1
|
Yang X, Lv Z, Han C, Zhang J, Duan Y, Guo Q. Stability and encapsulation properties of daidzein in zein/carrageenan/sodium alginate nanoparticles with ultrasound treatment. Int J Biol Macromol 2024; 262:130070. [PMID: 38340944 DOI: 10.1016/j.ijbiomac.2024.130070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
This study aimed to prepare carrageenan/sodium alginate double-stabilized layers of zein nanoparticles loaded with daidzein using ultrasound technology to investigate the effect of ultrasound treatment on the stability of composite nanoparticles and encapsulation of daidzein. Compared with composite nanoparticles without ultrasound treatment, the encapsulation efficiency of nanoparticles was increased (90.36 %) after ultrasound treatment (320 W, 15 min). Ultrasound treatment reduced the particle size and PDI of nanoparticles and improved the stability and solubility of nanoparticles. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanoparticles treated with ultrasound were smooth spherical and uniformly distributed. Fourier transform infrared spectroscopy (FTIR) results showed that the main forces that form nanoparticles are hydrogen bonding, electrostatic interactions and hydrophobic interactions. Fluorescence and CD chromatography showed that ultrasound treatment alters the secondary structure of zein and maintains nanoparticle stability. Encapsulation of daidzein in nanocarriers with ultrasound treatment can effectively scavenge DPPH and ABTS free radicals, improve antioxidant activity, and realize the slow release of daidzein in the gastrointestinal tract. The results showed that ultrasonication helps the construction of hydrophobic bioactives delivery carriers and provides better protection for unstable bioactives.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhuojia Lv
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cuiping Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Junfang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Duan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
An H, Deng X, Wang F, Xu P, Wang N. Dendrimers as Nanocarriers for the Delivery of Drugs Obtained from Natural Products. Polymers (Basel) 2023; 15:polym15102292. [PMID: 37242865 DOI: 10.3390/polym15102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Natural products have proven their value as drugs that can be therapeutically beneficial in the treatment of various diseases. However, most natural products have low solubility and poor bioavailability, which pose significant challenges. To solve these issues, several drug nanocarriers have been developed. Among these methods, dendrimers have emerged as vectors for natural products due to their superior advantages, such as a controlled molecular structure, narrow polydispersity index, and the availability of multiple functional groups. This review summarizes current knowledge on the structures of dendrimer-based nanocarriers for natural compounds, with a particular focus on applications in alkaloids and polyphenols. Additionally, it highlights the challenges and perspectives for future development in clinical therapy.
Collapse
Affiliation(s)
- Huan An
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Fang Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Pingcui Xu
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Nani Wang
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| |
Collapse
|
3
|
Assessment of Pharmacokinetic Parameters of Daidzein-Containing Nanosuspension and Nanoemulsion Formulations After Oral Administration to Rats. Eur J Drug Metab Pharmacokinet 2022; 47:247-257. [PMID: 35018554 DOI: 10.1007/s13318-021-00746-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Daidzein has several biological effects such as antioxidation, anti-inflammation, chemoprevention, and anticancer effects. The aim of this study was to evaluate the impact of nano-formulations (nanoemulsion-NE and nanosuspension-NS) prepared to increase the oral bioavailability of daidzein, a poorly water-soluble isoflavone, on the pharmacokinetic parameters of daidzein in rats. METHODS A high-performance liquid chromatography-ultraviolet (HPLC-UV) method was successfully developed for daidzein analysis in rat plasma. The pharmacokinetics studies of the nano-sized formulations, compared to coarse daidzein suspension, were carried out in the rats by a single oral dose at 10 mg/kg (n = 6/group). Area under the plasma concentration-time curve from time zero to extrapolation to time infinity (AUC0-∞), maximum plasma concentration (Cmax), time to reach maximum plasma concentration (tmax), and elimination half life (t1/2) values for coarse daidzein suspension, daidzein-NS, and daidzein-NE were estimated by a non-compartmental analysis. RESULTS The AUC values of daidzein-NE and daidzein-NS were approximately 2.62 and 2.65 times higher than that of coarse daidzein suspension, respectively (p < 0.05). Relative bioavailability (Frel) (%) values of daidzein following oral administration of nanosuspension or nanoemulsion formulations were about 265.6% and 262.3%, respectively. CONCLUSION It revealed that nanoscale size is an important factor to overcome any dissolution rate barriers to oral bioavailability of the low water-soluble compound. Nanoemulsion and nanosuspension formulations are beneficial dosage forms to increase the oral bioavailability of Biopharmaceutical Classification System (BCS) Class II and Class IV compounds.
