1
|
Zeng H, Lu H, Yang J, Hu P. An Update on Recent Drug Delivery Systems Targeting Brain Diseases via the Transnasal Pathway. Pharm Res 2024; 41:2121-2141. [PMID: 39477900 DOI: 10.1007/s11095-024-03790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE To explore the potential of transnasal drug delivery systems (DDS) as an effective means of bypassing the bloodbrain barrier (BBB) for enhanced central nervous system (CNS) targeting, aiming to improve therapeutic outcomes for CNS disorders while reducing systemic side effects. METHODS A review of current and emerging DDS technologies, including polymer nanoparticles, liposomes, and micelles, was conducted to assess their suitability for precision-targeted delivery to the brain through the transnasal route. RESULTS The investigated DDS demonstrate promising capabilities for CNS targeting via the nasal pathway, effectively preserving both the nasal mucosa and CNS integrity. These systems enhance drug precision within neural tissues, potentially improving therapeutic outcomes without harming adjacent tissues. CONCLUSIONS Transnasal DDS offer a promising alternative to traditional delivery methods, with significant potential to advance the treatment of cerebrovascular diseases, neurodegenerative disorders, brain tumors, and psychiatric conditions. This approach represents an evolving frontier in neurotherapeutics, with the potential to transform CNS drug delivery practices.
Collapse
Affiliation(s)
- Huiying Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
| | - Huangjie Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
| | - Jie Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
| | - Ping Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China.
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China.
| |
Collapse
|
2
|
Ghosh A, Majie A, Karmakar V, Chatterjee K, Chakraborty S, Pandey M, Jain N, Roy Sarkar S, Nair AB, Gorain B. In-depth Mechanism, Challenges, and Opportunities of Delivering Therapeutics in Brain Using Intranasal Route. AAPS PharmSciTech 2024; 25:96. [PMID: 38710855 DOI: 10.1208/s12249-024-02810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Swarup Chakraborty
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
3
|
Guo H, Wang G, Zhai Z, Huang J, Huang Z, Zhou Y, Xia X, Yao Z, Huang Y, Zhao Z, Wu C, Zhang X. Rivastigmine nasal spray for the treatment of Alzheimer's Disease: Olfactory deposition and brain delivery. Int J Pharm 2024; 652:123809. [PMID: 38224760 DOI: 10.1016/j.ijpharm.2024.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) is characterized by a gradual decline in cognitive function and memory impairment, significantly impacting the daily lives of patients. Rivastigmine (RHT), a cholinesterase inhibitor, is used to treat mild to moderate AD via oral administration. However, oral administration is associated with slow absorption rate and severe systemic side effects. RHT nasal spray (RHT-ns), as a nose-to-brain delivery system, is more promising for AD management due to its efficient brain delivery and reduced peripheral exposure. This study constructed RHT-ns for enhancing AD treatment efficacy, and meanwhile the correlation between drug olfactory deposition and drug entering into the brain was explored. A 3D-printed nasal cast was employed to quantify the drug olfactory deposition. Brain delivery of RHT-ns was quantified using fluorescence tracking and Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) analysis, which showed a good correlation to the olfactory deposition. F2 (containing 1% (w/v) viscosity modifier Avicel® RC-591) with high olfactory deposition and drug brain delivery was further investigated for pharmacodynamics study. F2 exhibited superiority in AD treatment over the commercially available oral formulation. In summary, the present study showed the successful development of RHT-ns with improved olfactory deposition and enhanced brain delivery. It might provide new insight into the design and development of nose-to-brain systems for the treatment of AD.
Collapse
Affiliation(s)
- Haihua Guo
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zizhao Zhai
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Jiayuan Huang
- School of Medicine, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Yue Zhou
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Zhongxuan Yao
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China.
