1
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
- Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
2
|
Yu H, Chen G, Li L, Wei G, Li Y, Xiong S, Qi X. Spider minor ampullate silk protein nanoparticles: an effective protein delivery system capable of enhancing systemic immune responses. MedComm (Beijing) 2024; 5:e573. [PMID: 38882211 PMCID: PMC11179522 DOI: 10.1002/mco2.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 06/18/2024] Open
Abstract
Spider silk proteins (spidroins) are particularly attractive due to their excellent biocompatibility. Spider can produce up to seven different types of spidroins, each with unique properties and functions. Spider minor ampullate silk protein (MiSp) might be particularly interesting for biomedical applications, as the constituent silk is mechanically strong and does not super-contract in water, attributed to its amino acid composition. In this study, we evaluate the potential of recombinant nanoparticles derived from Araneus ventricosus MiSp as a protein delivery carrier. The MiSp-based nanoparticles were able to serve as an effective delivery system, achieving nearly 100% efficiency in loading the model protein lysozyme, and displayed a sustained release profile at physiological pH. These nanoparticles could significantly improve the delivery efficacy of the model proteins through different administration routes. Furthermore, nanoparticles loaded with model protein antigen lysozyme after subcutaneous or intramuscular administration could enhance antigen-specific immune responses in mouse models, through a mechanism involving antigen-depot effects at the injection site, long-term antigen persistence, and efficient uptake by dendritic cells as well as internalization by lymph nodes. These findings highlight the transnational potential of MiSp-based nanoparticle system for protein drug and vaccine delivery.
Collapse
Affiliation(s)
- Hairui Yu
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Gefei Chen
- Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
| | - Linchao Li
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Guoqiang Wei
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Yanan Li
- Department of Neurosurgery Changhai Hospital Naval Medical University Shanghai China
| | - Sidong Xiong
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Xingmei Qi
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| |
Collapse
|
3
|
Xiong Y, Liu Z, Wang Y, Wang J, Zhou X, Li X. Development and Evaluation of a Water-Free In Situ Depot Gel Formulation for Long-Acting and Stable Delivery of Peptide Drug ACTY116. Pharmaceutics 2024; 16:620. [PMID: 38794282 PMCID: PMC11125081 DOI: 10.3390/pharmaceutics16050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
In situ depot gel is a type of polymeric long-acting injectable (pLAI) drug delivery system; compared to microsphere technology, its preparation process is simpler and more conducive to industrialization. To ensure the chemical stability of peptide ACTY116, we avoided the use of harsh conditions such as high temperatures, high shear mixing, or homogenization; maintaining a water-free and oxygen-free environment was also critical to prevent hydrolysis and oxidation. Molecular dynamics (MDs) simulations were employed to assess the stability mechanism between ACTY116 and the pLAI system. The initial structure of ACTY116 with an alpha helix conformation was constructed using SYBYL-X, and the copolymer PLGA was generated by AMBER 16; results showed that PLGA-based in situ depot gel improved conformational stability of ACTY116 through hydrogen bonds formed between peptide ACTY116 and the components of the pLAI formulation, while PLGA (Poly(DL-lactide-co-glycolide)) also created steric hindrance and shielding effects to prevent conformational changes. As a result, the chemical and conformational stability and in vivo long-acting characteristics of ACTY116 ensure its enhanced efficacy. In summary, we successfully achieved our objective of developing a highly stable peptide-loaded long-acting injectable (LAI) in situ depot gel formulation that is stable for at least 3 months under harsh conditions (40 °C, above body temperature), elucidating the underlying stabilisation mechanism, and the high stability of the ACTY116 pLAI formulation creates favourable conditions for its in vivo pharmacological activity lasting for weeks or even months.
Collapse
Affiliation(s)
- Yingxin Xiong
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China;
| | - Zhirui Liu
- Department of Pharmacy, Xinan Hospital, Army Medical University, Chongqing 400038, China;
| | - Yuanqiang Wang
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (Y.W.); (J.W.)
| | - Jiawei Wang
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (Y.W.); (J.W.)
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China;
- Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Army Medical University, Chongqing 400038, China
| |
Collapse
|
4
|
Bakhrushina EO, Sakharova PS, Konogorova PD, Pyzhov VS, Kosenkova SI, Bardakov AI, Zubareva IM, Krasnyuk II, Krasnyuk II. Burst Release from In Situ Forming PLGA-Based Implants: 12 Effectors and Ways of Correction. Pharmaceutics 2024; 16:115. [PMID: 38258125 PMCID: PMC10819773 DOI: 10.3390/pharmaceutics16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In modern pharmaceutical technology, modified-release dosage forms, such as in situ formed implants, are gaining rapidly in popularity. These dosage forms are created based on a configurable matrix consisting of phase-sensitive polymers capable of biodegradation, a hydrophilic solvent, and the active substance suspended or dissolved in it. The most used phase-sensitive implants are based on a biocompatible and biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). OBJECTIVE This systematic review examines the reasons for the phenomenon of active ingredient "burst" release, which is a major drawback of PLGA-based in situ formed implants, and the likely ways to correct this phenomenon to improve the quality of in situ formed implants with a poly(DL-lactide-co-glycolide) matrix. DATA SOURCES Actual and relevant publications in PubMed and Google Scholar databases were studied. STUDY SELECTION The concept of the review was based on the theory developed during literature analysis of 12 effectors on burst release from in situ forming implants based on PLGA. Only those studies that sufficiently fully disclosed one or another component of the theory were included. RESULTS The analysis resulted in development of a systematic approach called the "12 Factor System", which considers various constant and variable, endogenous and exogenous factors that can influence the nature of 'burst release' of active ingredients from PLGA polymer-based in situ formed implants. These factors include matrix porosity, polymer swelling, LA:GA ratio, PLGA end groups, polymer molecular weight, active ingredient structure, polymer concentration, polymer loading with active ingredients, polymer combination, use of co-solvents, addition of excipients, and change of dissolution conditions. This review also considered different types of kinetics of active ingredient release from in situ formed implants and the possibility of using the "burst release" phenomenon to modify the active ingredient release profile at the site of application of this dosage form.
