1
|
Saleh A, Akkuş-Dağdeviren ZB, Friedl JD, Knoll P, Bernkop-Schnürch A. Chitosan - Polyphosphate nanoparticles for a targeted drug release at the absorption membrane. Heliyon 2022; 8:e10577. [PMID: 36177244 PMCID: PMC9513768 DOI: 10.1016/j.heliyon.2022.e10577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to develop nanoparticles (NPs) providing a targeted drug release directly on the epithelium of the intestinal mucosa. NPs were prepared via ionic gelation between cationic chitosan (Cs) and anionic polyphosphate (PP). The resulting NPs were characterized by their size, polydispersity index (PDI) and zeta potential. Isolated and cell-associated intestinal alkaline phosphatase (IAP) was employed to trigger polyphosphate cleavage in Cs-PP NPs which was quantified via malachite green assay. In parallel, the shift in zeta potential was determined. In-vitro drug release studies were performed in Franz diffusion cells with Cs-PP NPs containing rhodamine 123 as model active ingredient. Furthermore, cytotoxicity of Cs-PP NPs was assessed via resazurin assay on Caco-2 cells as well as via hemolysis assay on red blood cells. Cs-PP NPs exhibited an average size of 144.17 ± 10.95 nm and zeta potential of -12.6 ± 0.50 mV. The encapsulation efficiency of rhodamine 123 by Cs-PP NPs was 86.8%. After incubation with isolated IAP for 3 h the polyphosphate of Cs-PP NPs was cleaved to monophosphate and zeta potential raised up to -2.3 ± 0.30 mV. Cs-PP NPs showed a non-toxic profile. Within 3 h, 62.0 ± 10.8% and 14.1 ± 2.2% of total rhodamine 123 was released from Cs-PP NPs upon incubation with isolated as well as porcine intestine derived intestinal alkaline phosphatase (IAP), respectively. According to these results, Cs-PP NPs are promising drug delivery systems to enable a drug targeted release at the absorption membrane.
Collapse
Affiliation(s)
- Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
A kNGR Peptide-Tethered Lipid–Polymer Hybrid Nanocarrier-Based Synergistic Approach for Effective Tumor Therapy: Development, Characterization, Ex-Vivo, and In-Vivo Assessment. Pharmaceutics 2022; 14:pharmaceutics14071401. [PMID: 35890297 PMCID: PMC9320317 DOI: 10.3390/pharmaceutics14071401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aims to design, develop and characterize kNGR (Asn-Gly-Arg) peptide-conjugated lipid–polymer-based nanoparticles for the target-specific delivery of anticancer bioactive(s), i.e., Paclitaxel (PTX). The kNGR-PEG-DSPE conjugate was synthesized and characterized by using spectral analysis. The dual-targeted PLGA–lecithin–PEG core-shell nanoparticles (PLNs-kNGR-NPs) were synthesized using a modified nanoprecipitation process, and their physiological properties were determined. The results support that, compared to other NPs, PLNs-kNGR-NPs are highly cytotoxic, owing to higher apoptosis and intracellular uptake. The significance of rational nanoparticle design for synergistic treatment is shown by the higher tumor volume inhibition percentage rate (59.7%), compared to other designed formulations in Balb/c mice in the HT-1080 tumor-induced model. The overall results indicate that the PLNs-kNGR-NPs-based hybrid lipid–polymer nanoparticles present the highest therapeutic efficacy against solid tumor overexpressing the CD13 receptors.
Collapse
|
3
|
Li S, Shi X. 接枝高分子对纳米-生物界面粘附性能的调控研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Gruber A, Navarro L, Klinger D. Dual-reactive nanogels for orthogonal functionalization of hydrophilic shell and amphiphilic network. SOFT MATTER 2022; 18:2858-2871. [PMID: 35348179 DOI: 10.1039/d2sm00116k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic nanogels (NGs) combine a soft, water-swollen hydrogel matrix with internal hydrophobic domains. While these domains can encapsulate hydrophobic cargoes, the amphiphilic particle surface can reduce colloidal stability and/or limit biological half-life. Therefore, a functional hydrophilic shell is needed to shield the amphiphilic network and tune interactions with biological systems. To adjust core and shell properties independently, we developed a synthetic strategy that uses preformed dual-reactive nanogels. In a first step, emulsion copolymerization of pentafluorophenyl methacrylate (PFPMA) and a reduction-cleavable crosslinker produced precursor particles for subsequent network modification. Orthogonal shell reactivity was installed by using an amphiphilic block copolymer (BCP) surfactant during this particle preparation step. Here, the hydrophilic block poly(polyethylene glycol methyl ether methacrylate) (PPEGMA) contains a reactive alkyne end group for successive functionalization. The hydrophobic block (P(PFPMA-co-MAPMA) contains random methacryl-amido propyl methacrylamide (MAPMA) units to covalently attach the surfactant to the growing PPFPMA network. In the second step, orthogonal modification of the core and shell was demonstrated. Network functionalization with combinations of hydrophilic (acidic, neutral, or basic) and hydrophobic (cholesterol) groups gave a library of pH- and redox-sensitive amphiphilic NGs. Stimuli-responsive properties were demonstrated by pH-dependent swelling and reduction-induced degradation via dynamic light scattering. Subsequently, copper-catalyzed azide-alkyne cycloaddition was used to attach azide-modified rhodamine as model compound to the shell (followed by UV-Vis). Overall, this strategy provides a versatile platform to develop multi-functional amphiphilic nanogels as carriers for hydrophobic cargoes.
Collapse
Affiliation(s)
- Alexandra Gruber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Lucila Navarro
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Jiang Y, Zhang Y, Cao M, Li J, Wu M, Zhang H, Zheng S, Liu H, Yang M. Combining 'grafting to' and 'grafting from' to synthesize comb-like NCC-g-PLA as a macromolecular modifying agent of PLA. NANOTECHNOLOGY 2021; 32:385601. [PMID: 34130270 DOI: 10.1088/1361-6528/ac0b63] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
The surface modification of nano particles is very important in nanotechnology. Grafting from (GF) and grafting to (GT) are two main methods to prepare surface modified nanoparticles like nanocellulose crystalline (NCC) grafted with polylactic acid (PLA) chains. In the GF method, the NCC can get high grafting degree but short side chains to improve its compatibility with the polymer matrix. The GT method can help obtain long side chains to increase the chain entanglements but owns low grafting density. To take the advantage of both methods, a mixed modification method combining GT and GF methods was put forward to synthesize comb-like NCC-g-PLA (NP) as a macromolecular modifying agent of PLA. Firstly, GT Method was used to obtain long side-chain NP to improve chain entanglement. Secondly, the GF method was applied to obtain NP-g-PLA (NPL) and NP-g-PDLA (NPD) with additional short side chains to improve its dispersion and compatibility in the PLA matrix. The products showed an enhanced nucleation effect, the degree of crystallinity (Xc) of PLA composites increased almost four times with only 1 wt% NPD or NPL. What's more, the storage modulus and loss modulus of the composite melts also increased with 1 wt% NPL or NPD. The NPD/PLA shows a higher effect than NPL/PLA owning to stronger interaction originated from the stereocomplex (SC) network of PLA matrix with PDLA short chains in NPD.
Collapse
Affiliation(s)
- Yuanping Jiang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Yunxiu Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Minghui Cao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Jiali Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Miaomiao Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Han Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Shaodi Zheng
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Hesheng Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
- East China Jiaotong University, Nanchang 330013, People's Republic of China
| | - Mingbo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Deng X, Zhao J, Liu K, Wu C, Liang F. Stealth PEGylated chitosan polyelectrolyte complex nanoparticles as drug delivery carrier. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1387-1405. [PMID: 33863271 DOI: 10.1080/09205063.2021.1918043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PEGylated stealth nanoparticles have emerged as promising drug delivery carrier for cancer therapy. In this study, natural polycationic chitosan was grafted with poly(ethylene glycol) (PEG) to improve the water-solubility and long-circulation. Then PEGylated chitosan nanoparticles were formed by electrostatic interaction between sulfonic acid group of anionic functional polymer and protic amino group of PEGylated chitosan, using polyelectrolyte complex method. Effects of various factors on particle size and distribution, and the stability, biocompatibility, long-circulation ability were investigated. The results showed that when the concentration of PEGylated chitosan and anionic polymer was 0.20 mg/mL, pH of PEGylated chitosan was 5.0, pH of polymer was 5.5 and molar ratio (S/N) was 0.83, particle size of the prepared nanoparticles was 261.2 ± 5.5 nm with pdI of 0.070. Nanoparticles were relatively stable for more than 4 days under pH < 7.0 and normal saline conditions. The results of cytotoxicity experiments showed that the toxicity of PEGylated chitosan nanoparticles was greatly reduced, which met the basic requirements of biomedical materials. The cellular uptake efficiency of PEGylated chitosan nanoparticles was about 4 times lower than that of conventional chitosan nanoparticles, which indicated long circulation time of PEGylated chitosan nanoparticles in the blood. It was expected that this kind of stealth nanoparticles would have a broad application prospect in the field of drug delivery system.