| | - Ziyu Zhao
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
4
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
5
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
6
|
Numakawa T, Kajihara R. Neurotrophins and Other Growth Factors in the Pathogenesis of Alzheimer’s Disease. Life (Basel) 2023; 13:life13030647. [PMID: 36983803 PMCID: PMC10051261 DOI: 10.3390/life13030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The involvement of the changed expression/function of neurotrophic factors in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), has been suggested. AD is one of the age-related dementias, and is characterized by cognitive impairment with decreased memory function. Developing evidence demonstrates that decreased cell survival, synaptic dysfunction, and reduced neurogenesis are involved in the pathogenesis of AD. On the other hand, it is well known that neurotrophic factors, especially brain-derived neurotrophic factor (BDNF) and its high-affinity receptor TrkB, have multiple roles in the central nervous system (CNS), including neuronal maintenance, synaptic plasticity, and neurogenesis, which are closely linked to learning and memory function. Thus, many investigations regarding therapeutic approaches to AD, and/or the screening of novel drug candidates for its treatment, focus on upregulation of the BDNF/TrkB system. Furthermore, current studies also demonstrate that GDNF, IGF1, and bFGF, which play roles in neuroprotection, are associated with AD. In this review, we introduce data demonstrating close relationships between the pathogenesis of AD, neurotrophic factors, and drug candidates, including natural compounds that upregulate the BDNF-mediated neurotrophic system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Correspondence:
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
7
|
Huang Q, Liu B, Wu W. Biomaterial-Based bFGF Delivery for Nerve Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8003821. [PMID: 37077657 PMCID: PMC10110389 DOI: 10.1155/2023/8003821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
Diseases in the nervous system are common in the human body. People have to suffer a great burden due to huge economic costs and poor prognosis of the diseases. Many treatment modalities are now available that can make recovery better. Managing nutritional factors is also helpful for such diseases. The basic fibroblast growth factor (bFGF) is one of the major nutritional factors, which plays a crucial role in organogenesis and tissue homeostasis. It plays a role in cell proliferation, migration, and differentiation, thereby regulating angiogenesis and wound healing and repair of the muscle, bone, and nerve. The study on how to improve the stability of bFGF to increase the treatment effect for different diseases has garnered tremendous attention. Biomaterials are the popular methods to improve the stability of bFGF because they are safe for the living body as they are biocompatible. Biomaterials can be loaded with bFGF and delivered locally to achieve the goal of sustained bFGF release. In the present review, we report different types of biomaterials that are used for bFGF delivery for nerve repair and briefly report how the introduced bFGF can function in the nervous system. We aim to provide summative guidance for future studies about nerve injury using bFGF.
Collapse
Affiliation(s)
- Qinying Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| | - Bo Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| |
Collapse
|
8
|
Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:119-152. [PMID: 35910081 PMCID: PMC9308891 DOI: 10.1007/s40005-022-00589-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
Abstract
Background Cranial nerve-related diseases such as brain tumors, Alzheimer's disease, and epilepsy are serious diseases that continue to threaten human. Brain-related diseases are increasing worldwide, including in the United States and Korea, and these increases are closely related to the exposure to harmful substances and excessive stress caused by rapid industrialization and environmental pollution. Drug delivery to the brain is very important for the effective prevention and treatment of brain-related diseases. However, due to the presence of the blood-brain barrier and the extensive first-pass metabolism effect, the general routes of administration such as oral and intravenous routes have limitations in drug delivery to the brain. Therefore, as an alternative, the nasal-brain drug delivery route is attracting attention as a route for effective drug delivery to the brain. Areas covered This review includes physiological factors, advantages, limitations, current application status, especially in clinical applications, and the necessary factors for consideration in formulation development related to nasal-brain drug delivery. Expert opinion The nasal-brain drug delivery route has the advantage of enhancing drug delivery to the brain locally, mainly through the olfactory route rather than the systemic circulation. The nasal-brain lymphatic system has recently attracted attention, and it has been implied that the delivery of anticancer drugs to the brain nervous system is possible effectively. However, there are limitations such as low drug permeability, as well as nasal mucosa and the mucociliary system, as obstacles in nasal-brain drug delivery. Therefore, to overcome the limitations of nasal-brain drug delivery, the use of nanocarriers and mucoadhesive agents is being attempted. However, very few drugs have been officially approved for clinical application via the nasal-brain drug delivery route. This is probably because the understanding of and related studies on nasal-brain drug delivery are limited. In this review, we tried to explore the major considerations and target factors in drug delivery through the nasal-brain route based on physiological knowledge and formulation research information. This will help to provide a mechanistic understanding of drug delivery through the nasal-brain route and bring us one step closer to developing effective formulations and drugs in consideration of the key factors for nasal-brain drug delivery.
Collapse
|
9
|
Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater 2022; 13:125. [PMID: 36135560 PMCID: PMC9504125 DOI: 10.3390/jfb13030125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
Diseases affecting the central nervous system (CNS) are among the most disabling and the most difficult to cure due to the presence of the blood-brain barrier (BBB) which represents an impediment from a therapeutic and diagnostic point of view as it limits the entry of most drugs. The use of biocompatible polymer nanoparticles (NPs) as vehicles for targeted drug delivery to the brain arouses increasing interest. However, the route of administration of these vectors remains critical as the drug must be delivered without being degraded to achieve a therapeutic effect. An innovative approach for the administration of drugs to the brain using polymeric carriers is represented by the nose-to-brain (NtB) route which involves the administration of the therapeutic molecule through the neuro-olfactory epithelium of the nasal mucosa. Nasal administration is a non-invasive approach that allows the rapid transport of the drug directly to the brain and minimizes its systemic exposure. To date, many studies involve the use of polymer NPs for the NtB transport of drugs to the brain for the treatment of a whole series of disabling neurological diseases for which, as of today, there is no cure. In this review, various types of biodegradable polymer NPs for drug delivery to the brain through the NtB route are discussed and particular attention is devoted to the treatment of neurological diseases such as Glioblastoma and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