Collapse
Affiliation(s)
| | | | | | - Victor S. Pyzhov
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (P.S.S.); (P.D.K.); (S.I.K.); (A.I.B.); (I.M.Z.); (I.I.K.); (I.I.K.J.)
| | | | | | | | | | | |
Collapse
|
5
|
Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022; 14:2554. [PMID: 36559049 PMCID: PMC9784285 DOI: 10.3390/pharmaceutics14122554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases have always been regarded as one of the greatest global threats for the last century. The current ongoing COVID-19 pandemic caused by SARS-CoV-2 is living proof that the world is still threatened by emerging infectious diseases. Morbidity and mortality rates of diseases caused by Coronavirus have inflicted devastating social and economic outcomes. Undoubtedly, vaccination is the most effective method of eradicating infections and infectious diseases that have been eradicated by vaccinations, including Smallpox and Polio. To date, next-generation vaccine candidates with novel platforms are being approved for emergency use, such as the mRNA and viral vectored vaccines against SARS-CoV-2. Nanoparticle based vaccines are the perfect candidates as they demonstrated targeted antigen delivery, improved antigen presentation, and sustained antigen release while providing self-adjuvanting functions to stimulate potent immune responses. In this review, we discussed most of the recent nanovaccines that have found success in immunization and challenge studies in animal models in comparison with their naked vaccine counterparts. Nanovaccines that are currently in clinical trials are also reviewed.
Collapse
Affiliation(s)
| | | | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| |
Collapse
|
6
|
Allahyari M. PLGA Nanoparticles as an Efficient Platform in Protein Vaccines Against Toxoplasma gondii. Acta Parasitol 2022; 67:582-591. [PMID: 35013939 DOI: 10.1007/s11686-021-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) as an obligatory intracellular is widespread all over the world and causes considerable concerns in immunocompromised patients by developing toxoplasmic encephalitis and in pregnancy because of serious consequences in the fetus. Although vaccination is the only approach to overcome toxoplasmosis, there is no commercially available human vaccine against T. gondii. PURPOSE The remarkable features of poly (lactic-co-glycolic acid) (PLGA) particles have brought up the application of PLGA as a promising vaccine delivery vehicle against T. gondii and other intracellular parasites. This review focuses on the application of the PLGA delivery system in the development of preventive vaccines against T. gondii. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULT Immunity against T. gondii, characteristics of PLGA particles as a delivery vehicle, and all researches on particulate PLGA vaccines with different T. gondii antigens and DNA against were discussed and their efficacies in conferring protection against a lethal challenge based on increased survival or reduced brain cyst loads have been shown. CONCLUSION Although various levels of protection against lethal challenge have been achieved through PLGA-based vaccinations, there is still no complete protection against T. gondii infection. Surprisingly, the application of surface modifications of PLGA particles by mucoadhesive polymers, cationic agents, DCs (dendritic cells) targeting receptors, specialized membranous epithelial cells (M-cells), and co-delivery of the desired antigen along with toll-like receptor ligands would be a revolutionized vaccine strategy against T. gondii.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Recombinant Protein Production Department, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.
| |
Collapse
|
7
|
Yang Y, Sun Z, Li H, Tian J, Chen M, Liu T. Preparation and Immune Effect of HEV ORF2 P206@PLGA Nanoparticles. NANOMATERIALS 2022; 12:nano12040595. [PMID: 35214924 PMCID: PMC8878542 DOI: 10.3390/nano12040595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The hepatitis E virus (HEV) is an important pathogen that threatens global public health. One-third of the world’s population lives in the epidemic area of HEV, causing 20 million infections and 70,000 deaths annually. In China, HEV transmission has changed from human-to-human transmission of HEV1 to zoonotic transmission of HEV4, causing hepatitis outbreaks throughout the country. Protecting vulnerable groups, such as practitioners related to animal husbandry and downstream consumers who are immune deficient or pregnant, from HEV infections is an urgent task. At present, the commercial human vaccine, Hecolin® (HEV 239 vaccine), is licensed for use only in China. HEV 239 vaccine is a human vaccine developed for HEV1. Although it has a cross-protective effect on HEV4, the level of immune protection is still different. To address the transformation of domestic HEV transmission modes, there is an urgent need to develop a new vaccine against zoonotic HEV4. P206@PLGA is a vaccine candidate in which nanomaterials are used to encapsulate viral capsid proteins for the immunization of livestock animals. Our experiments show that P206@PLGA has excellent biocompatibility and safety. In addition, P206@PLGA can effectively induce animals to produce a high titer of antibodies against HEV4, and thus has the potential to become a veterinary vaccine for the prevention of HEV. This approach provides a new concept for HE prevention to reduce the transmission of HEV in farms and protect susceptible populations.
