possible water domains. To better understand the mechanism of percutaneous absorption, we utilized 21 carbon-14 labeled chemicals, with wide hydrophilicity (log P = -0.05 to 6.17), and quantified their absorption/adsorption properties for a short incubation time (15 min) with regards to intact SC membrane, delipidized SC membrane and SC lipid. A facile method was developed for SC/lipid absorption, providing a more equivalent procedure and comparable data. SC lipid absorption of chemical solutes positively correlated with the octanol/water partition coefficient (log P). Differences between the percent dose of chemical absorption to intact SC and the total percent dose contributed by the protein and lipid domains suggest the possibility and significance of a water domain. Absorption rate experiments showed a longer lag time for intact SC than for delipidized SC or SC lipid, suggesting that the water domain may delay chemical binding to protein and lipid domains, and may be a factor in the resistance of many chemicals to current decontamination methods. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hanjiang Zhu
- Department of Dermatology, University of California, San Francisco, CA, 94143-0989, USA
| | - Eui-Chang Jung
- Department of Dermatology, University of California, San Francisco, CA, 94143-0989, USA
| | - Xiaoying Hui
- Department of Dermatology, University of California, San Francisco, CA, 94143-0989, USA
| | - Howard Maibach
- Department of Dermatology, University of California, San Francisco, CA, 94143-0989, USA
| |
Collapse
|
37
|
Elsayed MMA. Development of topical therapeutics for management of onychomycosis and other nail disorders: a pharmaceutical perspective. J Control Release 2014; 199:132-44. [PMID: 25481439 DOI: 10.1016/j.jconrel.2014.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The human nail plate is a formidable barrier to drug permeation. Development of therapeutics for management of nail diseases thus remains a challenge. This article reviews the current knowledge and recent advances in the field of transungual drug delivery and provides guidance on development of topical/ungual therapeutics for management of nail diseases, with special emphasis on management of onychomycosis, the most common nail disease. Selection of drug candidates, drug delivery approaches, and evaluation of formulations are among the topics discussed. A comprehensive mathematical description for transungual permeation is also introduced.
Collapse
Affiliation(s)
- Mustafa M A Elsayed
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azarita, Alexandria 21521, Egypt.
| |
Collapse
|
38
|
In Silico Prediction of Percutaneous Absorption and Disposition Kinetics of Chemicals. Pharm Res 2014; 32:1779-93. [DOI: 10.1007/s11095-014-1575-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
|
39
|
Zhao Y, Chen L, Han L, Marzinek JK, Mantalaris A, Pistikopoulos EN, Marzinek JK, Lian G, Bond PJ, Noro MG. Molecular and thermodynamic basis for EGCG-Keratin interaction-part II: Experimental investigation. AIChE J 2013. [DOI: 10.1002/aic.14221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yanyan Zhao
- College of Engineering; China Agricultural University; Beijing 100083 P. R. China
| | - Longjian Chen
- College of Engineering; China Agricultural University; Beijing 100083 P. R. China
| | - Lujia Han
- College of Engineering; China Agricultural University; Beijing 100083 P. R. China
| | - Jan K. Marzinek
- Dept. of Chemical Engineering, Imperial College London; Centre for Process Systems Engineering (CPSE); Imperial College London London SW7 2BY U.K
| | - Athanasios Mantalaris
- Dept. of Chemical Engineering, Imperial College London; Centre for Process Systems Engineering (CPSE); Imperial College London London SW7 2BY U.K
| | - Efstratios N. Pistikopoulos
- Dept. of Chemical Engineering, Imperial College London; Centre for Process Systems Engineering (CPSE); Imperial College London London SW7 2BY U.K
| | - Jan K. Marzinek
- Unilever Discover; Unilever R&D; Colworth, Sharnbrook, Bedfordshire MK44 1LQ U.K
| | - Guoping Lian