10
|
Chopra H, Bibi S, Singh I, Kamal MA, Islam F, Alhumaydhi FA, Emran TB, Cavalu S. Nanomedicines in the Management of Alzheimer's Disease: Current View and Future Prospects. Front Aging Neurosci 2022; 14:879114. [PMID: 35875806 PMCID: PMC9304964 DOI: 10.3389/fnagi.2022.879114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a kind of dementia that creates serious challenges for sufferers' memory, thinking, and behavior. It commonly targeting the aging population and decay the brain cells, despite attempts have been performed to enhance AD diagnostic and therapeutic techniques. Hence, AD remains incurable owing to its complex and multifactorial consequences and still there is lack of appropriate diagnostics/therapeutics option for this severe brain disorder. Therefore, nanotechnology is currently bringing new tools and insights to improve the previous knowledge of AD and ultimately may provide a novel treatment option and a ray of hope to AD patients. Here in this review, we highlighted the nanotechnologies-based findings for AD, in both diagnostic and therapeutic aspects and explained how advances in the field of nanotechnology/nanomedicine could enhance patient prognosis and quality of life. It is highly expected these emerging technologies could bring a research-based revolution in the field of neurodegenerative disorders and may assist their clinical experiments and develop an efficacious drug for AD also. The main aim of review is to showcase readers the recent advances in nanotechnology-based approaches for treatment and diagnosing of AD.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
11
|
Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
New insights into the role of fibroblast growth factors in Alzheimer's disease. Mol Biol Rep 2021; 49:1413-1427. [PMID: 34731369 DOI: 10.1007/s11033-021-06890-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), acknowledged as the most common progressive neurodegenerative disorder, is the leading cause of dementia in the elderly. The characteristic pathologic hallmarks of AD-including the deposition of extracellular senile plaques (SP) formation, intracellular neurofibrillary tangles, and synaptic loss, along with prominent vascular dysfunction and cognitive impairment-have been observed in patients. Fibroblast growth factors (FGFs), originally characterized as angiogenic factors, are a large family of signaling molecules that are implicated in a wide range of biological functions in brain development, maintenance and repair, as well as in the pathogenesis of brain-related disorders including AD. Many studies have focused on the implication of FGFs in AD pathophysiology. In this review, we will provide a summary of recent findings regarding the role of FGFs and their receptors in the pathogenesis of AD, and discuss the possible opportunities for targeting these molecules as novel treatment strategies in AD.
Collapse
|
13
|
Bahlakeh G, Rahbarghazi R, Mohammadnejad D, Abedelahi A, Karimipour M. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci 2021; 11:181. [PMID: 34641969 PMCID: PMC8507154 DOI: 10.1186/s13578-021-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
During the last decades, numerous basic and clinical studies have been conducted to assess the delivery efficiency of therapeutic agents into the brain and spinal cord parenchyma using several administration routes. Among conventional and in-progress administrative routes, the eligibility of stem cells, viral vectors, and biomaterial systems have been shown in the delivery of NTFs. Despite these manifold advances, the close association between the delivery system and regeneration outcome remains unclear. Herein, we aimed to discuss recent progress in the delivery of these factors and the pros and cons related to each modality.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
15
|
Wang Y, Pan XF, Liu GD, Liu ZH, Zhang C, Chen T, Wang YH. FGF-2 suppresses neuronal autophagy by regulating the PI3K/Akt pathway in subarachnoid hemorrhage. Brain Res Bull 2021; 173:132-140. [PMID: 34023434 DOI: 10.1016/j.brainresbull.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
The degree of early brain injury (EBI) is a significant factor that affects the prognosis of patients with subarachnoid hemorrhage (SAH). Evidence has shown that fibroblast growth factor-2 (FGF-2) may alleviate the serious consequences of EBI after SAH. The objective of the current study was to investigate the underlying mechanism that mediates the neuroprotective effects of FGF-2 in the SAH rat model. Sprague-Dawley (SD) rats that underwent different treatments were divided into various groups. FGF-2 was administered intranasally to rats in the treatment group within 30 min after modeling. Rapamycin (an autophagy activator) or LY294002 (a PI3K/Akt pathway inhibitor) was administered intracerebroventricularly (i.c.v.) 30 min before modeling. Neurological scale and brain water content were measured in the brain tissue of the rats. TUNEL staining, Western blot, and immunofluorescence staining were performed to examine and compare the diverse effects of FGF-2 treatment, activated autophagy, and inhibited the PI3K/Akt pathway. We found that FGF-2 treatment effectively reduced the number of TUNEL-positive cells, decreased the brain water content, and improved the neurological function of rats after SAH. Additionally, the expression levels of autophagy-related proteins (LC3 and Beclin-1) were obviously decreased in the FGF-2 treatment group compared with the SAH + vehicle group. The therapeutic effects of FGF-2 in the SAH + FGF-2+rapamycin group were weakened compared with that in the SAH + FGF-2+DMSO group. In the event of the PI3K/Akt pathway inhibition, the expression levels of LC3 and Beclin-1 were enhanced, and the therapeutic effects of FGF-2 were compromised. In summary, our data collectively demonstrated that FGF-2 may suppress autophagy levels to play a neuroprotective role, at least partially by activating the PI3K/Akt pathway. These results highlight FGF-2 as a promising solution to the clinical intervention of SAH.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Xiao-Fei Pan
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Guo-Dong Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Zhuang-Hua Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Can Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Tao Chen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China.