Collapse
Affiliation(s)
| | | | | | | | - Mingyong Chen
- Correspondence: (M.C.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| | - Tianlong Liu
- Correspondence: (M.C.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| |
Collapse
|
8
|
Gholamzad M, Baharlooi H, Shafiee Ardestani M, Seyedkhan Z, Azimi M. Prophylactic and Therapeutic Effects of MOG-Conjugated PLGA Nanoparticles in C57Bl/6 Mouse Model of Multiple Sclerosis. Adv Pharm Bull 2021; 11:505-513. [PMID: 34513625 PMCID: PMC8421634 DOI: 10.34172/apb.2021.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose: Multiple sclerosis (MS) is a debilitating neuroinflammatory disorder of the central nervous system. It is believed to result from an impaired immune response against myelin components especially myelin oligodendrocyte glycoprotein (MOG). Some efforts have been made to bioconjugate the MOG peptides to tolerogenic particles like poly (lactic-co-glycolic acid) (PLGA) for treating animal models of autoimmune disorders. Accordingly, we aimed to elucidate the tolerogenic effects of MOG-PLGA particles on experimental autoimmune encephalomyelitis (EAE). Methods: PGLA nanoparticles were synthesized using water/oil/water procedure. Next, the MOG or ovalbumin (OVA) peptides covalently linked to the PLGA particles. These particles were then intravenously or subcutaneously administered to nine groups of C57BL/6 mice before and after EAE induction. The brain tissues were assessed for the infiltration of immune cells. The Tolerogenic effect of the vaccine was also assessed on the quantity of the Treg cells. Moreover, the amount of interferon-γ (IFN-γ), interleukin-10 (IL-10), and interleukin-17 levels produced by splenic lymphocytes were then quantified by ELISA. Results: Intravenous administration of PLGA500-MOG35-55 nanoparticles before EAE induction ameliorated EAE clinical scores as well as infiltration of immune cells into the brain. In the spleen, the treatment increased CD4+CD25+FoxP3+ Treg population and restored the homeostasis of IFN-γ, IL-10, and IL-17 (all P values <0.0001) among splenocytes. Conclusion: The conjugation of MOG peptides to the PLGA nanoparticles significantly recovered clinical symptoms and the autoimmune response of EAE. The MOG-PGLA particles are potentially valuable for further evaluations, hopefully progressing toward an optimal approach that can be translated to the clinic.
Collapse
Affiliation(s)
- Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hussein Baharlooi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Seyedkhan
- Department of Biology, College of Basic Science, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Lamaisakul S, Tantituvanont A, Lipipun V, Ritthidej G. Development of novel cationic microemulsion as parenteral adjuvant for influenza vaccine. Asian J Pharm Sci 2020; 15:591-604. [PMID: 33193862 PMCID: PMC7610209 DOI: 10.1016/j.ajps.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 11/08/2022] Open
Abstract
Squalene-based oil-in-water (O/W) emulsions have been used as effective and safe adjuvants in approved influenza vaccines. However, there are concerns regarding the safety and side effects of increasing risk of narcolepsy. In present study, novel O/W microemulsions (MEs) containing wheat germ oil, D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and Cremophor EL (CreEL) or Solutol HS15 were formulated with/without a cationic surfactant, cetyltrimethylammonium bromide (CTAB) and then sterilized by autoclaving. Their physical properties and biological efficacies were evaluated. The results demonstrated that autoclaving reduced the droplet size to ∼20 nm with narrow size distributions resulting in monodisperse systems with good stability up to 3 years. Hemolytic activity, viscosity, pH, and osmolality were appropriate for parenteral use. Bovine serum albumin (BSA), a model antigen, after mixing with MEs retained the protein integrity, assessed by SDS-PAGE and CD spectroscopy. Greater percentages of 28SC cell viability were observed from CreEL-based MEs. Uptake of FITC-BSA-MEs increased with the increasing concentration of CTAB confirmed by CLSM images. Furthermore, cationic CreEL-based MEs could induce Th1 cytokine synthesis with an increase in TNF-α and IL-12 levels and a decrease in IL-10 level. In vivo immunization study in mice of adjuvants admixed with influenza virus solution revealed that nonionic and selected cationic CreEL-MEs enhanced immune responses as measured by influenza-specific serum antibody titers and hemagglutination inhibition titers. Particularly, cationic CreEL-based ME showed better humoral and cellular immunity with higher IgG2a titer than nonionic CreEL-based ME and antigen alone. No differences in immune responses were observed between mice immunized with selected cationic CreEL-based ME and marketed adjuvant. In addition, the selected ME induced antigen-sparing while retained immune stimulating effects compared to antigen alone. No inflammatory change in muscle fiber structure was observed. Accordingly, the developed cationic CreEL-based ME had potential as novel adjuvant for parenteral influenza vaccine.
Collapse
Affiliation(s)
- Sakalanunt Lamaisakul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vimolmas Lipipun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Hasanzadeh S, Farokhi M, Habibi M, Shokrgozar MA, Ahangari Cohan R, Rezaei F, Asadi Karam MR, Bouzari S. Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-IutA Antigen for Urinary Tract Infection. ACS Biomater Sci Eng 2020; 6:4573-4582. [DOI: 10.1021/acsbiomaterials.0c00736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sara Hasanzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mehdi Farokhi
- National Cell Bank, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
11
|
Lu T, Hu F, Yue H, Yang T, Ma G. The incorporation of cationic property and immunopotentiator in poly (lactic acid) microparticles promoted the immune response against chronic hepatitis B. J Control Release 2020; 321:576-588. [PMID: 32112853 DOI: 10.1016/j.jconrel.2020.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Biodegradable microparticles (MPs) as vaccine adjuvants have sparked the passion of researchers in recent decades. However, it is still a huge challenge to develop an efficient vaccine delivery system to reverse chronic hepatitis B (CHB). Herein, we integrated a physiochemical merit and an immunopotentiator property in poly (lactic acid) (PLA) MPs and verified the therapeutic effect on CHB model mice. We prepared uniform MPs with insertion of cationic lipid didodecyldimethylammonium bromide (DDAB), which endowed a physiochemical merit for MPs. Such a DDAB-PLA (DP) group raised the recruitment of immune cells to the injection site along with the secretion of chemokines and pro-inflammatory cytokines, promoting the activation of antigen-presenting cells (APCs). Further combination of stimulator of interferon genes (STING) agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) (DP-D) elevated 5.8-fold higher interferon regulatory factor 7 (IRF-7) expression compared to that for DP group. The DP group showed preferred lysosome escape advantage, which was in line with the DMXAA release behavior and the intracellular target of DMXAA. In addition, DP-D vaccine augmented the IFN-γ secreting splenocytes and motivated Th1-biased antibodies in a more efficient way than that for the DP group. In the CHB model, the MPs based vaccines achieved 50% HBsAg seroconversion rate, and HBcAg in the liver also got a reduction. DP-D produced higher amount of memory T/B cells to confer protection in a sustained manner. Present work thus provided a promising strategy, via integrating a fine-tuned physiochemical property and an immunopotentiator virtue in the MPs, which synergistically reinforced both humoral and cellular immune responses against CHB.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fumin Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 211816, PR China.