Collapse
Affiliation(s)
- Xingyue Deng
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, China
| | - Jing Zhao
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, China
| | - Kaiwen Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, China
| | - Chao Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, China
| | - Fei Liang
- Department of Pharmacy, Xi'an Medical University, Xi'an, China
| |
Collapse
|
7
|
Li SJ, Shi X. Tailoring Antifouling Properties of Nanocarriers via Entropic Collision of Polymer Grafting. ACS NANO 2021; 15:5725-5734. [PMID: 33710849 DOI: 10.1021/acsnano.1c01173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer graftings (PGs) are widely employed in antifouling surfaces and drug delivery systems to regulate the interaction with a foreign environment. Through molecular dynamics simulations and scaling theory analysis, we investigate the physical antifouling properties of PGs via their collision behaviors. Compared with mushroom-like PGs with low grafting density, we find brush-like PGs with high grafting density could generate large deformation-induced entropic repulsive force during a collision, revealing a microscopic mechanism for the hop motions of polymer-grafted nanoparticles for drug delivery observed in experiment. In addition, the collision elasticity of PGs is found to decay with the collision velocity by a power law, i.e., a concise dynamic scaling despite the complex process involved, which is beyond expectation. These results elucidate the dynamic interacting mechanism of PGs, which are of immediate interest for a fundamental understanding of the antifouling performance of PGs and the rational design of PG-coated nanoparticles in nanomedicine for drug delivery.
Collapse
Affiliation(s)
- Shu-Jia Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Wang F, Li Y, Gough CR, Liu Q, Hu X. Dual-Crystallizable Silk Fibroin/Poly(L-lactic Acid) Biocomposite Films: Effect of Polymer Phases on Protein Structures in Protein-Polymer Blends. Int J Mol Sci 2021; 22:ijms22041871. [PMID: 33668676 PMCID: PMC7918901 DOI: 10.3390/ijms22041871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022] Open
Abstract
Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields.
Collapse
Affiliation(s)
- Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (Q.L.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.W.); (X.H.); Tel.: +86-25-8589-8173 (F.W.); +1-856-256-4860 (X.H.)
| | - Yingying Li
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (Q.L.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qichun Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (Q.L.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
- Correspondence: (F.W.); (X.H.); Tel.: +86-25-8589-8173 (F.W.); +1-856-256-4860 (X.H.)
| |
Collapse
|
9
|
Hajikhani M, Emam Djomeh Z, Askari G. Lycopene loaded polylactic acid (PLA) and PLA/copolymer electrospun nanofibers, synthesis, characterization, and control release. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mehdi Hajikhani
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Zahra Emam Djomeh
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Gholamreza Askari
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| |
Collapse
|
10
|
Holley CK, Majd S. Examining the Anti-Tumor Activity of Dp44mT-Loaded Nanoparticles In Vitro. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5029-5032. [PMID: 33019116 DOI: 10.1109/embc44109.2020.9176197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have recently reported encapsulating an antitumor iron chelator, Dp44mT (Di-2-pyridylketone-4,4dimethyl-3-thiosemicarbazone), in nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA). In this paper, we examine the effectiveness of this nano-formulation, referred to as Dp44mT-NPs, against several cancer cell lines in vitro; specifically, we evaluate the cytotoxicity of this formulation in glioma (U87, U251), breast (MCF7), and colorectal (HT29) cancer cell lines. Cell viability results from treatment of glioma cells with Dp44mT-NPs for 24-72 hrs revealed that these NPs were highly toxic towards these malignant cells with very low IC50 values (<100 nM). Although addition of a PEG (poly(ethylene glycol)) layer to the surface of NPs reduced their toxicity in glioma cells, they remained highly toxic towards these cells (IC50 of 135-210 nM). Dp44mT-NPs were also toxic towards breast MCF7 and colorectal HT29 cells, but at higher dosages (IC50 >1 µM) compared to glioma cells. Addition of PEG to these NPs, again lowered their toxicity in these cells. Varying the percentage of PEG on NPs resulted in changes in their cytotoxicity, highlighting the necessity of further optimization of this parameter. This study, overall, demonstrates the therapeutic potential of Dp44mT-NPs against different malignant cells, with particularly promising results in highly-aggressive glioma tumor cells.
Collapse
|
11
|
Development of red-light cleavable PEG-PLA nanoparticles as delivery systems for cancer therapy. Colloids Surf B Biointerfaces 2020; 196:111354. [PMID: 32971440 DOI: 10.1016/j.colsurfb.2020.111354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 01/20/2023]
Abstract
The development of targeted delivery systems can improve the selectivity of cancer drugs. Additionally, a system that promotes the controlled delivery of the drug triggered by an external stimulus in the exact target tissue is highly desirable. Regarding the light stimulus, the NIR window (650-950 nm) is the most suitable due to its higher capacity of penetration in human tissues and less harmful effects on normal cells. In this work, new red-light-responsive nanoparticles for doxorubicin delivery were developed. The nanoparticles were based on cleavable di-block copolymers of poly(ethylene glycol) (PEG) and poly(lactic acid) (PLA) linked by a red-light sensitive segment (1,2-bis(2-hydroxyethylthio)ethylene, BHETE). The PEG-BHETE-PLA copolymers were synthesized under mild conditions and exhibited a narrow polydispersity. The nanoparticles presented a size between 53 and 133 nm, with a doxorubicin loading capacity between 1.2 and 4.4 wt%. Release study of the encapsulated doxorubicin confirms the light-triggered nanoparticle disassembly process. In vitro cytotoxicity tests in MCF7 cell line, for the light-triggered nanoparticles, showed a decrease in cancer cells' viability higher than 25% compared to non-irradiated cells. Due to the promising results obtained with the light-sensitive PEG-BHETE-PLA nanoparticles, these materials have great potential to be used in drug delivery systems for cancer therapy.
Collapse
|
12
|
Bewersdorff T, Gruber A, Eravci M, Dumbani M, Klinger D, Haase A. Amphiphilic nanogels: influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake. Int J Nanomedicine 2019; 14:7861-7878. [PMID: 31576128 PMCID: PMC6769055 DOI: 10.2147/ijn.s215935] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/20/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Nanogels (NGs) are promising drug delivery tools but are typically limited to hydrophilic drugs. Many potential new drugs are hydrophobic. Our study systematically investigates amphiphilic NGs with varying hydrophobicity, but similar colloidal features to ensure comparability. The amphiphilic NGs used in this experiment consist of a hydrophilic polymer network with randomly distributed hydrophobic groups. For the synthesis we used a new synthetic platform approach. Their amphiphilic character allows the encapsulation of hydrophobic drugs. Importantly, the hydrophilic/hydrophobic balance determines drug loading and biological interactions. In particular, protein adsorption to NG surfaces is dependent on hydrophobicity and critically determines circulation time. Our study investigates how network hydrophobicity influences protein binding, biocompatibility and cellular uptake. METHODS Biocompatibility of the NGs was examined by WST-1 assay in monocytic-like THP-1 cells. Serum protein corona formation was investigated using dynamic light scattering and two-dimensional gel electrophoresis. Proteins were identified by liquid chromatography-tandem mass spectrometry. In addition, cellular uptake was analyzed via flow cytometry. RESULTS All NGs were highly biocompatible. The protein binding patterns for the two most hydrophobic NGs were very similar to each other but clearly different from the hydrophilic ones. Overall, protein binding was increased with increasing hydrophobicity, resulting in increased cellular uptake. CONCLUSION Our study supports the establishment of structure-property relationships and contributes to the accurate balance between maximum loading capacity with low protein binding, optimal biological half-life and good biocompatibility. This is an important step to derive design principles of amphiphilic NGs to be applied as drug delivery vehicles.