Collapse
|
4
|
Formulation of Genistein-HP β Cyclodextrin-Poloxamer 188 Ternary Inclusion Complex: Solubility to Cytotoxicity Assessment. Pharmaceutics 2021; 13:pharmaceutics13121997. [PMID: 34959278 PMCID: PMC8707042 DOI: 10.3390/pharmaceutics13121997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The current study was designed to prepare the inclusion complex Genistein (GS) using Hydroxypropyl β cyclodextrin (HP β CD) and poloxamer 188 (PL 188). The binary inclusion complex (GS BC) and ternary inclusion complex (GS TC) were developed by microwave irradiation technique and evaluated for a comparative dissolution study. Further, the samples were assessed for FTIR, DSC, XRD, and NMR for the confirmation of complex formation. Finally, antioxidant and antimicrobial studies and cytotoxicity studies on a breast cancer (MCF-7) cell line were conducted. The dissolution study result showed a marked increment in GS dissolution/release after incorporation in binary (GS: HP β CD, 1:1) and ternary (GS: HP β CD: PL 188; 1:1:0.5) inclusion complexes. Moreover, the ternary complex exhibited a significant enhancement (p < 0.05) in dissolution than did the binary complexes. This might be due to the presence of PL 188, which helps in solubility enhancement of GS. DSC, XRD and SEM evaluation confirmed the modification in the structure of GS. FTIR and NMR results indicated the formation of an inclusion complex. The antioxidant and antimicrobial activity results revealed that GS TC has shown significant (p < 0.05) higher activity than pure GS. The cytotoxicity study results also depicted concentration-dependent cytotoxicity. GS TC exhibited significantly (p < 0.05) high cytotoxicity to cancer cells (IC50 = 225 µg/mL) than pure GS (IC50 = 480 µg/mL). Finally, it was concluded that a remarkable enhancement in the dissolution was observed after the inclusion of GS in the ternary complex and it therefore has significant potential for the treatment of breast cancer.
Collapse
|
5
|
Calorimetric and spectroscopic studies of interactions of PPI G4 dendrimer with tegafur in aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Zagórska-Dziok M, Kleczkowska P, Olędzka E, Figat R, Sobczak M. Poly(chitosan-ester-ether-urethane) Hydrogels as Highly Controlled Genistein Release Systems. Int J Mol Sci 2021; 22:3339. [PMID: 33805204 PMCID: PMC8037816 DOI: 10.3390/ijms22073339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Polymeric hydrogels play an increasingly important role in medicine, pharmacy and cosmetology. They appear to be one of the most promising groups of biomaterials due to their favorable physicochemical properties and biocompatibility. The objective of the presented study was to synthesize new poly(chitosan-ester-ether-urethane) hydrogels and to study the kinetic release of genistein (GEN) from these biomaterials. In view of the above, six non-toxic hydrogels were synthesized via the Ring-Opening Polymerization (ROP) and polyaddition processes. The poly(ester-ether) components of the hydrogels have been produced in the presence of the enzyme as a biocatalyst. In some cases, the in vitro release rate of GEN from the obtained hydrogels was characterized by near-zero-order kinetics, without "burst release" and with non-Fickian transport. It is important to note that developed hydrogels have been shown to possess the desired safety profile due to lack of cytotoxicity to skin cells (keratinocytes and fibroblasts). Taking into account the non-toxicity of hydrogels and the relatively highly controlled release profile of GEN, these results may provide fresh insight into polymeric hydrogels as an effective dermatological and/or cosmetological tool.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
| | - Patrycja Kleczkowska
- Centre for Preclinical Research (CBP), Department of Pharmacodynamics, Medical University of Warsaw, 1B Banacha St., 02-097 Warsaw, Poland;
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Ewa Olędzka
- Chair of Analytical Chemistry and Biomaterials, Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| | - Ramona Figat
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| | - Marcin Sobczak
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
- Chair of Analytical Chemistry and Biomaterials, Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| |
Collapse
|
7
|
Xiao Y, Ho CT, Chen Y, Wang Y, Wei Z, Dong M, Huang Q. Synthesis, Characterization, and Evaluation of Genistein-Loaded Zein/Carboxymethyl Chitosan Nanoparticles with Improved Water Dispersibility, Enhanced Antioxidant Activity, and Controlled Release Property. Foods 2020; 9:E1604. [PMID: 33158107 PMCID: PMC7694205 DOI: 10.3390/foods9111604] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 02/02/2023] Open
Abstract