| |
Collapse
|
12
|
Allahyari M, Mohabati R, Vatanara A, Golkar M. In-vitro and in-vivo comparison of rSAG1-loaded PLGA prepared by encapsulation and adsorption methods as an efficient vaccine against Toxoplasma gondii”. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Bae J, Parayath N, Ma W, Amiji M, Munshi N, Anderson KC. BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8 + cytotoxic T lymphocytes against multiple myeloma: clinical applications. Leukemia 2020; 34:210-223. [PMID: 31427721 PMCID: PMC7297141 DOI: 10.1038/s41375-019-0540-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
The purpose of these studies was to develop and characterize B-cell maturation antigen (BCMA)-specific peptide-encapsulated nanoparticle formulations to efficiently evoke BCMA-specific CD8+ cytotoxic T lymphocytes (CTL) with poly-functional immune activities against multiple myeloma (MM). Heteroclitic BCMA72-80 [YLMFLLRKI] peptide-encapsulated liposome or poly(lactic-co-glycolic acid) (PLGA) nanoparticles displayed uniform size distribution and increased peptide delivery to human dendritic cells, which enhanced induction of BCMA-specific CTL. Distinct from liposome-based nanoparticles, PLGA-based nanoparticles demonstrated a gradual increase in peptide uptake by antigen-presenting cells, and induced BCMA-specific CTL with higher anti-tumor activities (CD107a degranulation, CTL proliferation, and IFN-γ/IL-2/TNF-α production) against primary CD138+ tumor cells and MM cell lines. The improved functional activities were associated with increased Tetramer+/CD45RO+ memory CTL, CD28 upregulation on Tetramer+ CTL, and longer maintenance of central memory (CCR7+ CD45RO+) CTL, with the highest anti-MM activity and less differentiation into effector memory (CCR7- CD45RO+) CTL. These results provide the framework for therapeutic application of PLGA-based BCMA immunogenic peptide delivery system, rather than free peptide, to enhance the induction of BCMA-specific CTL with poly-functional Th1-specific anti-MM activities. These results demonstrate the potential clinical utility of PLGA nanotechnology-based cancer vaccine to enhance BCMA-targeted immunotherapy against myeloma.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Neha Parayath
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wenxue Ma
- University of California San Diego, San Diego, CA, USA
| | | | - Nikhil Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Roces CB, Hussain MT, Schmidt ST, Christensen D, Perrie Y. Investigating Prime-Pull Vaccination through a Combination of Parenteral Vaccination and Intranasal Boosting. Vaccines (Basel) 2019; 8:vaccines8010010. [PMID: 31906072 PMCID: PMC7157738 DOI: 10.3390/vaccines8010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Formulation of inhalable delivery systems containing tuberculosis (TB) antigens to target the site of infection (lungs) have been considered for the development of subunit vaccines. Inert delivery systems such as poly (lactic-co-glycolic acid) (PLGA) are an interesting approach due to its approval for human use. However, PLGA suffers hydrolytic degradation when stored in a liquid environment for prolonged time. Therefore, in this study, nano- and microparticles composed of different PLGA copolymers (50:50, 75:25 and 85:15), sucrose (10% w/v) and L-leucine (1% w/v) encapsulating H56 TB vaccine candidate were produced as dried powders. In vitro studies in three macrophage cell lines (MH-S, RAW264.7 and THP-1) showed the ability of these cells to take up the formulated PLGA:H56 particles and process the antigen. An in vivo prime-pull immunisation approach consisting of priming with CAF01:H56 (2 × subcutaneous (s.c.) injection) followed by a mucosal boost with PLGA:H56 (intranasal (i.n.) administration) demonstrated the retention of the immunogenicity of the antigen encapsulated within the lyophilised PLGA delivery system, although no enhancing effect could be observed compared to the administration of antigen alone as a boost. The work here could provide the foundations for the scale independent manufacture of polymer delivery systems encapsulating antigens for inhalation/aerolisation to the lungs.