| | - Yu-Hai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China.
| |
Collapse
|
16
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
17
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Okada T, Enkhjargal B, Travis ZD, Ocak U, Tang J, Suzuki H, Zhang JH. FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Mol Neurobiol 2019; 56:8203-8219. [PMID: 31203572 DOI: 10.1007/s12035-019-01668-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Neuronal apoptosis is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the anti-apoptotic property of fibroblast growth factor (FGF)-2 after SAH in rats. A total of 289 rats underwent endovascular perforation to induce SAH or sham operation. Three dosages (3, 9, or 27 μg) of recombinant FGF-2 (rFGF-2) or vehicle was administered intranasally to rats 30 min after SAH induction. The pan-FGF receptor (FGFR) inhibitor PD173074 or vehicle was administered intracerebroventricularly (i.c.v.) 1 h before modeling, in addition to rFGF-2 treatment. Small interfering ribonucleic acid (siRNA) for FGFR1 and FGFR3 or scrambled siRNA was administered i.c.v. 48 h before SAH induction in addition to rFGF-2 treatment. Anti-FGF-2 neutralizing antibody or normal mouse immunoglobulin G (IgG) was administered i.c.v. 1 h before SAH model. Neurobehavioral tests, SAH severity, brain water content, immunofluorescence, Fluoro-Jade C, TUNEL staining, and western blot were evaluated. The expression of FGF-2, FGFR1, and FGFR3 increased after SAH. FGFR1 and FGFR3 were expressed in the neurons. Nine micrograms of FGF-2 alleviated neurological impairments, brain edema, and neuronal apoptosis following SAH. A rFGF-2 treatment improved motor skill learning and spatial memory and increased the number of surviving neurons postinjury to 28 days after SAH. PD173074 abolished the anti-apoptotic effects of rFGF-2 via suppression of the expression of PI3k, phosphorylated Akt (p-Akt), and Bcl-2 leading to enhancement of the expression of Bax. FGFR3 siRNA worsened neurobehavioral function and suppressed the expression of PI3k, p-Akt, and Bcl-2 rather than FGFR1 siRNA in SAH rats treated with rFGF-2. Anti-FGF-2 neutralizing antibody suppressed the expression of PI3k and p-Akt after SAH. FGF-2 may be a promising therapy to reduce post-SAH neuronal apoptosis via activation of the FGFR3/PI3k/Akt signaling pathway.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
19
|
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281:139-177. [DOI: 10.1016/j.jconrel.2018.05.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
20
|
A Genome-Wide Association Study and Complex Network Identify Four Core Hub Genes in Bipolar Disorder. Int J Mol Sci 2017; 18:ijms18122763. [PMID: 29257106 PMCID: PMC5751362 DOI: 10.3390/ijms18122763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022] Open
Abstract
Bipolar disorder is a common and severe mental illness with unsolved pathophysiology. A genome-wide association study (GWAS) has been used to find a number of risk genes, but it is difficult for a GWAS to find genes indirectly associated with a disease. To find core hub genes, we introduce a network analysis after the GWAS was conducted. Six thousand four hundred fifty eight single nucleotide polymorphisms (SNPs) with p < 0.01 were sifted out from Wellcome Trust Case Control Consortium (WTCCC) dataset and mapped to 2045 genes, which are then compared with the protein–protein network. One hundred twelve genes with a degree >17 were chosen as hub genes from which five significant modules and four core hub genes (FBXL13, WDFY2, bFGF, and MTHFD1L) were found. These core hub genes have not been reported to be directly associated with BD but may function by interacting with genes directly related to BD. Our method engenders new thoughts on finding genes indirectly associated with, but important for, complex diseases.
Collapse
|
21
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
22
|
FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury. Stem Cells Int 2017; 2017:2923182. [PMID: 29181034 PMCID: PMC5664312 DOI: 10.1155/2017/2923182] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to physical and cognitive deficits, which are caused by the secondary injury process. Effective pharmacotherapies for TBI patients are still lacking. Fibroblast growth factor-2 (FGF2) is an important neurotrophic factor that can stimulate neurogenesis and angiogenesis and has been shown to have neuroprotective effects after brain insults. Previous studies indicated that FGF2's neuroprotective effects might be related to its function of regulating autophagy. The present study investigated FGF2's beneficial effects in the early stage of rat mild TBI and the underlying mechanisms. One hundred and forty-four rats were used for creating controlled cortical impact (CCI) models to simulate the pathological damage after TBI. Our results indicated that pretreatment of FGF2 played a neuroprotective role in the early stage of rat mild TBI through alleviating brain edema, reducing neurological deficits, preventing tissue loss, and increasing the number of surviving neurons in injured cortex and the ipsilateral hippocampus. FGF2 could also protect cells from various forms of death such as apoptosis or necrosis through inhibition of autophagy. Finally, autophagy activator rapamycin could abolish the protective effects of FGF2. This study extended our understanding of FGF2's neuroprotective effects and shed lights on the pharmacological therapy after TBI.