Genistein is one of major isoflavones derived from soybean products and it is believed to have beneficial effects on human health. However, its low water-solubility and poor oral bioavailability severely hamper its use as a functional food ingredient or for pharmaceutical industry. In this study, zein and zein/carboxymethyl chitosan (CMCS) nanoparticles were prepared to encapsulate genistein using a combined liquid-liquid phase separation method. The physicochemical properties of fabricated nanoparticles were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that genistein encapsulated with zein nanoparticles significantly improved its water dispersibility, antioxidant activity in the aqueous phase, and photostability against UV light. Moreover, genistein encapsulated in zein nanoparticles showed a sustained release property. Furthermore, it was found that encapsulation efficiency of genistein was significantly enhanced after CMCS coating, and this effect was more pronounced after the complex nanoparticles cross-linked with calcium ions when compared with the use of zein as a single encapsulant. In addition, compared to zein nanoparticles without biopolymer coating, CMCS coating significantly enhanced the thermal and storage stability of the formed nanoparticles, and delayed the release of genistein. A schematic diagram of zein and zein/carboxymethyl chitosan (CMCS) nanoparticles formation mechanism for encapsulation of genistein was proposed. According to the results of the current study, it could be concluded that encapsulation of genistein in zein/CMCS nanoparticles is a promising approach to improve its water dispersibility, antioxidant activity, photostability against UV light and provide controlled release for food/pharmaceutical applications.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (Y.W.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (Y.W.)
| | - Zihao Wei
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| |
Collapse
|
8
|
Yang F, Fu C, Lv L, Zhang F, Wang S. Self-microemulsifying delivery system of WPI-Dai nanocomplex mixed with nonionic surfactant and its superiority in delivering daidzein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Spectroscopic, electrochemical and calorimetric studies on the interactions of poly(propyleneimine) G4 dendrimer with 5-fluorouracil in aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
11
|
Improved Pharmacokinetics and Tissue Uptake of Complexed Daidzein in Rats. Pharmaceutics 2020; 12:pharmaceutics12020162. [PMID: 32079113 PMCID: PMC7076374 DOI: 10.3390/pharmaceutics12020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacokinetic profile and tissue uptake of daidzein (DAI) was determined in rat serum and tissues (lungs, eyes, brain, heart, spleen, fat, liver, kidney, and testes) after intravenous and intraperitoneal administration of DAI in suspension or complexed with ethylenediamine-modified γ-cyclodextrin (GCD-EDA/DAI). The absolute and relative bioavailability of DAI suspended (20 mg/kg i.v. vs. 50 mg/kg i.p.) and complexed (0.54 mg/kg i.v. vs. 1.35 mg/kg i.p.) was determined. After i.p. administration, absorption of DAI complexed with GCD-EDA was more rapid (tmax = 15 min) than that of DAI in suspension (tmax = 45 min) with a ca. 3.6 times higher maximum concentration (Cmax = 615 vs. 173 ng/mL). The i.v. half-life of DAI was longer in GCD-EDA/DAI complex compared with DAI in suspension (t0.5 = 380 min vs. 230 min). The volume of distribution of DAI given i.v. in GCD-EDA/DAI complex was ca. 6 times larger than DAI in suspension (38.6 L/kg vs. 6.2 L/kg). Our data support the concept that the pharmacokinetics of DAI suspended in high doses are nonlinear. Increasing the intravenous dose 34 times resulted in a 5-fold increase in AUC. In turn, increasing the intraperitoneal dose 37 times resulted in a ca. 2-fold increase in AUC. The results of this study suggested that GCD-EDA complex may improve DAI bioavailability after i.p. administration. The absolute bioavailability of DAI in GCD-EDA inclusion complex was ca. 3 times greater (F = 82.4% vs. 28.2%), and the relative bioavailability was ca. 21 times higher than that of DAI in suspension, indicating the need to study DAI bioavailability after administration by routes other than intraperitoneal, e.g., orally, subcutaneously, or intramuscularly. The concentration of DAI released from GCD-EDA/DAI inclusion complex to all the rat tissues studied was higher than after administration of DAI in suspension. The concentration of DAI in brain and lungs was found to be almost 90 and 45 times higher, respectively, when administered in complex compared to the suspended DAI. Given the nonlinear relationship between DAI bioavailability and the dose released from the GCD-EDA complex, complexation of DAI may thus offer an effective approach to improve DAI delivery for treatment purposes, for example in mucopolysaccharidosis (MPS), allowing the reduction of ingested DAI doses.