Collapse
Affiliation(s)
- Carla B. Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Maryam T. Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Signe T. Schmidt
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
- Correspondence:
| |
Collapse
|
15
|
Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00443-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00439-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Wasan EK, Syeda J, Strom S, Cawthray J, Hancock RE, Wasan KM, Gerdts V. A lipidic delivery system of a triple vaccine adjuvant enhances mucosal immunity following nasal administration in mice. Vaccine 2019; 37:1503-1515. [PMID: 30739796 DOI: 10.1016/j.vaccine.2019.01.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/19/2018] [Accepted: 01/20/2019] [Indexed: 12/28/2022]
Abstract
We previously developed an highly efficacious combination adjuvant comprised of innate defense regulator (IDR)-1002 peptide, poly(I:C) and polyphosphazene (TriAdj). Here we aimed to design and test the in vivo efficacy of a mucoadhesive nasal formulation of this adjuvant. To determine the physical properties of the formulation, the effect of addition of each individual component was characterised by gel electrophoresis and fluorescence quenching using rhodamine-poly(I:C). Cationic liposomes comprised of didodecyl dimethylammonium bromide (DDAB), dioleoyl phosphatidylethanolamine (DOPE) (50:50 or 75:25 mol:mol) and DDAB, L-α-phosphatidylcholine (egg PC) and DOPE (40:50:10 mol:mol:mol) were prepared by the thin-film extrusion method. The liposomes and TriAdj were combined by simple mixing. The formed complex (L-TriAdj) was characterized by dynamic light scattering, zeta potential, and mucin interactions. We found that IDR-1002 peptide, polyphosphazene and poly(I:C) self-assembled in solution forming an anionic complex. Exposure of RAW267.4 mouse macrophage cells to TriAdj alone vs. L-TriAdj indicated that DDAB/DOPE (50:50) and DDAB/EPC/cholesterol (40:50:10) complexation reduced TriAdj toxicity. Next, TriAdj-containing cationic liposomes were prepared at several molar ratios to determine optimal size, stability and desired positive charge. Transmission electron microscopy showed rearrangement of lipid structures on binding of liposomes to TriAdj and to mucin. Stable particles (<200 nm over 24 h) showed mucin binding of DDAB/DOPE + TriAdj was greater than DDAB/EPC/DOPE + TriAdj. To verify in vivo efficacy, mice were administered the DDAB/DOPE + TriAdj complex intranasally with ovalbumin as the antigen, and the immunogenic response was measured by ELISA (serum IgG1, IgG2a, IgA) and ELISpot assays (splenocyte IL-5, IFN-γ). Mice administered adjuvant showed a significantly greater immune response with L-TriAdj than TriAdj alone, with a dose-response proportionate to the triple adjuvant content, and an overall balanced Th1/Th2 immune response representing both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| | - Jaweria Syeda
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Stacy Strom
- Vaccine and Infectious Disease Organization-International Vaccine Centre, VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Robert E Hancock
- Dept. of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre, VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
18
|
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1041-1060. [DOI: 10.1016/j.msec.2017.12.036] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/06/2023]
|
19
|
Biodegradable Polymeric Nanocarrier-Based Immunotherapy in Hepatitis Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:303-320. [DOI: 10.1007/978-981-13-0950-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Dai X, He J, Zhang R, Wu G, Xiong F, Zhao B. Co-delivery of polyinosinic:polycytidylic acid and flagellin by poly(lactic- co-glycolic acid) MPs synergistically enhances immune response elicited by intranasally delivered hepatitis B surface antigen. Int J Nanomedicine 2017; 12:6617-6632. [PMID: 28924346 PMCID: PMC5595363 DOI: 10.2147/ijn.s146912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of the present work was to investigate the synergistic effect between toll-like receptor (TLR) 3 ligand polyinosinic:polycytidylic acid (pI:C) and TLR5 ligand flagellin (FLN) on immune responses induced by nasally delivered hepatitis B virus surface antigen (HBsAg). Mannan and chitosan oligosaccharide-modified, pH-responsive poly(lactic-co-glycolic acid) (MC-PLGA) microparticles (MPs) containing HBsAg, FLN, pI:C or both ligands were prepared with a double-emulsion method. In vitro uptake experiments show that cellular uptake of MC-PLGA MPs by macrophages was through energy-dependent, receptor-mediated endocytosis mechanism. After uptake of MPs by macrophages, MC-PLGA MPs existed both in the endo-some and in the cytoplasm. FLN and pI:C in solution or MP formulation could synergize to activate macrophages and induce higher pro-inflammatory cytokines interleukin (IL)-6, IL-12, interferon-γ and anti-inflammatory cytokines IL-10 compared to single TLR ligand (P<0.05). In vivo immunogenicity studies indicated that co-delivery of FLN and pI:C within MC-PLGA MPs synergistically induced higher serum anti-HBsAg IgG levels and Th1 cytokine levels compared with MC-PLGA MPs encapsulated single TLR ligand plus MPs encapsulated HBsAg (P<0.05). These results suggest that synergic TLR3 and TLR5 stimulation might be a promising novel tool for nasally delivered HBsAg.
Collapse
Affiliation(s)
- Xiaojing Dai
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Jintian He
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Ruxia Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Guanghao Wu
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Fangfang Xiong
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| |
Collapse
|
21
|
Pawar VK, Singh Y, Sharma K, Shrivastav A, Sharma A, Singh A, Meher JG, Singh P, Raval K, Bora HK, Datta D, Lal J, Chourasia MK. Doxorubicin Hydrochloride Loaded Zymosan-Polyethylenimine Biopolymeric Nanoparticles for Dual 'Chemoimmunotherapeutic' Intervention in Breast Cancer. Pharm Res 2017; 34:1857-1871. [PMID: 28608139 DOI: 10.1007/s11095-017-2195-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To utilize nanoparticles produced by condensation of zymosan (an immunotherapeutic polysaccharide) with pegylated polyethylenimine (PEG-PEI) for dual intervention in breast cancer by modulating tumor microenvironment and direct chemotherapy. METHOD Positively charged PEG-PEI and negatively charged sulphated zymosan were utilized for electrostatic complexation of chemoimmunotherapeutic nanoparticles (ChiNPs). ChiNPs were loaded with doxorubicin hydrochloride (DOX) for improved delivery at tumor site and were tested for in-vivo tolerability. Biodistribution studies were conducted to showcase their effective accumulation in tumor hypoxic regions where tumor associated macrophages (TAMs) are preferentially recruited. RESULTS ChiNPs modulated TAMs differentiation resulting in decrement of CD206 positive population. This immunotherapeutic action was furnished by enhanced expression of Th1 specific cytokines. ChiNPs also facilitated an anti-angiogenetic effect which further reduces the possibility of tumor progression and metastasis.