Collapse
|
23
|
Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. J Control Release 2017; 260:61-77. [PMID: 28549949 DOI: 10.1016/j.jconrel.2017.05.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
Abstract
In this modern era, with the help of various advanced technologies, medical science has overcome most of the health-related issues successfully. Though, some diseases still remain unresolved due to various physiological barriers. One such condition is Alzheimer; a neurodegenerative disorder characterized by progressive memory impairment, behavioral abnormalities, mood swing and disturbed routine activities of the person suffering from. It is well known to all that the brain is entirely covered by a protective layer commonly known as blood brain barrier (BBB) which is responsible to maintain the homeostasis of brain by restricting the entry of toxic substances, drug molecules, various proteins and peptides, small hydrophilic molecules, large lipophilic substances and so many other peripheral components to protect the brain from any harmful stimuli. This functionally essential structure creates a major hurdle for delivery of any drug into the brain. Still, there are some provisions on BBB which facilitate the entry of useful substances in the brain via specific mechanisms like passive diffusion, receptor-mediated transcytosis, carrier-mediated transcytosis etc. Another important factor for drug transport is the selection of a suitable drug delivery systems like, liposome, which is a novel drug carrier system offering a potential approach to resolving this problem. Its unique phospholipid bilayer structure (similar to physiological membrane) had made it more compatible with the lipoidal layer of BBB and helps the drug to enter the brain. The present review work focused on various surface modifications with functional ligand (like lactoferrin, transferrin etc.) and carrier molecules (such as glutathione, glucose etc.) on the liposomal structure to enhance its brain targeting ability towards the successful treatment of Alzheimer disease.
Collapse
|
24
|
Ma F, Zhu T, Xu F, Wang Z, Zheng Y, Tang Q, Chen L, Shen Y, Zhu J. Neural stem/progenitor cells on collagen with anchored basic fibroblast growth factor as potential natural nerve conduits for facial nerve regeneration. Acta Biomater 2017; 50:188-197. [PMID: 27940160 DOI: 10.1016/j.actbio.2016.11.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Introducing neural stem/progenitor cells (NS/PCs) for repairing facial nerve injuries could be an alternative strategy for nerve gap reconstruction. However, the lack of success associated with current methods of applying NS/PCs to neurological disease is due to poor engraftment following transplantation into the host tissue. In this work, we developed rat-tail collagen-based nerve conduits to repair lengthy facial nerve defects, promoting NS/PC proliferation in the natural nerve conduits with anchored bFGF to improve the therapeutic effects of cell transplantation. In vitro studies showed that heparinized collagen prevented leakage of bFGF and NS/PCs expended in the rat-tail collagen gel with the anchored bFGF. The natural nerve conduits were implanted to connect 8-mm facial nerve defects in rats. The repair outcomes including vibrissae movements, electrophysiological tests, immunohistochemistry and remyelination analysis of regenerated nerve were evaluated. At 12weeks after implantation, only natural nerve conduits treated group showed Hoechst labeled NS/PCs. Besides, the natural nerve conduit significantly promoted functional recovery and nerve growth, which was similar to those of the gold standard, an autograft. The animal experiment results suggesting that the natural nerve conduits were valuable for facial nerve reconstruction. STATEMENT OF SIGNIFICANCE Neural stem/progenitor cells (NS/PCs) were beneficial for the treatment of nervous system diseases. However, after transplantation, the beneficial was limited because the number of living NS/PCs decreased rapidly due to insufficient signaling molecules, such as growth factors, in the microenvironments surrounding transplanted cells. In the present study, we constructed collagen-based nerve conduit with anchored bFGF to achieve higher numbers of NS/PCs for repairing facial nerve injury. Compared with other methods involving neutral salt treatment or dialysis, the fabrication method of collagen scaffolds was simple, low-cost and safe, requiring a relatively short time to prepare. At 12weeks after transplantation, the functional and histological results of natural nerve conduits treated group showed significant similarities to the gold standard method of nerve autografting.
Collapse
|
25
|
Kamei N, Tanaka M, Choi H, Okada N, Ikeda T, Itokazu R, Takeda-Morishita M. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse. Mol Pharm 2017; 14:916-927. [PMID: 28094952 DOI: 10.1021/acs.molpharmaceut.6b01134] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Misa Tanaka
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Hayoung Choi
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Nobuyuki Okada
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Takamasa Ikeda
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Rei Itokazu
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| |
Collapse
|
26
|
Zong N, Li F, Deng Y, Shi J, Jin F, Gong Q. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus. Behav Brain Res 2016; 313:111-119. [DOI: 10.1016/j.bbr.2016.06.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
27
|
Huang Y, Dreyfus CF. The role of growth factors as a therapeutic approach to demyelinating disease. Exp Neurol 2016; 283:531-40. [PMID: 27016070 PMCID: PMC5010931 DOI: 10.1016/j.expneurol.2016.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/19/2023]
Abstract
A variety of growth factors are being explored as therapeutic agents relevant to the axonal and oligodendroglial deficits that occur as a result of demyelinating lesions such as are evident in Multiple Sclerosis (MS). This review focuses on five such proteins that are present in the lesion site and impact oligodendrocyte regeneration. It then presents approaches that are being exploited to manipulate the lesion environment affiliated with multiple neurodegenerative diseases and suggests that the utility of these approaches can extend to demyelination. Challenges are to further understand the roles of specific growth factors on a cellular and tissue level. Emerging technologies can then be employed to optimize the use of growth factors to ameliorate the deficits associated with demyelinating degenerative diseases.