Collapse
|
12
|
Dib N, Fernández L, Santo M, Otero L, Alustiza F, Liaudat AC, Bosch P, Lavaggi ML, Cerecetto H, González M. Formation of dendrimer-guest complexes as a strategy to increase the solubility of a phenazine N, N'-dioxide derivative with antitumor activity. Heliyon 2019; 5:e01528. [PMID: 31049437 PMCID: PMC6482317 DOI: 10.1016/j.heliyon.2019.e01528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/22/2018] [Accepted: 04/11/2019] [Indexed: 11/20/2022] Open
Abstract
Poly(amidoamine) and Poly(propylenimine) dendrimers with different generations and peripheral groups were studied as solubility enhancers and nanocarriers for 7-bromo-2-hydroxy-phenazine N5,N10-dioxide. This compound possesses potential antitumoral and anti-trypanosomal activity, but its low solubility in physiological media precludes its possible application as therapeutic drug. The amino terminated dendrimers association with the active compounds as observed trough NMR studies showed that electrostatic interactions are essential in the solubilization enhancement process. The obtaining of a stable and no cytotoxic formulation makes the drug-carried association a suitable strategy for the generation of a drug delivery system for phenazine derivatives.
Collapse
Affiliation(s)
- Nahir Dib
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Luciana Fernández
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Marisa Santo
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Luis Otero
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580, Marcos Juárez, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Pablo Bosch
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - M Laura Lavaggi
- Departamento de Química Orgánica, Facultad de Química, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Mercedes González
- Departamento de Química Orgánica, Facultad de Química, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| |
Collapse
|
13
|
Lv L, Fu C, Zhang F, Wang S. Thermally-induced whey protein isolate-daidzein co-assemblies: Protein-based nanocomplexes as an inhibitor of precipitation/crystallization for hydrophobic drug. Food Chem 2019; 275:273-281. [DOI: 10.1016/j.foodchem.2018.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
14
|
Sansone F, Mencherini T, Picerno P, Lauro MR, Cerrato M, Aquino RP. Development of Health Products from Natural Sources. Curr Med Chem 2019; 26:4606-4630. [PMID: 30259806 DOI: 10.2174/0929867325666180926152139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
BioActive Compounds (BACs) recovered from food or food by-product matrices are useful in maintaining well being, enhancing human health, and modulating immune function to prevent or to treat chronic diseases. They are also generally seen by final consumers as safe, non-toxic and environment-friendly. Despite the complex process of production, chemical characterization, and assessment of health effects, BACs must also be manufactured in stable and bioactive ingredients to be used in pharmaceutical, food and nutraceutical industry. Generally, vegetable derivatives occur as sticky raw materials with pervasive smell and displeasing flavor. Also, they show critical water solubility and dramatic stability behavior over time, involving practical difficulties for industrial use. Therefore, the development of novel functional health products from natural sources requires the design of a suitable formulation to delivery BACs at the site of action, preserve stability during processing and storage, slow down the degradation processes, mask lousy tasting or smell, and increase the bioavailability, while maintaining the BACs functionality. The present review focuses on human health benefits, BACs composition, and innovative technologies or formulation approaches of natural ingredients from some selected foods and by-products from industrial food transformations.