Collapse
Affiliation(s)
- Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Arpita Shrivastav
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Abhisheak Sharma
- Academy of Scientific & Innovative Research,, New Delhi, 110025, India.,Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Pankaj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Himangshu K Bora
- Laboratory Animals Facility, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India. .,Academy of Scientific & Innovative Research,, New Delhi, 110025, India.
| |
Collapse
|
22
|
Synergistic effect of rSAG1 and rGRA2 antigens formulated in PLGA microspheres in eliciting immune protection against Toxoplasama gondii. Exp Parasitol 2016; 170:236-246. [PMID: 27663469 DOI: 10.1016/j.exppara.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
There is still no human vaccine against Toxoplasma gondii (T. gondii), as one of the most successful parasites. In present study, we designed a subunit vaccine composed of recombinant SAG1 (rSAG1) and recombinant GRA2 (rGRA2) proteins. In order to improve the induced immune responses, rSAG1 and rGRA2 were adsorbed on Poly (DL-lactide-co-glycolide) (PLGA) microspheres (MS) prepared by double emulsion solvent evaporation method. BALB/c mice were subcutaneously vaccinated by rSAG1-adsorbed PLGA MS (rSAG1-PLGA), rGRA2-adsorbed PLGA MS (rGRA2-PLGA), and the mixture of both formulations (rSAG1/rGRA2-PLGA), twice with a 3-week interval. PLGA MS characteristics, protein release, cellular and humoral immune responses, and protection against acute toxoplasmosis were evaluated. All vaccinated mice induced significantly partial protection and longer survival times associated with higher IFN-γ/IL-10 ratio and higher amount of Toxoplasma-specific IgG antibodies compared to control groups. Interestingly, the synergistic effect of rSAG1 and rGRA2 in eliciting more potent cellular and humoral responses and consequently higher protection in comparison to single antigen was confirmed. This study introduces the mixture of rSAG1 and rGRA2 (derived from different stages of Toxoplasma life-cycle) formulated in PLGA MS as a promising candidate in vaccine development against T. gondii.
Collapse
|
23
|
Li Z, Xiong F, He J, Dai X, Wang G. Surface-functionalized, pH-responsive poly(lactic-co-glycolic acid)-based microparticles for intranasal vaccine delivery: Effect of surface modification with chitosan and mannan. Eur J Pharm Biopharm 2016; 109:24-34. [PMID: 27569030 DOI: 10.1016/j.ejpb.2016.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 01/05/2023]
Abstract
In the present study, surface-functionalized, pH-responsive poly(lactic-co-glycolic acid) (PLGA) microparticles were investigated for nasal delivery of hepatitis B surface Antigen (HBsAg). pH-responsive PLGA, chitosan modified PLGA (CS-PLGA), mannan modified PLGA (MN-PLGA), mannan and chitosan co-modified PLGA (MN-CS-PLGA) microparticles were prepared utilizing a double-emulsion method. Antigen was released rapidly from four types of microparticles at pH5.0 and pH 6.0, but slowly released at pH 7.4. Mannan and chitosan surface modification enhanced intracellular microparticle uptake by macrophages. Following intracellular macrophage antigen uptake, antigen release occurred in three different patterns: fast release from PLGA and MN-PLGA microparticles in endosomes/lysosomes, slow release from CS-PLGA microparticles in cytoplasm and a combination of fast release and slow release patterns from MN-CS-PLGA microparticles. Furthermore, chitosan coating modification increased the residence time of CS-PLGA and MN-CS-PLGA microparticles in the nasal cavity. In vivo immunogenicity studies indicated that MN-CS-PLGA microparticles induced stronger humoral and cell-mediated immune responses compared with PLGA, MN-PLGA and CS-PLGA microparticles. These results suggest that surface modification of pH-responsive PLGA microparticles with mannan and chitosan is a promising tool for nasal delivery of HBsAg.
Collapse
Affiliation(s)
- Ze Li
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China
| | - Fangfang Xiong
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China
| | - Jintian He
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China.
| | - Xiaojing Dai
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China
| | - Gaizhen Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
24
|
Hiremath J, Kang KI, Xia M, Elaish M, Binjawadagi B, Ouyang K, Dhakal S, Arcos J, Torrelles JB, Jiang X, Lee CW, Renukaradhya GJ. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs. PLoS One 2016; 11:e0151922. [PMID: 27093541 PMCID: PMC4836704 DOI: 10.1371/journal.pone.0151922] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.
Collapse
Affiliation(s)
- Jagadish Hiremath
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kyung-il Kang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - X. Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Chang Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| |
Collapse
|
25
|
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12:806-28. [PMID: 26513024 PMCID: PMC4964737 DOI: 10.1080/21645515.2015.1102804] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022] Open
Abstract
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Department of Recombinant Protein Production, Research & Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Xu W, He J, Wu G, Xiong F, Du H, Wang G. Stabilization and immune response of HBsAg encapsulated within poly(lactic-co-glycolic acid) microspheres using HSA as a stabilizer. Int J Pharm 2015; 496:332-41. [PMID: 26453785 DOI: 10.1016/j.ijpharm.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/19/2015] [Accepted: 10/03/2015] [Indexed: 11/18/2022]
Abstract
The aim of this study was to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres containing hepatitis B virus surface antigen (HBsAg) using human serum albumin (HSA) as a stabilizer. Lyophilization and emulsification of HBsAg solution with dichloromethane caused a considerable loss of HBsAg antigenicity. Thus, the effects of HSA and trehalose on HBsAg recovery during lyophilization and emulsification were investigated. Adding HSA to HBsAg solutions significantly improved antigen recovery to >90% during lyophilization and emulsification. The effects of co-encapsulated HSA on the characteristics of the PLGA microspheres and stability of HBsAg released from the microspheres were also investigated. The in vitro release test showed that HBsAg was released from the PLGA microspheres continuously over seventy days. A large amount of released HBsAg was inactive without co-encapsulation of HSA. On the contrary, with HSA co-encapsulation, the released HBsAg retained approximately 90% of its antigenicity. The single injection of the HBsAg-HSA-loaded PLGA microspheres in rats resulted in higher anti-HBsAg IgG and Th1 cytokine levels than the single injection of the HBsAg-loaded microspheres or two injections of the conventional aluminum-adjuvanted HBsAg vaccine. Based on these findings, the HBsAg-HSA-loaded PLGA microspheres could be an effective carrier for HBsAg and form a promising depot system.