Collapse
Affiliation(s)
- Tony Bewersdorff
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Alexandra Gruber
- Freie Universität Berlin, Institute of Pharmacy (Pharmaceutical Chemistry), Berlin, Germany
| | - Murat Eravci
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Malti Dumbani
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Daniel Klinger
- Freie Universität Berlin, Institute of Pharmacy (Pharmaceutical Chemistry), Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|
13
|
Jiang Y, Yan C, Shi D, Liu Z, Yang M. Enhanced Rheological Properties of PLLA with a Purpose-Designed PDLA- b-PEG- b-PDLA Triblock Copolymer and the Application in the Film Blowing Process to Acquire Biodegradable PLLA Films. ACS OMEGA 2019; 4:13295-13302. [PMID: 31460457 PMCID: PMC6705365 DOI: 10.1021/acsomega.9b01470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/23/2019] [Indexed: 05/14/2023]
Abstract
The inadequate rheological properties limit the film blowing process of biodegradable polylactic acid (PLA), thus hindering its potential application in environmentally friendly packaging films and mulch films. Herein, biodegradable polyethylene glycol (PEG) and d-lactide were used to synthesize three kinds of poly-d-lactic acid (PDLA)-b-PEG-b-PDLA (DPD) triblock copolymers, and their effects on stereocomplex (sc) structure formation and rheological properties of the composites were studied. The results showed that the poly l-lactic acid (PLLA)/DPD4k sample introduced the highest sc content, storage modulus, and complex viscosity value compared with PLLA/DPD2k and PLLA/DPD10k at the same loading condition, indicating that the PEG4k chains can better accelerate the formation of a sc network between DPD4k and the PLLA matrix. The introduction of 10 wt % DPD4k also resulted in about 38 times longer relaxation time and a strain-hardening behavior during the steady biaxial extension of PLLA. At last, the continuous film blowing process was successfully conducted in the PLLA/DPD4k composites, which acquired a stable blow-up ratio of 3.07. On the basis of the above results, the soft chain-grafted PDLA copolymer may provide a novel method for film blowing of biodegradable PLA.
Collapse
Affiliation(s)
- Yuanping Jiang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, People’s Republic
of China
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,
School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People’s
Republic of China
| | - Cong Yan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, People’s Republic
of China
| | - Dawei Shi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, People’s Republic
of China
| | - Zhengying Liu
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, People’s Republic
of China
| | - Mingbo Yang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, People’s Republic
of China
- E-mail:
| |
Collapse
|
14
|
Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109890. [PMID: 31500018 DOI: 10.1016/j.msec.2019.109890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
A protein-polymer blend system based on silkworm silk fibroin (SF) and polylactic acid (PLA) was systematically investigated to understand the interaction and miscibility of proteins and synthetic biocompatible polymers in the macro- and micro-meter scales, which can dramatically control the cell responses and enzyme biodegradation on the biomaterial interface. Silk fibroin, a semicrystalline protein with beta-sheet crystals, provides controllable crystal content and biodegradability; while noncrystallizable PDLLA provides hydrophobicity and thermal stability in the system. Differential scanning calorimetry (DSC) combined with scanning electron microscope (SEM) showed that the morphology of the blend films was uniform on a macroscopic scale, yet with tunable micro-phase patterns at different mixing ratios. Fourier transform infrared analysis (FTIR) revealed that structures of the blend system, such as beta-sheet crystal content, gradually changed with the mixing ratios. All blended samples have better stability than pure SF and PLA samples as evidenced by thermogravimetric analysis. Protease XIV enzymatic study showed that the biodegradability of the blend samples varied with their blending ratios and microscale morphologies. Significantly, the topology of the micro-phase patterns on the blends can promote cell attachment and manipulate the cell growth and proliferation. This study provided a useful platform for understanding the fabrication strategies of protein-synthetic polymer composites that have direct biomedical and green chemistry applications.
Collapse
|
15
|
Development of Octreotide-Loaded Chitosan and Heparin Nanoparticles: Evaluation of Surface Modification Effect on Physicochemical Properties and Macrophage Uptake. J Pharm Sci 2019; 108:3036-3045. [PMID: 31082402 DOI: 10.1016/j.xphs.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/25/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Octreotide (OCT) is a therapeutic peptide which is administered for the treatment of acromegaly. The purpose of this study was to design a new polyethylene glycol (PEG)-conjugated nanoparticle (PEG-NP) to overcome the short half-life and poor stability of OCT. The developed PEG-NPs were compared with non-PEGylated NPs with respect to their size, morphological characteristics, loading efficiency, release profile, and macrophage uptake. The OCT-loaded NPs and PEG-NPs were prepared by ionic complexion of chitosan (Cs) with either heparin (Hp) or PEGylated heparin (PEG-Hp). The chemical structure of PEG-Hp was confirmed by IR and proton nuclear magnetic resonance. Morphological analyses by scanning electron microscopy showed that NPs and PEG-NPs have a uniform shape. Dynamic laser scattering measurements indicated that hydrodynamic diameter of NPs and PEG-NPs were 222.5 ± 10.0 nm and 334.9 ± 6.7 nm, respectively. NPs and PEG-NPs had a positive zeta potential of about 32.5 ± 1.1 mv and 20.6 ± 2.4 mv, respectively. Entrapment efficiency was 61.4 ± 1.0% and 55.7 ± 2.4% for NPs and PEG-NPs, respectively. Compared with the NPs, the PEG-NPs exhibited a slower release profile. Subsequently, fluorescein isothiocyanate-labeled chitosanCs was synthesized and used to evaluate the stealth characteristic of PEG-NPs. In vitro macrophage uptake of fluorescently labeled NPs was measured by flow cytometry.
Collapse
|
16
|
Abstract
Although a plethora of nanoparticle configurations have been proposed over the past 10 years, the uniform and deep penetration of systemically injected nanomedicines into the diseased tissue stays as a major biological barrier. Here, a 'Tissue Chamber' chip is designed and fabricated to study the extravascular transport of small molecules and nanoparticles. The chamber comprises a collagen slab, deposited within a PDMS mold, and an 800 μm channel for the injection of the working solution. Through fluorescent microscopy, the dynamics of molecules and nanoparticles was estimated within the gel, under different operating conditions. Diffusion coefficients were derived from the analysis of the particle mean square displacements (MSD). For validating the experimental apparatus and the protocol for data analysis, the diffusion D of FITC-Dextran molecules of 4, 40 and 250 kDa was first quantified. As expected, D reduces with the molecular weight of the dextran molecules. The MSD-derived diffusion coefficients were in good agreement with values derived via fluorescence recovery after photobleaching (FRAP), an alternative technique that solely applies to small molecules. Then, the transport of six nanoparticles with similar hydrodynamic diameters (~ 200 nm) and different surface chemistries was quantified. Surface PEGylation was confirmed to favor the diffusion of nanoparticles within the collagen slab, whereas the surface decoration with hyaluronic acid (HA) chains reduced nanoparticle mobility in a way proportional to the HA molecular weight. To assess further the generality of the proposed approach, the diffusion of the six nanoparticles was also tested in freshly excised brain tissue slices. In these ex vivo experiments, the diffusion coefficients were 5-orders of magnitude smaller than for the Tissue Chamber chip. This was mostly ascribed to the lack of a cellular component in the chip. However, the trends documented for PEGylated and HA-coated nanoparticles in vitro were also confirmed ex vivo. This work demonstrates that the Tissue Chamber chip can be employed to effectively and efficiently test the extravascular transport of nanomedicines while minimizing the use of animals.