Collapse
Affiliation(s)
| | | | - Patrizia Picerno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | | - Michele Cerrato
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | |
Collapse
|
15
|
Badalkhani-Khamseh F, Ebrahim-Habibi A, Hadipour NL. Influence of dendrimer surface chemistry and pH on the binding and release pattern of chalcone studied by molecular dynamics simulations. J Mol Recognit 2018; 32:e2757. [DOI: 10.1002/jmr.2757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/05/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Nasser L. Hadipour
- Department of Physical Chemistry; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
16
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018; 47:514-532. [PMID: 29154385 DOI: 10.1039/c7cs00550d] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For the first time, an overview of dendrimers in combination with natural products and analogues as anti-cancer agents is presented. This reflects the development of drug delivery systems, such as dendrimers, to tackle cancers. The most significant advantages of using dendrimers in nanomedicine are their high biocompatibility, good water solubility, and their entry - with or without encapsulated, complexed or conjugated drugs - through an endocytosis process. This strategy has accelerated over the years in order to develop nanosystems as nanocarriers, to decrease the intrinsic toxicity of anti-cancer agents, to decrease the drug side effects, to increase the efficacy of the treatment, and consequently to improve patient compliance.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https://doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
18
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https:/doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
19
|
Fumić B, Jablan J, Cinčić D, Zovko Končić M, Jug M. Cyclodextrin encapsulation of daidzein and genistein by grinding: implication on the glycosaminoglycan accumulation in mucopolysaccharidosis type II and III fibroblasts. J Microencapsul 2017; 35:1-12. [PMID: 29168930 DOI: 10.1080/02652048.2017.1409819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work aimed to investigate the potential effect of cyclodextrin encapsulation on intrinsic ability of daidzein (DAD) and genistein (GEN) to inhibit the glycosaminoglycan (GAG) synthesis in fibroblasts originating from patients with mucopolysaccharidosis (MPS), type II and III. DAD or GEN encapsulation with either 2-hydroxypropyl-β-cyclodextrin or sulphobuthylether-β-cyclodextrin were achieved by neat grinding and were characterised by thermal analysis, X-ray powder diffraction, scanning electron microscopy and solubility testing which confirmed the complexes formation with increased solubility with respect to starting compounds. Both isoflavones, as well as their co-ground cyclodextrin complexes reduced GAG levels in the fibroblasts of MPS II and MPS III patients from 54.8-77.5%, in a dose dependent manner, without any significant cytotoxic effect. Cyclodextrin encapsulation did not change the intrinsically high effect of both DAD and GEN on the GAG level reduction in the treated cells, thus could be considered as a part of combination therapies of MPS.
Collapse
Affiliation(s)
- Barbara Fumić
- a Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy , University of Zagreb , Zagreb , Croatia.,b Department of Laboratory Diagnostics , University Hospital Centre Zagreb , Zagreb , Croatia
| | - Jasna Jablan
- c Faculty of Pharmacy and Biochemistry, Department of Analystical Chemistry , University of Zagreb , Zagreb , Croatia
| | - Dominik Cinčić
- d Faculty of Science, Chemistry Department , University of Zagreb , Zagreb , Croatia
| | - Marijana Zovko Končić
- a Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy , University of Zagreb , Zagreb , Croatia
| | - Mario Jug
- e Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
20
|
Macías-Andrés VI, Li W, Aguilar-Reyes EA, Ding Y, Roether JA, Harhaus L, León-Patiño CA, Boccaccini AR. Preparation and characterization of 45S5 bioactive glass-based scaffolds loaded with PHBV microspheres with daidzein release function. J Biomed Mater Res A 2017; 105:1765-1774. [PMID: 28241393 DOI: 10.1002/jbm.a.36046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microsphere loaded 45S5 bioactive glass (BG) based scaffolds with drug releasing capability have been developed. PHBV microspheres with a mean particle size 4 ± 2 μm loaded with daidzein were obtained by oil-in-water single emulsion solvent evaporation method and applied to the surface of BG scaffolds by dip coating technique. The morphology, in vitro bioactivity in simulated body fluid (SBF), mechanical properties and drug release kinetics of microsphere loaded scaffolds were studied. The microspheres were shown to be homogeneously dispersed on the scaffold surfaces. It was confirmed that hydroxyapatite crystals homogeneously grew not only on the surface of the scaffold but also on the surface of the microspheres within 3 days of immersion in SBF. The daidzein release from the microsphere loaded scaffolds lasted almost 1 month and was determined to be diffusion controlled. The microsphere loaded BG scaffolds with daidzein releasing capability obtained in this study are a candidate for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1765-1774, 2017.