Collapse
Affiliation(s)
- Yangyang Huang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Cheryl F Dreyfus
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Dey M, Yu D, Kanojia D, Li G, Sukhanova M, Spencer DA, Pituch KC, Zhang L, Han Y, Ahmed AU, Aboody KS, Lesniak MS, Balyasnikova IV. Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma. Stem Cell Reports 2016; 7:471-482. [PMID: 27594591 PMCID: PMC5032402 DOI: 10.1016/j.stemcr.2016.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
The challenges to effective drug delivery to brain tumors are twofold: (1) there is a lack of non-invasive methods of local delivery and (2) the blood-brain barrier limits systemic delivery. Intranasal delivery of therapeutics to the brain overcomes both challenges. In mouse model of malignant glioma, we observed that a small fraction of intranasally delivered neural stem cells (NSCs) can migrate to the brain tumor site. Here, we demonstrate that hypoxic preconditioning or overexpression of CXCR4 significantly enhances the tumor-targeting ability of NSCs, but without altering their phenotype only in genetically modified NSCs. Modified NSCs deliver oncolytic virus to glioma more efficiently and extend survival of experimental animals in the context of radiotherapy. Our findings indicate that intranasal delivery of stem cell-based therapeutics could be optimized for future clinical applications, and allow for safe and repeated administration of biological therapies to brain tumors and other CNS disorders. Intranasal delivery of NSCs is a promising platform for glioma therapy Hypoxia or CXCR4 overexpression enhances NSC migration to glioma Oncolytic viruses loaded in CXCR4-enhanced NSCs improve animal survival Non-invasive intranasal NSC-based therapies warrant clinical translation
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Dou Yu
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gina Li
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Madina Sukhanova
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Drew A Spencer
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katatzyna C Pituch
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Yu Han
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Atique U Ahmed
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karen S Aboody
- Division of Neurosurgery, Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V Balyasnikova
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Makani V, Jang YG, Christopher K, Judy W, Eckstein J, Hensley K, Chiaia N, Kim DS, Park J. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS One 2016; 11:e0149715. [PMID: 26939023 PMCID: PMC4777489 DOI: 10.1371/journal.pone.0149715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/04/2016] [Indexed: 12/19/2022] Open
Abstract
An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB-permeability, long plasma half-life, and strong neuroprotective and neurotrophic effects has a great therapeutic potential for the treatment of neurodegenerative diseases, especially AD.
Collapse
Affiliation(s)
- Vishruti Makani
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Yong-gil Jang
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Kevin Christopher
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Wesley Judy
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Jacob Eckstein
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Kenneth Hensley
- Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Nicolas Chiaia
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Dong-Shik Kim
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio, United States of America
| | - Joshua Park
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release 2016; 224:165-175. [DOI: 10.1016/j.jconrel.2016.01.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 01/20/2023]
|
31
|
Bogachouk AP, Storozheva ZI, Solovjeva OA, Sherstnev VV, Zolotarev YA, Azev VN, Rodionov IL, Surina EA, Lipkin VM. Comparative study of the neuroprotective and nootropic activities of the carboxylate and amide forms of the HLDF-6 peptide in animal models of Alzheimer's disease. J Psychopharmacol 2016; 30:78-92. [PMID: 26628555 DOI: 10.1177/0269881115616393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative study of the neuroprotective and nootropic activities of two pharmaceutical substances, the HLDF-6 peptide (HLDF-6-OH) and its amide form (HLDF-6-NH2), was conducted. The study was performed in male rats using two models of a neurodegenerative disorder. Cognitive deficit in rats was induced by injection of the beta-amyloid fragment 25-35 (βA 25-35) into the giant-cell nucleus basalis of Meynert or by coinjection of βA 25-35 and ibotenic acid into the hippocampus. To evaluate cognitive functions in animals, three tests were used: the novel object recognition test, the conditioned passive avoidance task and the Morris maze. Comparative analysis of the data demonstrated that the neuroprotective activity of HLDF-6-NH2, evaluated by improvement of cognitive functions in animals, surpassed that of the native HLDF-6-OH peptide. The greater cognitive/ behavioral effects can be attributed to improved kinetic properties of the amide form of the peptide, such as the character of biodegradation and the half-life time. The effects of HLDF-6-NH2 are comparable to, or exceed, those of the reference compounds. Importantly, HLDF-6-NH2 exerts its effects at much lower doses than the reference compounds.