Collapse
|
17
|
Derbali RM, Aoun V, Moussa G, Frei G, Tehrani SF, Del’Orto JC, Hildgen P, Roullin VG, Chain JL. Tailored Nanocarriers for the Pulmonary Delivery of Levofloxacin against Pseudomonas aeruginosa: A Comparative Study. Mol Pharm 2019; 16:1906-1916. [DOI: 10.1021/acs.molpharmaceut.8b01256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Kakadia PG, Conway BR. Solid lipid nanoparticles for targeted delivery of triclosan into skin for infection prevention. J Microencapsul 2019; 35:695-704. [DOI: 10.1080/02652048.2019.1576796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pratibha G. Kakadia
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Barbara R. Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
19
|
Keyal U, Luo Q, Bhatta AK, Luan H, Zhang P, Wu Q, Zhang H, Liu P, Zhang L, Wang P, Yang D, Zhang G, Yao J, Wang X, Shi L. Zinc pthalocyanine-loaded chitosan/mPEG-PLA nanoparticles-mediated photodynamic therapy for the treatment of cutaneous squamous cell carcinoma. JOURNAL OF BIOPHOTONICS 2018; 11:e201800114. [PMID: 29893047 DOI: 10.1002/jbio.201800114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Zinc pthalocyanine (ZnPc) is a second-generation photodynamic therapy (PDT) sensitizer with sufficient PDT activity for squamous cell carcinoma (SCC). ZnPc is hydrophobic and insoluble in water, which creates hurdles in systemic administration and hence restricts its use in clinic. Here we have loaded ZnPc on chitosan/methoxy polyethylene glycol-polylactic acid (CPP) nanoparticles to form Z-CPP to enhance PDT efficacy. In vitro and in vivo studies were performed to see dark toxicity of the compounds ZnPc, CPP and Z-CPP. Then PDT was done and its growth inhibitory effect on SCC cells was evaluated. In addition, reactive oxygen species (ROS) formation and apoptosis of cancer cells following PDT were studied. The results showed that the tested compounds exhibit no dark toxicity and the effect of PDT was significantly better with Z-CPP when compared to free ZnPc (P < .05). Photoactivation of Z-CPP led to a dose-dependent growth inhibition of cancer cells of >50% at 1 μM to >80% at 10 μM concentration. Also Z-CPP-treated cells had highest number of apoptotic cells and produced more ROS compared to free ZnPc-treated cells (P < .05). Hence, this study suggests that Z-CPP is a suitable pharmaceutical compound to increase PDT efficacy.
Collapse
Affiliation(s)
- Uma Keyal
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Qiong Luo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, P. R. China
| | - Anil K Bhatta
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Hansen Luan
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Ping Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P. R. China
| | - Qianqian Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Degang Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P. R. China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
20
|
Kim CH, Sung SW, Lee ES, Kang TH, Yoon HY, Goo YT, Cho HR, Kim DY, Kang MJ, Choi YS, Lee S, Choi YW. Sterically Stabilized RIPL Peptide-Conjugated Nanostructured Lipid Carriers: Characterization, Cellular Uptake, Cytotoxicity, and Biodistribution. Pharmaceutics 2018; 10:E199. [PMID: 30360549 PMCID: PMC6321264 DOI: 10.3390/pharmaceutics10040199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
As a platform for hepsin-specific drug delivery, we previously prepared IPLVVPLRRRRRRRRC peptide (RIPL)-conjugated nanostructured lipid carriers (RIPL-NLCs) composed of Labrafil® M 1944 CS (liquid oil) and Precirol® ATO 5 (solid lipid). In this study, to prevent the recognition by the mononuclear phagocyte system, polyethylene glycol (PEG)-modified RIPL-NLCs (PEG-RIPL-NLCs) were prepared using PEG3000 at different grafting ratios (1, 5, and 10 mole %). All prepared NLCs showed a homogeneous dispersion (130⁻280 nm), with zeta potentials varying from -18 to 10 mV. Docetaxel (DTX) was successfully encapsulated in NLCs: encapsulation efficiency (93⁻95%); drug-loading capacity (102⁻109 µg/mg). PEG-RIPL-NLCs with a grafting ratio of 5% PEG or higher showed significantly reduced protein adsorption and macrophage phagocytosis. The uptake of PEG(5%)-RIPL-NLCs by cancer cell lines was somewhat lower than that of RIPL-NLCs because of the PEG-induced steric hindrance; however, the uptake level of PEG-RIPL-NLCs was still greater than that of plain NLCs. In vivo biodistribution was evaluated after tail vein injection of NLCs to normal mice. Compared to RIPL-NLCs, PEG(5%)-RIPL-NLCs showed lower accumulation in the liver, spleen, and lung. In conclusion, we found that PEG(5%)-RIPL-NLCs could be a promising nanocarrier for selective drug targeting with a high payload of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Si Woo Sung
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Eun Seok Lee
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Tae Hoon Kang
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Ho Yub Yoon
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Ha Ra Cho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Korea.
| | - Dong Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Korea.
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Korea.
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 704-701, Korea.
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea.
| |
Collapse
|
21
|
Kim CH, Sa CK, Goh MS, Lee ES, Kang TH, Yoon HY, Battogtokh G, Ko YT, Choi YW. pH-sensitive PEGylation of RIPL peptide-conjugated nanostructured lipid carriers: design and in vitro evaluation. Int J Nanomedicine 2018; 13:6661-6675. [PMID: 30425481 PMCID: PMC6204877 DOI: 10.2147/ijn.s184355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated nanostructured lipid carriers (RIPL-NLCs) can facilitate selective drug delivery to hepsin (Hpn)-expressing cancer cells, but they exhibit low stability in the blood. Generally, biocompatible and nontoxic poly(ethylene glycol) surface modification (PEGylation) can enhance NLC stability, although this may impair drug delivery and NLC clearance. To attain RIPL-NLC steric stabilization without impairing function, pH-sensitive cleavable PEG (cPEG) was grafted onto RIPL-NLCs (cPEG-RIPL-NLCs). METHODS Various types of NLC formulations including RIPL-NLCs, PEG-RIPL-NLCs, and cPEG-RIPL-NLCs were prepared using the solvent emulsification-evaporation method and characterized for particle size, zeta potential (ZP), and cytotoxicity. The steric stabilization effect was evaluated by plasma protein adsorption and phagocytosis inhibition studies. pH-sensitive cleavage was investigated using the dialysis method under different pH conditions. Employing a fluorescent probe (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiI]), in vitro drug delivery capacity of the cPEG-RIPL-NLCs under different pH conditions was also performed on Hpn-expressing SKOV3 cells and 3D-tumor spheroids. RESULTS All prepared NLCs showed homogenous dispersion (<220 nm in size) with a negative ZP (-18 to -22 mV), except for positively charged RIPL-NLCs (~10 mV), revealing no significant cytotoxicity in either SKOV3 or RAW 264.7 cell lines. cPEG-RIPL-NLC protein adsorption was 1.75-fold less than that of RIPL-NLCs, and PEGylation significantly reduced the macrophage uptake. PEG detachment from the cPEG-RIPL-NLCs was pH-sensitive and time dependent. At 2 hours incubation, cPEG-RIPL-NLCs and PEG-RIPL-NLCs exhibited comparable cellular uptake at pH 7.4, whereas cPEG-RIPL-NLC uptake was increased over 2-fold at pH 6.5. 3D-spheroid penetration also demonstrated pH-sensitivity: at pH 7.4, cPEG-RIPL-NLCs could not penetrate deep into the spheroid core region during 2 hours, whereas at pH 6.5, high fluorescence intensity in the core region was observed for both cPEG-RIPL-NLC-and RIPL-NLC-treated groups. CONCLUSION cPEG-RIPL-NLCs are good candidates for Hpn-selective drug targeting in conjunction with pH-responsive PEG cleavage.