Collapse
Affiliation(s)
- Víctor I Macías-Andrés
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Wei Li
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, 91058, Germany
| | - Ena A Aguilar-Reyes
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Yaping Ding
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Polymer Materials, Erlangen, 91058, Germany
| | - Judith A Roether
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Polymer Materials, Erlangen, 91058, Germany
| | - Leila Harhaus
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, Department of Hand- and Plastic Surgery of Heidelberg University, BG Trauma Center Ludwigshafen, Germany.,Department of Plastic Surgery of Heidelberg University, BG Trauma Center Ludwigshafen, Ludwigshafen, 67071, Germany
| | - Carlos A León-Patiño
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, 91058, Germany
| |
Collapse
|
21
|
Cordisco E, Haidar CN, Coscueta ER, Nerli BB, Malpiedi LP. Integrated extraction and purification of soy isoflavones by using aqueous micellar systems. Food Chem 2016; 213:514-520. [PMID: 27451211 DOI: 10.1016/j.foodchem.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023]
Abstract
In this work, an integration of solid-liquid and liquid-liquid extractions by using aqueous micellar two-phase systems was evaluated as potential tool to purify soy isoflavones. Additionally, the proposed methodology aimed to preserve the protein content of the processed soy flour. The extractive assays were performed in AMTPS formed by Triton X-114 and sodium tartrate. In order to optimize the purification process, temperature and time were evaluated as independent variables. Under optimal working conditions, i.e. 100min and 33°C of incubation, IF were purified with a recovery percentage of 93 and a purification factor of almost 10. More importantly, the obtained sample presented an aglycone proportion superior to the reported by other methodologies. These results open perspectives to the use of aqueous micellar two-phase systems as an integrative methodology to extract, concentrate and purify isoflavones.
Collapse
Affiliation(s)
- Estefanía Cordisco
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Carla N Haidar
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Ezequiel R Coscueta
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Bibiana B Nerli
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Luciana P Malpiedi
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| |
Collapse
|
22
|
Increased Active Tumor Targeting by An αvβ3-Targeting and Cell-Penetrating Bifunctional Peptide-Mediated Dendrimer-Based Conjugate. Pharm Res 2016; 34:121-135. [DOI: 10.1007/s11095-016-2045-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
|
23
|
Soltani F, Ramezani M, Amel Farzad S, Mokhtarzadeh A, Hashemi M. Comparison study of the effect of alkyl-modified and unmodified PAMAM and PPI dendrimers on solubility and antitumor activity of crocetin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1356-1362. [DOI: 10.1080/21691401.2016.1236805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fatemeh Soltani
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Amel Farzad
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahad Mokhtarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
|
25
|
Katare YK, Daya RP, Sookram Gray C, Luckham RE, Bhandari J, Chauhan AS, Mishra RK. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer. Mol Pharm 2015; 12:3380-8. [DOI: 10.1021/acs.molpharmaceut.5b00402] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yogesh K. Katare
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ritesh P. Daya
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Christal Sookram Gray
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Roger E. Luckham
- Department
of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jayant Bhandari
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Abhay S. Chauhan
- School
of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| | - Ram K. Mishra
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
26
|
Spectroscopic and calorimetric studies of formation of the supramolecular complexes of PAMAM G5-NH₂ and G5-OH dendrimers with 5-fluorouracil in aqueous solution. Int J Pharm 2015; 490:102-11. [PMID: 25997661 DOI: 10.1016/j.ijpharm.2015.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023]
Abstract
The results of spectroscopic measurements (increase in solubility, equilibrium dialysis, (1)H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate exothermic (ΔH<0) and spontaneous (ΔG < 0) combination of an antitumor drug, 5-fluorouracil, by both cationic PAMAM G5-NH2 dendrimer and its hydroxyl analog PAMAM G5-OH in aqueous solutions at room temperature. PAMAM G5-NH2 dendrimer combines about 70 molecules of the drug with equilibrium constant K ≅ 300, which is accompanied by an increase in the system order (ΔS < 0). Hydroxyl dendrimer, PAMAM G5-OH, combines about 14 molecules of 5-fluorouracil with equilibrium constant K ≅ 100. This process is accompanied by an increase in the system disorder (ΔS > 0).