- Unilever Discover; Unilever R&D; Colworth, Sharnbrook, Bedfordshire MK44 1LQ U.K
| | - Peter J. Bond
- Dept. of Chemistry, The Unilever Centre for Molecular Science Informatics; University of Cambridge; Lensfield Road Cambridge CB2 1EW U.K
| | - Massimo G. Noro
- Physical and Chemical Insights Group; Unilever R&D; Port Sunlight, Wirral CH63 3JW U.K
| |
Collapse
|
40
|
Marzinek JK, Lian G, Marzinek JK, Mantalaris A, Pistikopoulos EN, Zhao Y, Han L, Chen L, Bond PJ, Noro MG. Molecular and thermodynamic basis for EGCG-Keratin interaction-part I: Molecular dynamics simulations. AIChE J 2013. [DOI: 10.1002/aic.14220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jan K. Marzinek
- Unilever Discover, Unilever R&D, Colworth, Sharnbrook; Bedfordshire MK44 1LQ U.K
| | - Guoping Lian
- Unilever Discover, Unilever R&D, Colworth, Sharnbrook; Bedfordshire MK44 1LQ U.K
| | - Jan K. Marzinek
- Dept. of Chemical Engineering, Centre for Process Systems Engineering (CPSE); Imperial College London; London SW7 2BY U.K
| | - Athanasios Mantalaris
- Dept. of Chemical Engineering, Centre for Process Systems Engineering (CPSE); Imperial College London; London SW7 2BY U.K
| | - Efstratios N. Pistikopoulos
- Dept. of Chemical Engineering, Centre for Process Systems Engineering (CPSE); Imperial College London; London SW7 2BY U.K
| | - Yanyan Zhao
- College of Engineering; China Agricultural University; Beijing 100083 P. R. China
| | - Lujia Han
- College of Engineering; China Agricultural University; Beijing 100083 P. R. China
| | - Longjian Chen
- College of Engineering; China Agricultural University; Beijing 100083 P. R. China
| | - Peter J. Bond
- Dept. of Chemistry, The Unilever Centre for Molecular Science Informatics; University of Cambridge; Lensfield Road Cambridge CB2 1EW U.K
| | - Massimo G. Noro
- Physical and Chemical Insights Group, Unilever R&D, Port Sunlight; Wirral CH63 3JW U.K
| |
Collapse
|
41
|
Chen L, Han L, Lian G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev 2013; 65:295-305. [PMID: 22580335 DOI: 10.1016/j.addr.2012.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
Abstract
Understanding the permeation of hydrophilic molecules is of relevance to many applications including transdermal drug delivery, skin care as well as risk assessment of occupational, environmental, or consumer exposure. This paper reviews recent advances in modeling skin permeability of hydrophilic solutes, including quantitative structure-permeability relationships (QSPR) and mechanistic models. A dataset of measured human skin permeability of hydrophilic and low hydrophobic solutes has been compiled. Generally statistically derived QSPR models under-estimate skin permeability of hydrophilic solutes. On the other hand, including additional aqueous pathway is necessary for mechanistic models to improve the prediction of skin permeability of hydrophilic solutes, especially for highly hydrophilic solutes. A consensus yet has to be reached as to how the aqueous pathway should be modeled. Nevertheless it is shown that the contribution of aqueous pathway can constitute to more than 95% of the overall skin permeability. Finally, future prospects and needs in improving the prediction of skin permeability of hydrophilic solutes are discussed.
Collapse
|
42
|
Hansen S, Lehr CM, Schaefer UF. Improved input parameters for diffusion models of skin absorption. Adv Drug Deliv Rev 2013; 65:251-64. [PMID: 22626979 DOI: 10.1016/j.addr.2012.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.
Collapse
|
43
|
Frasch HF, Barbero AM, Hettick JM, Nitsche JM. Tissue Binding Affects the Kinetics of Theophylline Diffusion Through the Stratum Corneum Barrier Layer of Skin. J Pharm Sci 2011; 100:2989-95. [DOI: 10.1002/jps.22489] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/22/2010] [Accepted: 01/01/2011] [Indexed: 11/10/2022]
|
44
|
Nitsche JM, Frederick Frasch H. Dynamics of diffusion with reversible binding in microscopically heterogeneous membranes: General theory and applications to dermal penetration. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|