Collapse
Affiliation(s)
- Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea,
| | - Cheol-Ki Sa
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea,
| | - Min Su Goh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea,
| | - Eun Seok Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea,
| | - Tae Hoon Kang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea,
| | - Ho Yub Yoon
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea,
| | | | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea,
| |
Collapse
|
22
|
Reneeta NP, Thiyonila B, Aathmanathan VS, Ramya T, Chandrasekar P, Subramanian N, Prajapati VK, Krishnan M. Encapsulation and Systemic Delivery of 5-Fluorouracil Conjugated with Silkworm Pupa Derived Protein Nanoparticles for Experimental Lymphoma Cancer. Bioconjug Chem 2018; 29:2994-3009. [DOI: 10.1021/acs.bioconjchem.8b00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Berchmans Thiyonila
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Thangaraj Ramya
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Ponnusamy Chandrasekar
- Department of Pharmaceutical Technology BIT Campus, Anna University, Tiruchirappalli 620024, India
| | - Natesan Subramanian
- Department of Pharmaceutical Technology BIT Campus, Anna University, Tiruchirappalli 620024, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Muthukalingan Krishnan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| |
Collapse
|
23
|
Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone. Int J Biol Macromol 2018; 113:345-353. [DOI: 10.1016/j.ijbiomac.2018.02.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
|
24
|
Influence of PLA-PEG nanoparticles manufacturing process on intestinal transporter PepT1 targeting and oxytocin transport. Eur J Pharm Biopharm 2018; 129:122-133. [PMID: 29803721 DOI: 10.1016/j.ejpb.2018.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/06/2018] [Accepted: 05/18/2018] [Indexed: 11/21/2022]
Abstract
Oral administration of peptides still remains a challenging issue. We previously pointed out the possibility to target intestinal PepT1 transporter with functionalized PLA-PEG nanoparticles (NPs) formulated by nanoprecipitation, and to improve drug-loaded intestinal permeability. Nevertheless, alternative manufacturing processes exist and the impact on the intestinal transporter targeting could be interesting to study. Our objective is consequently to assess the ability of functionalized NPs to target PepT1 according to the manufacturing process, and the possibility to improve peptide absorption. PLA-PEG-Valine NPs were formulated by nanoprecipitation, double and simple emulsion with median particle size <200 nm. Using Caco-2 cells, the competition between PLA-PEG-Val NPs formulated by the different manufacturing processes, and [3H]Glycylsarcosine, a well-known substrate of PepT1, was observed to evaluate the impact of the process on the intestinal transporter PepT1 targeting. Simultaneously, PLA-PEG-Val NPs were labeled with fluorescein (FITC) to evaluate PepT1 targeting and to observe the behavior of the NPs close to the cell according to the manufacturing process by confocal imaging. Finally, oxytocin peptide (OXY) was encapsulated in Val-NPs according to the most relevant process and the transport of the drug was assessed in vitro and in vivo, and compared to free drug. It was possible to observe by TEM imaging a better organization and expression of the ligand at the surface for NPs formulated by emulsion processes. Furthermore, the competition between functionalized NPs and [3H]Glycylsarcosine revealed a better transport inhibition of [3H]Glycylsarcosine for NPs formulated by double emulsion (≈ 67%). These results were confirmed by fluorescence measurements, comparing the amount of fluorescence linked to the cells after incubation with fluorescent Val-NPs for the 3 processes (≈ 39% for double emulsion). Additionally, confocal microscopy confirmed the ability of Val-NPs prepared by double emulsion to target the cell membrane and even to reach the intracellular space. OXY was then encapsulated by double emulsion in Val-NPs with a drug load of ≈ 4%. It was thus shown in vitro that drug transport was doubled compared to free drug. In vivo, OXY plasma concentration after oral administration were significantly increased when encapsulated in Val-NPS obtained by double emulsion compared to free drug. These results demonstrated that NPs prepared by double emulsion allowed a better PepT1 targeting and is a promising approach for oral peptide delivery.
Collapse
|
25
|
Wang Z, Ding J, Ma X, Luo S. Selective ultrasound contrast enhancement in the tumor by nanocapsules with perfluorooctylbromide: effect of PLGA-PEG proportion. RSC Adv 2018; 8:17958-17966. [PMID: 35542111 PMCID: PMC9080564 DOI: 10.1039/c8ra01824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022] Open
Abstract
We used PLGA-COOH and PLGA-PEG-COOH blended polymer material to encapsulate perfluorooctyl bromide to prepare nanocapsules (NCs) as nano-ultrasound contrast agents. The aim of this study was to assess the effect of PLGA-PEG proportion on the physical, biological and acoustic characteristics of the nanocapsules, and to develop optimal nanocapsules for selective ultrasound contrast enhancement in tumors. The weight ratio of PLGA-PEG in the formulation was 0, 25%, 50%, 75%, and 100%, and the corresponding nanocapsules were designated NCsPLGA, NCs25% PLGA-PEG, NCs50% PLGA-PEG, NCs75% PLGA-PEG and NCs100% PLGA-PEG. As the PLGA-PEG proportion increased, the diameter and bulk modulus of the NCs gradually decreased, and the originally smooth surface of NCs was roughened. NCsPLGA, NCs25% PLGA-PEG and NCs50% PLGA-PEG had regular spherical shape and relatively distinct boundaries compared with NCs75% PLGA-PEG and NCs100% PLGA-PEG, which showed heavy agglomeration. The proportion of PLGA-PEG in the formula could also change the uptake rate of NCs by RAW 264.7 cells. NCs50% PLGA-PEG and NCs75% PLGA-PEG had the lowest uptake by RAW 264.7 cells. In vitro, the ultrasonic gray values of NCs50% PLGA-PEG, NCs75% PLGA-PEG and NCs100% PLGA-PEG were obviously higher than those of NCsPLGA and NCs100% PLGA-PEG. NCsPLGA, NCs50% PLGA-PEG and NCs100% PLGA-PEG were injected into mice via the tail vein, but only NCs50% PLGA-PEG could produce persistent gray contrast enhancement in tumors after 24 h. Histological fluorescence of the tumor tissue confirmed that NCs50% PLGA-PEG and NCs100% PLGA-PEG gathered in tumor tissues. Our results indicate that the PLGA-PEG proportion in the formula is an important factor in constructing optimal nano-ultrasound contrast agents with a liquid core, and could change the nanocapsule size, surface morphology, elastic modulus, macrophage cellular uptake, and ultrasonic reflection. An appropriate PLGA-PEG proportion could help nanoparticles to achieve selective gray contrast enhancement in tumors.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Hepatobiliary Surgery, The Third Xiangya Hospital, Central South University Changsha Hunan 410013 PR China
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University Changsha Hunan 410013 PR China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University Changsha Hunan 410013 PR China
| | - Shengjuan Luo
- Department of Ultrasound, The Third Xiangya Hospital, Central South University Changsha Hunan 410013 PR China
| |
Collapse
|
26
|
Jang MH, Kim CH, Yoon HY, Sung SW, Goh MS, Lee ES, Shin DJ, Choi YW. Steric stabilization of RIPL peptide-conjugated liposomes and in vitro assessment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0392-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Gourdon B, Declèves X, Péan JM, Chemin C. Double or Simple Emulsion Process to Encapsulate Hydrophilic Oxytocin Peptide in PLA-PEG Nanoparticles. Pharm Res 2018; 35:82. [PMID: 29508092 DOI: 10.1007/s11095-018-2358-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/31/2018] [Indexed: 01/27/2023]
Abstract
PURPOSE Oral drug delivery using NPs is a current strategy for poorly absorbed molecules. It offers significant improvement in terms of bioavailability. However, the encapsulation of proteins and peptides in polymeric NPs is a challenge. Firstly, the present study focused on the double emulsion process in order to encapsulate the OXY peptide. Then the technique was challenged by a one-step simplified process, the simple emulsion. METHODS In order to study the influence of formulation and process parameters, factorial experimental designs were carried on. The responses observed were the NP size (<200 nm in order to penetrate the intestinal mucus layer), the suspension stability (ZP < |30| mV) and the OXY loading. RESULTS It was thus found that the amount and the nature of surfactant, the ratio between the phases, the amount of PLA-PEG polymer and OXY, the presence of a viscosifying agent, and the duration of the sonication could significantly influence the responses. Finally, OXY-loaded NPs from both processes were obtained with NP size of 195 and 226 nm and OXY loading of 4 and 3.3% for double and simple emulsions, respectively. CONCLUSION The two processes appeared to be suitable for OXY encapsulation and comparable in term of NP size, peptide drug load and release obtained.