Collapse
|
27
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 2014; 16:1-27. [PMID: 25426779 DOI: 10.1021/bm501285t] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The main objective of nanomedicine research is the development of nanoparticles as drug delivery systems or drugs per se to tackle diseases as cancer, which are a leading cause of death with developed nations. Targeted treatments against solid tumors generally lead to dramatic regressions, but, unfortunately, the responses are often short-lived due to resistant cancer cells. In addition, one of the major challenges of combination drug therapy (called "cocktail") is the crucial optimization of different drug parameters. This issue can be solved using combination nanotherapy. Nanoparticles developed in oncology based on combination nanotherapy are either (a) those designed to combat multidrug resistance or (b) those used to circumvent resistance to clinical cancer drugs. This review provides an overview of the different nanoparticles currently used in clinical treatments in oncology. We analyze in detail the development of combinatorial nanoparticles including dendrimers for dual drug delivery via two strategic approaches: (a) use of chemotherapeutics and chemosensitizers to combat multidrug resistance and (b) use of multiple cytotoxic drugs. Finally, in this review, we discuss the challenges, clinical outlook, and perspectives of the nanoparticle-based combination therapy in cancer.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France
| | | | | | | | | |
Collapse
|
29
|
Lewandowska U, Szewczyk K, Hrabec E, Janecka A, Gorlach S. Overview of metabolism and bioavailability enhancement of polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12183-99. [PMID: 24295170 DOI: 10.1021/jf404439b] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A proper diet is one of major factors contributing to good health and is directly related to general condition of the organism. Phenolic compounds are abundant in foods and beverages (fresh and processed fruits and vegetables, leguminous plants, cereals, herbs, spices, tea, coffee, wine, beer) and their pleiotropic biological activities result in numerous health beneficial effects. On the other hand, high reactivity and very large diversity in terms of structure and molecular weight renders polyphenols one of the most difficult groups of compounds to investigate, as evidenced by ambiguous and sometimes contradictory results of many studies. Furthermore, phenolics undergo metabolic transformations, which significantly change their biological activities. Here, we discuss some aspects of metabolism and absorption of phenolic compounds. On the basis of information reported in the literature as well as in summaries of clinical trials and patent applications, we also give an overview of strategies for enhancing their bioavailability.
Collapse
Affiliation(s)
- Urszula Lewandowska
- Department of Biomolecular Chemistry, Medical University of Lodz , Lodz, Poland
| | | | | | | | | |
Collapse
|
30
|
Yatsu FKJ, Koester LS, Lula I, Passos JJ, Sinisterra R, Bassani VL. Multiple complexation of cyclodextrin with soy isoflavones present in an enriched fraction. Carbohydr Polym 2013; 98:726-35. [PMID: 23987405 DOI: 10.1016/j.carbpol.2013.06.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/21/2022]
Abstract
In the present study we evaluated the complexation of daidzein/genistein/glycitein, present in an isoflavone enriched fraction (IEF), with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin (HPβCD). Based on the increased solubility and higher complexation efficiency, IEF and HPβCD solid complexes were prepared by kneading, freeze-drying, co-evaporation, spray-drying and microwave. The solid complexes were characterized using Fourier transformed-infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and nuclear magnetic resonance spectroscopy, and the isoflavone content and solubility were determined by liquid chromatography. The results suggest that the isoflavones daidzein, genistein and glycitein may be externally associated to HPβCD as well as that isoflavones/HPβCD inclusion complexes are formed through the insertion of B-ring into the cyclodextrin cavity. Except for the freeze-dried IEF/HPβCD solid complex, all complexes showed similar content and solubility. In conclusion, the three isoflavones showed to be able to simultaneously complex with HPβCD.