Collapse
Affiliation(s)
- Anna P Bogachouk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | | | | | | | | | - Vyacheslav N Azev
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Pushchino, Russia
| | - Igor L Rodionov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Pushchino, Russia
| | - Elena A Surina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Valery M Lipkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| |
Collapse
|
32
|
Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X, Zhang Q, Xu S, Jiang X. Intranasal H102 Peptide-Loaded Liposomes for Brain Delivery to Treat Alzheimer's Disease. Pharm Res 2015; 32:3837-49. [PMID: 26113236 DOI: 10.1007/s11095-015-1744-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/17/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE H102, a novel β-sheet breaker peptide, was encapsulated into liposomes to reduce its degradation and increase its brain penetration through intranasal administration for the treatment of Alzheimer's disease (AD). METHODS The H102 liposomes were prepared using a modified thin film hydration method, and their transport characteristics were tested on Calu-3 cell monolayers. The pharmacokinetics in rats' blood and brains were also investigated. Behavioral experiments were performed to evaluate the improvements on AD rats' spatial memory impairment. The neuroprotective effects were tested by detecting acetylcholinesterase (AchE), choline acetyltransferase (ChAT) and insulin degrading enzyme (IDE) activity and conducting histological assays. The safety was evaluated on rats' nasal mucosa and cilia. RESULTS The liposomes prepared could penetrate Calu-3 cell monolayers consistently. After intranasal administration, H102 could be effectively delivered to the brain, and the AUC of H102 liposomes in the hippocampus was 2.92-fold larger than that of solution group. H102 liposomes could excellently ameliorate spatial memory impairment of AD model rats, increase the activities of ChAT and IDE and inhibit plaque deposition, even in a lower dosage compared with H102 intranasal solution. H102 nasal formulations showed no toxicity on nasal mucosa. CONCLUSIONS The H102-loaded liposome prepared in this study for nasal administration is stable, effective and safe, which has great potential for AD treatment.
Collapse
Affiliation(s)
- Xiaoyao Zheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Xiayan Shao
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Chi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Yuanzhen Tan
- Department of Physiology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Qingfeng Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Xu Wan
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China. .,Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai, 201203, People's Republic of China.
| | - Shumei Xu
- Department of Physiology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| |
Collapse
|
33
|
Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release 2015; 206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
|
34
|
Chauhan MB, Chauhan NB. Brain Uptake of Neurotherapeutics after Intranasal versus Intraperitoneal Delivery in Mice. JOURNAL OF NEUROLOGY AND NEUROSURGERY 2015; 2:009. [PMID: 26366437 PMCID: PMC4567259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is a growing global prevalence of neurodegenerative diseases such as Alzheimer's disease and dementia. Current treatment for neurodegenerative diseases is limited due to the blood brain barrier's ability to restrict the entry of therapeutics to the brain. In that context, direct delivery of drugs from nose to brain has gained emerging interest as an important alternative to oral and parenteral routes of administration. Although there are considerable reports showing promising results after intranasal drug delivery in various disease-models and investigatory human clinical trials, there are very few studies showing a detailed pharmacokinetics with regard to the uptake and retention of intranasally delivered material(s) within specific brain regions, which are critical determining factors for dosing conditions and optimal treatment regimen. This investigation compared a time-dependent brain uptake and resident time of various radiolabeled candidate neurotherapeutics after a single bolus intranasal or intraperitoneal administration in mice. Results indicate that the brain uptake of intranasally delivered therapeutic(s) is > 5 times greater than that after intraperitoneal delivery. The peak uptake and resident time of all intranasally delivered test therapeutics for all brain regions is observed to be between 30min-12h, depending upon the distance of brain region from the site of administration, followed by gradual fading of radioactive counts by 24h post intranasal administration. Current study confirms the usefulness of intranasal administration as a non- invasive and efficient means of delivering therapeutics to the brain to treat neurodegenerative diseases including Alzheimer's disease.