Collapse
Affiliation(s)
- Wenjuan Xu
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Jintian He
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang, Hebei 050024, People's Republic of China.
| | - Guanghao Wu
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Fangfang Xiong
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Huijuan Du
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Gaizhen Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China.
| |
Collapse
|
27
|
Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol 2015; 21:367-78. [DOI: 10.3109/10837450.2014.999785] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
| | - Kanwal Rehman
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
| |
Collapse
|
28
|
Polycation-decorated PLA microspheres induce robust immune responses via commonly used parenteral administration routes. Int Immunopharmacol 2014; 23:592-602. [DOI: 10.1016/j.intimp.2014.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022]
|
29
|
Chen X, Liu Y, Wang L, Liu Y, Zhang W, Fan B, Ma X, Yuan Q, Ma G, Su Z. Enhanced Humoral and Cell-Mediated Immune Responses Generated by Cationic Polymer-Coated PLA Microspheres with Adsorbed HBsAg. Mol Pharm 2014; 11:1772-84. [DOI: 10.1021/mp400597z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoming Chen
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Graduated University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuying Liu
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lianyan Wang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuan Liu
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Graduated University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weifeng Zhang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Graduated University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bei Fan
- Hualan Biological Engineering Inc., Henan 453003, PR China
| | - Xiaowei Ma
- Hualan Biological Engineering Inc., Henan 453003, PR China
| | - Qipeng Yuan
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guanghui Ma
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhiguo Su
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
30
|
Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Wu Y, Lee LJ, Torrelles JB, Renukaradhya GJ. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int J Nanomedicine 2014; 9:679-94. [PMID: 24493925 PMCID: PMC3908835 DOI: 10.2147/ijn.s56127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1–Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ+ lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.
Collapse
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Yun Wu
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Ly James Lee
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| |
Collapse
|
31
|
Zhang W, Wang L, Liu Y, Chen X, Li J, Yang T, An W, Ma X, Pan R, Ma G. Comparison of PLA microparticles and alum as adjuvants for H5N1 influenza split vaccine: adjuvanticity evaluation and preliminary action mode analysis. Pharm Res 2013; 31:1015-31. [PMID: 24170280 DOI: 10.1007/s11095-013-1224-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/03/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE To compare the adjuvanticity of polymeric particles (new-generation adjuvant) and alum (the traditional and FDA-approved adjuvant) for H5N1 influenza split vaccine, and to investigate respective action mode. METHODS Vaccine formulations were prepared by incubating lyophilized poly(lactic acid) (PLA) microparticles or alum within antigen solution. Antigen-specific immune responses in mice were evaluated using ELISA, ELISpot, and flow cytometry assay. Adjuvants' action modes were investigated by determining antigen persistence at injection sites, local inflammation response, antigen transport into draining lymph node, and activation of DCs in secondary lymphoid organs (SLOs). RESULTS Alum promoted antigen-specific humoral immune response. PLA microparticles augmented both humoral immune response and cell-mediated-immunity which might enhance cross-protection of influenza vaccine. With regard to action mode, alum adjuvant functions by improving antigen persistence at injection sites, inducing severe local inflammation, slightly improving antigen transport into draining lymph nodes, and improving the expression of MHC II on DCs in SLOs. PLA microparticles function by slightly improving antigen transport into draining lymph nodes, and promoting the expression of both MHC molecules and co-stimulatory molecules on DCs in SLOs. CONCLUSIONS Considering the adjuvanticity and side effects (local inflammation) of both adjuvants, we conclude that PLA microparticles are promising alternative adjuvant for H5N1 influenza split vaccine.
Collapse
Affiliation(s)
- Weifeng Zhang
- National Key Laboratory of Biochemical Engineering PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering Chinese Academy of Sciences, Bei-Er-Jie No.1, Zhong-Guan-Cun, Haidian District, Beijing, 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saini V, Verma AK, Kushwaha V, Joseph SK, Kalpna Murthy P, Kohli D. Humoral and cell-mediated immune responses elicited by poly (dl-lactide) adjuvanted filarial antigen molecules. Drug Deliv 2013; 21:233-41. [DOI: 10.3109/10717544.2013.848494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Saini V, Verma SK, Murthy PK, Kohli D. Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens. Vaccine 2013; 31:4183-91. [DOI: 10.1016/j.vaccine.2013.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 06/19/2013] [Indexed: 11/16/2022]
|
34
|
Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface 2013; 10:20120536. [PMID: 23173193 PMCID: PMC3565688 DOI: 10.1098/rsif.2012.0536] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/01/2012] [Indexed: 12/18/2022] Open
Abstract
Polymers as an adjuvant are capable of enhancing the vaccine potential against various infectious diseases and also are being used to study the actual autoimmune responses using self-antigen(s) without involving any major immune deviation. Several natural polysaccharides and their derivatives originating from microbes and plants have been tested for their adjuvant potential. Similarly, numerous synthetic polymers including polyelectrolytes, polyesters, polyanhydrides, non-ionic block copolymers and external stimuli responsive polymers have demonstrated adjuvant capacity using different antigens. Adjuvant potential of these polymers mainly depends on their solubility, molecular weight, degree of branching and the conformation of polymeric backbone. These polymers have the ability not only to activate humoral but also cellular immune responses in the host. The depot effect, which involves slow release of antigen over a long duration of time, using different forms (particulate, solution and gel) of polymers, and enhances the co-stimulatory signals for optimal immune activation, is the underlying principle of their adjuvant properties. Possibly, polymers may also interact and activate various toll-like receptors and inflammasomes, thus involving several innate immune system players in the ensuing immune response. Biocompatibility, biodegradability, easy production and purification, and non-toxic properties of most of the polymers make them attractive candidates for substituting conventional adjuvants that have undesirable effects in the host.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