Collapse
Affiliation(s)
- Betty Gourdon
- Technologie Servier, 27 rue Eugène Vignat, Orléans, France.,Inserm, U1144, F-75006, Paris, France.,Faculté de Pharmacie de Paris, UMR-S 1144, Université Paris Descartes, F-75006, Paris, France
| | - Xavier Declèves
- Inserm, U1144, F-75006, Paris, France. .,Faculté de Pharmacie de Paris, UMR-S 1144, Université Paris Descartes, F-75006, Paris, France. .,Inserm UMR-S1144, Universités Paris Descartes et Paris Diderot, 4 avenue de l'observatoire, 75006, Paris, France.
| | | | | |
Collapse
|
28
|
Suktham K, Koobkokkruad T, Wutikhun T, Surassmo S. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Int J Pharm 2017; 537:48-56. [PMID: 29229512 DOI: 10.1016/j.ijpharm.2017.12.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
Sericin protein nanoparticles are a biocompatible, bio-viable class of nanocarriers gaining prominence in drug delivery system. This research aimed to investigate the suitability fabrication of silk protein (SP) nanoparticles for loading with resveratrol (RSV) via a solventless precipitation technique. The addition of 0.5% (w/v) pluronic surfactant proved optimal for SP nanoparticle fabrication, with obtained nanoparticles being spherical, mono-dispersed and having mean size of approximately 200-400 nm. All exhibited negative surface charges, the extent of which being dependent on the SP concentration, and were non-toxic to normal skin fibroblasts (CRL-2522). Loading of RSV, a promising which poorly soluble multi-targeted anti-oxidative and anti-inflammatory natural polyphenol, into SP nanoparticles proved feasible, with encapsulation levels of 71-75% for 0.6% and 1.0% (w/v) nanoparticle formulations, respectively. Resveratrol-loaded SP nanoparticles strongly inhibited growth of colorectal adenocarcinoma (Caco-2) cells although proved non-cytotoxic to skin fibroblasts, as indicated by cell viability assays. Cellular internalization of SP nanoparticles proved facile and dependent on incubation time; transfection of these carriers, in vitro results indicating sustained release of RSV (over 72 h), and drug solubility enhancements on encapsulation highlight their potential in therapeutic and pharmaceutical applications. Thus, SP nanoparticles is a promising approach to be potential bio-nanocarrier for drug delivery system.
Collapse
Affiliation(s)
- Kunat Suktham
- Nano-Delivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Thailand
| | - Thongchai Koobkokkruad
- Nano-Cosmeceutical Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Thailand
| | - Tuksadon Wutikhun
- Nano-Characterization Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Thailand
| | - Suvimol Surassmo
- Nano-Delivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Thailand.
| |
Collapse
|
29
|
Moraes Moreira Carraro T, Altmeyer C, Maissar Khalil N, Mara Mainardes R. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J Mycol Med 2017; 27:519-529. [DOI: 10.1016/j.mycmed.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
30
|
Sathyamoorthy N, Magharla DD, Vankayalu SD. Effect of Surface Modification on the In vitro Protein Adsorption and Cell Cytotoxicity of Vinorelbine Nanoparticles. J Pharm Bioallied Sci 2017; 9:135-143. [PMID: 28717337 PMCID: PMC5508415 DOI: 10.4103/jpbs.jpbs_258_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Context: Nanocarriers possessing long-circulating abilities could take advantage of the pathophysiology of tumor vasculature to achieve spatial placement. To attain such qualities, the drug carriers should possess suitable physicochemical properties such as size and surface hydrophilicity. Aim: The aim of this study was to prepare poly(ε-caprolactone) nanoparticles (NPs) loaded with vinorelbine bitartrate (VB) and to modify its steric properties using polyethylene glycol and poloxamer. Furthermore, the influence of surface modification of NPs on their physicochemical and cell interactive properties was evaluated. Materials and Methods: NPs were prepared by double emulsion solvent extraction–evaporation technique. The prepared NPs were evaluated for their physicochemical properties, in vitro protein adsorption and cell cytotoxicity. Results and Discussion: The NPs were <250 nm with an entrapment efficiency ranging between 40% and 52%. The zeta potential of the NPs varied from −7.52 mV to −1.27 mV depending on the surface modification. The in vitro release studies exhibited a biphasic pattern with an initial burst release followed by controlled release of the drug over 72 h. The protein adsorption studies revealed that the ability to resist protein adsorption was influenced by the concentration of surface-modifying agents and the amount of proteins available for interaction. The surface-modified NPs produced cell cytotoxicity comparable to free VB at higher concentrations owing to sustained release of the drug into the cellular environment. Conclusion: The results emphasize that surface modification of nanocarriers is an essential and effective tool to dodge opsonization and phagocytosis in the physiological milieu.
Collapse
|
31
|
Li Y, Zhang Y, Li P, Mi G, Tu J, Sun L, Webster TJ, Shen Y. Ion-paired pirenzepine-loaded micelles as an ophthalmic delivery system for the treatment of myopia. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2079-2089. [PMID: 28539273 DOI: 10.1016/j.nano.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Myopia is one of the most common ocular disorders for which standard treatments, such as refractive surgery, often involve invasive procedures. Pirenzepine (PRZ), a muscarinic receptor antagonist, has been recognized as a promising candidate for the treatment of myopia, but possesses poor ocular bioavailability. The overall objective of this study was to prepare PRZ-sorbic acid complexes suitable to be encapsulated into micelles with high efficiency for optimal ophthalmic delivery. The results demonstrated that sorbic acid, used as the counter ion, had the most significant effects in increasing the octanol-water distribution coefficient of PRZ as well as improving its corneal permeability in vitro among various counter ions tested. In vivo absorption results showed that a 1.5 times higher bioavailability was achieved by the addition of sorbic acid at a 1:1 ratio. Cytotoxicity studies in vitro and biocompatibility studies in vivo indicated that the micelles did not cause significant toxicities to the eyes.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yong Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Gujie Mi
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Linlin Sun
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States.
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China; Department of Chemical Engineering, Northeastern University, Boston, MA, United States.
| |
Collapse
|
32
|
Qin X, Chen K, Cao L, Zhang Y, Li L, Guo X. Antifouling performance of nano-sized spherical poly(N-hydroxyethyl acrylamide) brush. Colloids Surf B Biointerfaces 2017; 155:408-414. [PMID: 28460303 DOI: 10.1016/j.colsurfb.2017.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 11/16/2022]
Abstract
The biomedical applications of nanoparticles are still impeded by the non-specific adsorption of proteins, cells, or others biological species in vivo/in vitro. In this work, poly(N-hydroxyethyl acrylamide) was hired to modify a solid polymer core, polystyrene (PS) nanoparticles, via surface-initiated photo-emulsion polymerization to form nano-sized spherical poly(N-hydroxyethyl acrylamide) brush (PS@PHEAA). Its antifouling ability and stability were investigated by dynamic light scattering (DLS), turbidimetric titration, and isothermal titration calorimetry (ITC). The size of PS@PHEAA was constant as a function of pH, while slightly changed with ionic strength in single protein solution. ITC data confirmed that protein was slightly adsorbed on PS@PHEAA and the ionic strength influenced the adsorption. All characterizations demonstrated that PHEAA layer reduced the interaction between nanoparticles and proteins. Thus, these nanoparticles ideal candidates for future applications in the biomedical field.
Collapse
Affiliation(s)
- Xue Qin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lan Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, China.
| |
Collapse
|
33
|
Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res 2017; 7:416-427. [DOI: 10.1007/s13346-017-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
d'Arcy R, Burke J, Tirelli N. Branched polyesters: Preparative strategies and applications. Adv Drug Deliv Rev 2016; 107:60-81. [PMID: 27189232 DOI: 10.1016/j.addr.2016.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
In the last 20years, the availability of precision chemical tools (e.g. controlled/living polymerizations, 'click' reactions) has determined a step change in the complexity of both the macromolecular architecture and the chemical functionality of biodegradable polyesters. A major part in this evolution has been played by the possibilities that controlled macromolecular branching offers in terms of tailored physical/biological performance. This review paper aims to provide an updated overview of preparative techniques that derive hyperbranched, dendritic, comb, grafted polyesters through polycondensation or ring-opening polymerization mechanisms.