Collapse
Affiliation(s)
- Francini K J Yatsu
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90610-000 Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Ren K, He Z, Li H, Chen T, Lei Y, Xia S, He G, Xie Y, Zheng Y, Song X. Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin. Carbohydr Polym 2013; 98:638-43. [PMID: 23987393 DOI: 10.1016/j.carbpol.2013.06.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 02/05/2023]
Abstract
Glaucoma is an accumulative optic neuropathy resulted from increasing intraocular pressure. Brinzolamide (BRZ) is a kind of carbonic anhydrase inhibitors for glaucoma treatment. In this study, brinzolamide-hydroxypropyl-β-cyclodextrin (BRZ-HP-β-CD) inclusion complex was prepared by solvent evaporation method to improve the solubility of BRZ and enhance the therapeutic effect of BRZ. The formation of the inclusion complex was confirmed by Fourier transform infrared spectroscopy, differential scanning calorimeter and nuclear magnetic resonance spectroscopy. The solubility of BRZ increased about 10-fold after the formation of the BRZ-HP-β-CD inclusion complex. The in vitro corneal accumulative permeability of the inclusion complex increased 2.91-fold compared to the commercial available formulation (AZOPT(®)). In addition, BRZ-HP-β-CD inclusion complex (0.5% BRZ) had an equivalent efficiency of lowering intraocular pressure with AZOPT(®) (1% BRZ) in vivo. These results identified the BRZ-HP-β-CD inclusion complex might have a promising future as a novel formulation of BRZ for glaucoma treatment.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mignani S, Majoral JP. Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. NEW J CHEM 2013. [DOI: 10.1039/c3nj00300k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Danciu C, Soica C, Csanyi E, Ambrus R, Feflea S, Peev C, Dehelean C. Changes in the anti-inflammatory activity of soy isoflavonoid genistein versus genistein incorporated in two types of cyclodextrin derivatives. Chem Cent J 2012; 6:58. [PMID: 22716299 PMCID: PMC3468379 DOI: 10.1186/1752-153x-6-58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The isoflavonoid genistein represents the major active compound from soybean, the vegetal product from Glycine max (Fabaceae). The aim of this study is to prove that genistein was incorporated in two semisynthetic cyclodextrins, beta-cyclodextrin derivatives: hydroxypropyl-beta-cyclodextrin and randomly-methylated-beta-cyclodextrin as well as to compare the anti-inflammatory activity of genistein with that of genistein incorporated in these two types of semisynthetic cyclodextrins. RESULTS The animal studies were conducted on 8-week old C57BL/6 J female mice. Inflammation was induced in both ears of each mouse by topical application of 10 micrograms 12-O-tetradecanoylphorbol-3-acetate dissolved in 0.1 ml solvent (acetone : dimethylsulfoxide in a molar ratio 9:1). Thirty minutes later treatment was applied. The inflammatory reaction was correlated with increased values in ear thickness. Treatment with genistein and genistein incorporated in the two cyclodextrins led to decreased values for ear thickness. Better anti-inflammatory action was found for the complexes of genistein. Both haematoxylin-eosin analysis and CD45 marker expression are in agreement with these findings. CONCLUSIONS Results allow concluding that genistein is an active anti-inflammatory phytocompound and its complexation with hydrophilic beta-cyclodextrin derivatives leads to a stronger anti-inflammatory activity.
Collapse
Affiliation(s)
- Corinatiulea Danciu
- Department of Pharmaceutical Chemistry, "Victor Babes" University of Medicine and Pharmacy, 2 EftimieMurgu, Timisoara 300041, Romania.
| | | | | | | | | | | | | |
Collapse
|