Correia-Pinto J, Csaba N, Alonso M. Vaccine delivery carriers: Insights and future perspectives. Int J Pharm 2013; 440:27-38. [DOI: 10.1016/j.ijpharm.2012.04.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 01/15/2023]
|
36
|
Jeong EJ, Maeng HJ, Lee HJ, Kim Y, Kim CK. Effect of adjuvant on pharmacokinetics, organ distribution and humoral immunity of hepatitis b surface antigen after intramuscular injection to rats. Arch Pharm Res 2012; 35:1621-8. [DOI: 10.1007/s12272-012-0913-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 02/05/2023]
|
37
|
Taha MA, Singh SR, Dennis VA. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. NANOTECHNOLOGY 2012; 23:325101. [PMID: 22824940 DOI: 10.1088/0957-4484/23/32/325101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml(-1) maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (∼200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 μg ml (-1) to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (∼98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml (-1) of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml(-1)) and IL-12p40 (674 pg ml(-1)) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Murtada A Taha
- Center for NanoBiotechnology and Life Science Research (CNBR), Alabama State University, Montgomery, AL 36104, USA
| | | | | |
Collapse
|
38
|
Chen L, Li S, Wang Z, Chang R, Su J, Han B. Protective effect of recombinant staphylococcal enterotoxin A entrapped in polylactic-co-glycolic acid microspheres against Staphylococcus aureus infection. Vet Res 2012; 43:20. [PMID: 22429499 PMCID: PMC3353243 DOI: 10.1186/1297-9716-43-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/19/2012] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is an important cause of nosocomial and community-acquired infections in humans and animals, as well as the cause of mastitis in dairy cattle. Vaccines aimed at preventing S. aureus infection in bovine mastitis have been studied for many years, but have so far been unsuccessful due to the complexity of the bacteria, and the lack of suitable vaccine delivery vehicles. The current study developed an Escherichia coli protein expression system that produced a recombinant staphylococcal enterotoxin A (rSEA) encapsulated into biodegradable microparticles generated by polylactic-co-glycolic acid (PLGA) dissolved in methylene chloride and stabilized with polyvinyl acetate. Antigen loading and surface properties of the microparticles were investigated to optimize particle preparation protocols. The prepared PLGA-rSEA microspheres had a diameter of approximately 5 μm with a smooth and regular surface. The immunogenicity of the PLGA-rSEA vaccine was assessed using mice as an animal model and showed that the vaccine induced a strong humoral immune response and increased the percent survival of challenged mice and bacterial clearance. Histological analysis showed moderate impairment caused by the pathogen upon challenge afforded by immunization with PLGA-rSEA microspheres. Antibody titer in the sera of mice immunized with PLGA-rSEA microparticles was higher than in vaccinated mice with rSEA. In conclusion, the PLGA-rSEA microparticle vaccine developed here could potentially be used as a vaccine against enterotoxigenic S. aureus.
Collapse
Affiliation(s)
- Liben Chen
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | |
Collapse
|
39
|
Amorij JP, Kersten GFA, Saluja V, Tonnis WF, Hinrichs WLJ, Slütter B, Bal SM, Bouwstra JA, Huckriede A, Jiskoot W. Towards tailored vaccine delivery: needs, challenges and perspectives. J Control Release 2012; 161:363-76. [PMID: 22245687 DOI: 10.1016/j.jconrel.2011.12.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/30/2022]
Abstract
The ideal vaccine is a simple and stable formulation which can be conveniently administered and provides life-long immunity against a given pathogen. The development of such a vaccine, which should trigger broad and strong B-cell and T-cell responses against antigens of the pathogen in question, is highly dependent on tailored vaccine delivery approaches. This review addresses vaccine delivery in its broadest scope. We discuss the needs and challenges in the area of vaccine delivery, including restrictions posed by specific target populations, potentials of dedicated stable formulations and devices, and the use of adjuvants. Moreover, we address the current status and perspectives of vaccine delivery via several routes of administration, including non- or minimally invasive routes. Finally we suggest possible directions for future vaccine delivery research and development.
Collapse
Affiliation(s)
- Jean-Pierre Amorij
- Vaccinology, National Institute for Public Health and Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yue H, Wei W, Fan B, Yue Z, Wang L, Ma G, Su Z. The orchestration of cellular and humoral responses is facilitated by divergent intracellular antigen trafficking in nanoparticle-based therapeutic vaccine. Pharmacol Res 2011; 65:189-97. [PMID: 21983005 DOI: 10.1016/j.phrs.2011.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 01/12/2023]
Abstract
Therapeutic vaccination for the treatment of chronic hepatitis B is promising but has so far shown limited clinical efficacy. Herein, we employ polylactide nanoparticles (NPs) as the vaccine adjuvant and systematically explore their effect on activation of specific immunity and the underlying theoretical mechanisms. In vitro studies show that hepatitis B surface antigen (HBsAg) accumulates in antigen-presenting cells (APCs) to a larger content (270%) with the assistant of NP in comparison with the pure-antigen group. Besides the elevated costimulators (CD80/86) and increased major histocompatibility complex (MHC) II molecules, the MHC I molecules are also found upregulated. This result is mostly owing to the divergent antigen trafficking ways of NP-antigen in APCs, especially for the escape of exogenous HBsAg from the lysosomes to the cytosol. Interestingly, the MHC I level is downregulated in alum-antigen group, indicating a possible reason for its inefficiency in priming cellular response. Further in vivo experiments establish that NP-antigen group indeed enhances the CD8(+) CTL cytotoxicity and IFN-γ cytokine secretion. Meanwhile, specific antibody titer is also upregulated, and even surpasses that of the commercialized alum-antigen. All these results strongly support that NP-based antigen promotes an orchestration of cellular and humoral immune response, exhibiting favorable intrinsic properties to be applied in therapeutic vaccines.
Collapse
Affiliation(s)
- Hua Yue
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|