Collapse
|
35
|
Scheicher B, Lorenzer C, Gegenbauer K, Partlic J, Andreae F, Kirsch AH, Rosenkranz AR, Werzer O, Zimmer A. Manufacturing of a Secretoneurin Drug Delivery System with Self-Assembled Protamine Nanoparticles by Titration. PLoS One 2016; 11:e0164149. [PMID: 27828968 PMCID: PMC5102448 DOI: 10.1371/journal.pone.0164149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
Since therapeutic peptides and oligonucleotides are gathering interests as active pharmaceutical ingredients (APIs), nanoparticulate drug delivery systems are becoming of great importance. Thereby, the possibility to design drug delivery systems according to the therapeutic needs of APIs enhances clinical implementation. Over the last years, the focus of our group was laid on protamine-oligonucleotide-nanoparticles (so called proticles), however, the possibility to modify the size, zeta potential or loading efficiencies was limited. Therefore, at the present study we integrated a stepwise addition of protamine (titration) into the formation process of proticles loaded with the angiogenic neuropeptide secretoneurin (SN). A particle size around 130 nm was determined when proticles were assembled by the commonly used protamine addition at once. Through application of the protamine titration process it was possible to modify and adjust the particle size between approx. 120 and 1200 nm (dependent on mass ratio) without influencing the SN loading capacity. Dynamic light scattering pointed out that the difference in particle size was most probably the result of a secondary aggregation. Initially-formed particles of early stages in the titration process aggregated towards bigger assemblies. Atomic-force-microscopy images also revealed differences in morphology along with different particle size. In contrast, the SN loading was only influenced by the applied mass ratio, where a slight saturation effect was observable. Up to 65% of deployed SN could be imbedded into the proticle matrix. An in-vivo biodistribution study (i.m.) showed a retarded distribution of SN from the site of injection after the application of a SN-proticle formulation. Further, it was demonstrated that SN loaded proticles can be successfully freeze-dried and resuspended afterwards. To conclude, the integration of the protamine titration process offers new possibilities for the formulation of proticles in order to address key parameters of drug delivery systems as size, API loading or modified drug release.
Collapse
Affiliation(s)
- Bernhard Scheicher
- Department of Pharmaceutical Technology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Cornelia Lorenzer
- Department of Pharmaceutical Technology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Katrin Gegenbauer
- Department of Pharmaceutical Technology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Julia Partlic
- Department of Pharmaceutical Technology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | | | - Alexander H. Kirsch
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Auenbruggerplatz 27, Graz, Austria
| | - Alexander R. Rosenkranz
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Auenbruggerplatz 27, Graz, Austria
| | - Oliver Werzer
- Department of Pharmaceutical Technology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Andreas Zimmer
- Department of Pharmaceutical Technology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
36
|
Vu-Quang H, Vinding MS, Nielsen T, Ullisch MG, Nielsen NC, Kjems J. Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared and 19 F magnetic resonance imaging modalities. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1873-1884. [DOI: 10.1016/j.nano.2016.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/28/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
|
37
|
Khare V, Singh A, Mahajan G, Alam N, Kour S, Gupta M, Kumar A, Singh G, Singh SK, Saxena AK, Mondhe DM, Gupta PN. Long-circulatory nanoparticles for gemcitabine delivery: Development and investigation of pharmacokinetics and in-vivo anticancer efficacy. Eur J Pharm Sci 2016; 92:183-93. [DOI: 10.1016/j.ejps.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
|
38
|
Kenesei K, Murali K, Czéh Á, Piella J, Puntes V, Madarász E. Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles. J Nanobiotechnology 2016; 14:55. [PMID: 27388915 PMCID: PMC4936314 DOI: 10.1186/s12951-016-0210-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Precisely targeted nanoparticle delivery is critically important for therapeutic applications. However, our knowledge on how the distinct physical and chemical properties of nanoparticles determine tissue penetration through physiological barriers, accumulation in specific cells and tissues, and clearance from selected organs has remained rather limited. In the recent study, spectral imaging fluorescence microscopy was exploited for precise and rapid monitoring of tissue- and cell-type-specific distribution of fluorescent polystyrene nanoparticles with chemically distinct surface compositions. METHODS Fluorescent polystyrene nanoparticles with 50-90 nm diameter and with carboxylated- or polyethylene glycol-modified (PEGylated) surfaces were delivered into adult male and pregnant female mice with a single intravenous injection. The precise anatomical distribution of the particles was investigated by confocal microscopy after a short-term (5 min) or long-term (4 days) distribution period. In order to distinguish particle-fluorescence from tissue autofluorescence and to enhance the detection-efficiency, fluorescence spectral detection was applied during image acquisition and a post hoc full spectrum analysis was performed on the final images. RESULTS Spectral imaging fluorescence microscopy allowed distinguishing particle-fluorescence from tissue-fluorescence in all examined organs (brain, kidney, liver, spleen and placenta) in NP-treated slice preparations. In short-time distribution following in vivo NP-administration, all organs contained carboxylated-nanoparticles, while PEGylated-nanoparticles were not detected in the brain and the placenta. Importantly, nanoparticles were not found in any embryonic tissues or in the barrier-protected brain parenchyma. Four days after the administration, particles were completely cleared from both the brain and the placenta, while PEGylated-, but not carboxylated-nanoparticles, were stuck in the kidney glomerular interstitium. In the spleen, macrophages accumulated large amount of carboxylated and PEGylated nanoparticles, with detectable redistribution from the marginal zone to the white pulp during the 4-day survival period. CONCLUSIONS Spectral imaging fluorescence microscopy allowed detecting the tissue- and cell-type-specific accumulation and barrier-penetration of polystyrene nanoparticles with equal size but chemically distinct surfaces. The data revealed that polystyrene nanoparticles are retained by the reticuloendothelial system regardless of surface functionalization. Taken together with the increasing production and use of nanoparticles, the results highlight the necessity of long-term distribution studies to estimate the potential health-risks implanted by tissue-specific nanoparticle accumulation and clearance.
Collapse
Affiliation(s)
- Kata Kenesei
- />School of PhD Studies, Semmelweis University, Üllői Street 26, Budapest, 1085 Hungary
- />Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, Budapest, 1083 Hungary
| | - Kumarasamy Murali
- />School of PhD Studies, Semmelweis University, Üllői Street 26, Budapest, 1085 Hungary
- />Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, Budapest, 1083 Hungary
| | - Árpád Czéh
- />Soft Flow Hungary Kft., Kedves u. 20, Pecs, 7628 Hungary
| | - Jordi Piella
- />Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Victor Puntes
- />Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Emília Madarász
- />Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, Budapest, 1083 Hungary
| |
Collapse
|
39
|
Schöttler S, Landfester K, Mailänder V. Die Steuerung des Stealth-Effekts von Nanoträgern durch das Verständnis der Proteinkorona. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Susanne Schöttler
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Volker Mailänder
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| |
Collapse
|
40
|
Schöttler S, Landfester K, Mailänder V. Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angew Chem Int Ed Engl 2016; 55:8806-15. [PMID: 27303916 DOI: 10.1002/anie.201602233] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The past decade has seen a significant increase in interest in the use of polymeric nanocarriers in medical applications. In particular, when used as drug vectors in targeted delivery, nanocarriers could overcome many obstacles for drug therapy. Nevertheless, their application is still impeded by the complex composition of the blood proteins covering the particle surface, termed the protein corona. The protein corona complicates any prediction of cell interactions, biodistribution, and toxicity. In particular, the unspecific uptake of nanocarriers is a major obstacle in clinical studies. This Minireview provides an overview of what we currently know about the characteristics of the protein corona of nanocarriers, with a focus on surface functionalization that reduces unspecific uptake (the stealth effect). The ongoing improvement of nanocarriers to allow them to meet all the requirements necessary for successful application, including targeted delivery and stealth, are further discussed.
Collapse
Affiliation(s)
- Susanne Schöttler
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
41
|
Rongbin H, Lei X, Ying L, Xiangping D, Xuan C, Lanfang L, Cuiyun Y, Yanming C, Guotao T. Synthesis and in vitro evaluation of pH-sensitive PEG-I-dC16 block polymer micelles for anticancer drug delivery. J Pharm Pharmacol 2016; 68:751-61. [DOI: 10.1111/jphp.12545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 02/14/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
To develop an acid trigger release of antitumour drug delivery carriers, pH-sensitive amphiphilic poly (ethyleneglycol)-imine-benzoic-dipalmitate (PEG-I-dC16) polymers were designed and synthesized and the drug-loaded micelles were evaluated in vitro.
Methods
PEG-I-dC16 synthesized by Schiff base synthetic method and characterized by 1H-NMR. To determine the drug-loading capacity, doxorubicin (DOX) was encapsulated in the micelles using membrane dialysis method. Zeta potential, particle size, drug-loading capacity, in vitro drug release in different pH conditions and cytotoxicity evaluation of micelles were carried out comparing with non-acid liable PEG–amide–benzoic–dipalmitate (PEG-A-dC16) polymers micelles. The cellular uptake and intracellular distribution of DOX were detected by flow cytometry and confocal laser scanning microscope.
Key findings
Drug-loading capacity and encapsulation efficiency of micelle (PEG molecular weight 2k) were 12.7 ± 1.1% and 49.8 ± 2.2%, respectively. The average particle size was 72.3 ± 2.5 nm. The DOX release rate of PEG-I-dC16 micelles is much higher at pH 6.5 than at pH 7.4. DOX cellular uptake and nuclear accumulation of PEG-I-dC16 micelles were more efficiency than that of PEG-A-dC16 micelles.
Conclusion
The pH-sensitive PEG-I-dC16 micelles could be a promising drug delivery system for anticancer drugs.
Collapse
Affiliation(s)
- Huang Rongbin
- The First People's Hospital of Xiangtan City, Xiangtan, China
| | - Xiang Lei
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics University of South China, Hengyang, China
| | - Liu Ying
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics University of South China, Hengyang, China
| | - Deng Xiangping
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics University of South China, Hengyang, China
| | - Cao Xuan
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics University of South China, Hengyang, China
| | - Li Lanfang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics University of South China, Hengyang, China
| | - Yu Cuiyun
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics University of South China, Hengyang, China
| | - Chen Yanming
- Mu Dan Jiang You Bo Pharmacertical Co.Ltd, Mudanjiang, China
| | - Tang Guotao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics University of South China, Hengyang, China
| |
Collapse
|
42
|
Mattu C, Silvestri A, Wang TR, Boffito M, Ranzato E, Cassino C, Ciofani G, Ciardelli G. Surface-functionalized polyurethane nanoparticles for targeted cancer therapy. POLYM INT 2016. [DOI: 10.1002/pi.5094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Clara Mattu
- Politecnico di Torino; DIMEAS − Dipartimento di Ingegneria Meccanica e Aerospaziale; C.so Duca degli Abruzzi, 24 10129 Torino Italy
| | - Antonella Silvestri
- Politecnico di Torino; DIMEAS − Dipartimento di Ingegneria Meccanica e Aerospaziale; C.so Duca degli Abruzzi, 24 10129 Torino Italy
| | - Tian Ran Wang
- Politecnico di Torino; DIMEAS − Dipartimento di Ingegneria Meccanica e Aerospaziale; C.so Duca degli Abruzzi, 24 10129 Torino Italy
| | - Monica Boffito
- Politecnico di Torino; DIMEAS − Dipartimento di Ingegneria Meccanica e Aerospaziale; C.so Duca degli Abruzzi, 24 10129 Torino Italy
| | - Elia Ranzato
- Università Piemonte Orientale; DiSIT − Dipartimento di Scienze e Innovazione Tecnologica; Viale T. Michel, 11 15121 Alessandria Italy
| | - Claudio Cassino
- Università Piemonte Orientale; DiSIT − Dipartimento di Scienze e Innovazione Tecnologica; Viale T. Michel, 11 15121 Alessandria Italy
| | - Gianni Ciofani
- Politecnico di Torino; DIMEAS − Dipartimento di Ingegneria Meccanica e Aerospaziale; C.so Duca degli Abruzzi, 24 10129 Torino Italy
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Gianluca Ciardelli
- Politecnico di Torino; DIMEAS − Dipartimento di Ingegneria Meccanica e Aerospaziale; C.so Duca degli Abruzzi, 24 10129 Torino Italy
| |
Collapse
|
43
|
Dalmolin LF, Khalil NM, Mainardes RM. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:1-8. [PMID: 26952391 DOI: 10.1016/j.msec.2016.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 01/12/2023]
Abstract
Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of -22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery.
Collapse
Affiliation(s)
- Luciana Facco Dalmolin
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava, PR, Brazil
| | - Rubiana Mara Mainardes
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava, PR, Brazil.
| |
Collapse
|
44
|
Cellular uptake of poly(dl-lactide-co-glycolide) nanoparticles: effects of drugs and surface characteristics of nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0221-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Andrade F, Neves JD, Gener P, Schwartz S, Ferreira D, Oliva M, Sarmento B. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1621-31. [DOI: 10.1016/j.nano.2015.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022]
|
46
|
Crawford L, Higgins J, Putnam D. A Simple and Sensitive Method to Quantify Biodegradable Nanoparticle Biodistribution using Europium Chelates. Sci Rep 2015; 5:13177. [PMID: 26346817 PMCID: PMC4561907 DOI: 10.1038/srep13177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/07/2015] [Indexed: 12/02/2022] Open
Abstract
The biodistribution of biodegradable nanoparticles can be difficult to quantify. We report a method using time resolved fluorescence (TRF) from a lanthanide chelate to minimize background autofluorescence and maximize the signal to noise ratio to detect biodegradable nanoparticle distribution in mice. Specifically, antenna chelates containing europium were entrapped within nanoparticles composed of polylactic acid-polyethylene glycol diblock copolymers. Tissue accumulation of nanoparticles following intravenous injection was quantified in mice. The TRF of the nanoparticles was found to diminish as a second order function in the presence of serum and tissue compositions interfered with the europium signal. Both phenomena were corrected by linearization of the signal function and calculation of tissue-specific interference, respectively. Overall, the method is simple and robust with a detection limit five times greater than standard fluorescent probes.
Collapse
Affiliation(s)
- Lindsey Crawford
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY
| | - Jaclyn Higgins
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY
| | - David Putnam
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY
- Department of Biomedical Engineering, Cornell University, Ithaca NY
| |
Collapse
|
47
|
Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 2015; 69:1-11. [PMID: 26275857 DOI: 10.1016/j.biomaterials.2015.07.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/31/2022]
Abstract
Poly(ethylene glycol) (PEG) is usually used to protect nanoparticles from rapid clearance in blood. The effects are highly dependent on the surface PEG density of nanoparticles. However, there lacks a detailed and informative study in PEG density and in vivo drug delivery due to the critical techniques to precisely control the surface PEG density when maintaining other nano-properties. Here, we regulated the polymeric nanoparticles' size and surface PEG density by incorporating poly(ε-caprolactone) (PCL) homopolymer into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) and adjusting the mass ratio of PCL to PEG-PCL during the nanoparticles preparation. We further developed a library of polymeric nanoparticles with different but controllable sizes and surface PEG densities by changing the molecular weight of the PCL block in PEG-PCL and tuning the molar ratio of repeating units of PCL (CL) to that of PEG (EG). We thus obtained a group of nanoparticles with variable surface PEG densities but with other nano-properties identical, and investigated the effects of surface PEG densities on the biological behaviors of nanoparticles in mice. We found that, high surface PEG density made the nanoparticles resistant to absorption of serum protein and uptake by macrophages, leading to a greater accumulation of nanoparticles in tumor tissue, which recuperated the defects of decreased internalization by tumor cells, resulting in superior antitumor efficacy when carrying docetaxel.
Collapse
|
48
|
Xie L, Beyer S, Vogel V, Wacker MG, Mäntele W. Assessing the drug release from nanoparticles: Overcoming the shortcomings of dialysis by using novel optical techniques and a mathematical model. Int J Pharm 2015; 488:108-19. [DOI: 10.1016/j.ijpharm.2015.03.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022]
|
49
|
Yoneki N, Takami T, Ito T, Anzai R, Fukuda K, Kinoshita K, Sonotaki S, Murakami Y. One-pot facile preparation of PEG-modified PLGA nanoparticles: Effects of PEG and PLGA on release properties of the particles. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Jiang W, Wang J, Yang L, Jiang X, Bai Z, Wang Z, He Y, Wang D. Nanostructured lipid carriers modified with PEGylated carboxymethylcellulose polymers for effective delivery of docetaxel. RSC Adv 2015. [DOI: 10.1039/c5ra13642c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An amphiphilic carboxymethylcellulose-graft-histidine/methoxypolyethylene glycol (CMP) copolymer was firstly synthesized to modify nanostructured lipid carriers (NLCs) for effective delivery of docetaxel.
Collapse
Affiliation(s)
- Weihua Jiang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Ju Wang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Lei Yang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Xuewei Jiang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Zhaoshi Bai
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Zheran Wang
- Department of Biology
- University of the Cumberlands
- Williamsburg
- USA
| | - Yunpeng He
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Dongkai Wang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| |
Collapse
|