Collapse
Affiliation(s)
| | - Neelima B. Chauhan
- Department of pediatrics, University of Illinois at Chicago, Children’s Hospital of the University of Illinois, Chicago, IL, USA
- Neuroscience Research, R & D, Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
35
|
3,4-Dihydroxyphenylethanol Attenuates Spatio-Cognitive Deficits in an Alzheimer’s Disease Mouse Model: Modulation of the Molecular Signals in Neuronal Survival-Apoptotic Programs. Neurotox Res 2014; 27:143-55. [DOI: 10.1007/s12640-014-9492-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
36
|
Zheng Z, Tang Y, Lv H, Xu J, Zhao H, Xie Q, Qiu Z, Chen H, Wang H. Determination of Meserine, a new candidate for Alzheimer's disease in mice brain by liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic and tissue distribution study. Anal Bioanal Chem 2014; 406:3451-8. [PMID: 24756818 DOI: 10.1007/s00216-014-7779-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 11/26/2022]
Abstract
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination of Meserine ((-)-meptazinol phenylcarbamate), a novel potent inhibitor of acetylcholinesterase (AChE), was developed, validated, and applied to a pharmacokinetic study in mice brain. The lower limit of quantification (LLOQ) was 1 ng mL(-1) and the linear range was 1-1,000 ng mL(-1). The analyte was eluted on a Zorbax SB-Aq column (2.1 × 100 mm, 3.5 μm) with the mobile phase composed of methanol and water (70:30, v/v, aqueous phase contained 10 mM ammonium formate and 0.3% formic acid) using isocratic elution, and monitored by positive electrospray ionization in multiple reaction monitoring (MRM) mode. The flow rate was 0.25 mL min(-1). The injection volume was 5 μL and total run time was 4 min. The relative standard deviation (RSD) of intraday and interday variation was 2.49-7.81 and 3.01-7.67%, respectively. All analytes were stable after 4 h at room temperature and 6 h in autosampler. The extraction recoveries of Meserine in brain homogenate were over 90%. The main brain pharmacokinetic parameters obtained after intranasal administration were T max = 0.05 h, C max = 462.0 ± 39.7 ng g(-1), T 1/2 = 0.4 h, and AUC(0-∞) = 283.1 ± 9.1 ng h g(-1). Moreover, Meserine was distributed rapidly and widely into brain, heart, liver, spleen, lung, and kidney tissue. The method is validated and could be applied to the pharmacokinetic and tissue distribution study of Meserine in mice.
Collapse
Affiliation(s)
- Zhaoxi Zheng
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease. Int J Pharm 2014; 461:192-202. [DOI: 10.1016/j.ijpharm.2013.11.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
38
|
Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol 2013; 9:92-101. [PMID: 24057103 DOI: 10.1007/s11481-013-9501-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022]
Abstract
Fibroblast growth factor-2 (FGF2), also known as basic FGF, is a multi-functional growth factor. One of the 22-member FGF family, it signals through receptor tyrosine kinases encoding FGFR1-4. FGF2 activates FGFRs in cooperation with heparin or heparin sulfate proteoglycan to induce its pleiotropic effects in different tissues and organs, which include potent angiogenic effects and important roles in the differentiation and function of the central nervous system (CNS). FGF2 is crucial to development of the CNS, which explains its importance in adult neurogenesis. During development, high levels of FGF2 are detected from neurulation onwards. Moreover, developmental expression of FGF2 and its receptors is temporally and spatially regulated, concurring with development of specific brain regions including the hippocampus and substantia nigra pars compacta. In adult neurogenesis, FGF2 has been implicated based on its expression and regulation of neural stem and progenitor cells in the neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. FGFR1 signaling also modulates inflammatory signaling through the surface glycoprotein CD200, which regulates microglial activation. Because of its importance in adult neurogenesis and neuroinflammation, manipulation of FGF2/FGFR1 signaling has been a focus of therapeutic development for neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and traumatic brain injury. Novel strategies include intranasal administration of FGF2, administration of an NCAM-derived FGFR1 agonist, and chitosan-based nanoparticles for the delivery of FGF2 in pre-clinical animal models. In this review, we highlight current research towards therapeutic interventions targeting FGF2/FGFR1 in neurodegenerative disorders.
Collapse
Affiliation(s)
- Maya E Woodbury
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, 02118, USA
| | | |
Collapse
|
39
|
Modulation of neural stem/progenitor cell proliferation during experimental Herpes Simplex encephalitis is mediated by differential FGF-2 expression in the adult brain. Neurobiol Dis 2013; 58:144-55. [PMID: 23748078 DOI: 10.1016/j.nbd.2013.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 11/20/2022] Open
Abstract
Neural stem cells (NSCs) respond to inflammatory cues induced during brain injury and are thought to be involved in recovery from brain damage. Little is known about NSC response during brain infections. The present study evaluated NSC proliferation during Herpes Simplex Virus-1 brain infection. Total numbers of nestin(+) NSCs increased significantly in infected brains at 6 days post infection (p.i.). However, by 15 days p.i. the nestin(+) population decreased significantly below levels observed in uninfected brains and remained depressed through 30 days p.i. This initial increase in NSC population occurred concurrently with increased brain cell proliferation, which peaked at 3 days p.i. On closer examination, we found that while actively proliferating Sox2(+) NSCs increased in number at 6 days p.i., proliferating DCX(+) neuroblasts contributed to the increased response at 3 days p.i. However, overall proliferation decreased steadily from 15 days p.i. to below control levels. To determine the mechanisms involved in altering NSC proliferation, neurotrophin and growth factor expression profiles were assessed. FGF-2 gene expression increased at 5 days p.i. and was robustly down-regulated at 15 days p.i. (>1000-fold), which was further confirmed by increased FGF-2 immunostaining around the lateral ventricles. Furthermore, supplementing infected animals with recombinant FGF-2, at 15 days p.i., significantly increased the number of proliferating brain cells. These findings demonstrate that the temporal changes in NSC proliferation are mediated through the regulation of FGF-2 and that the NSC niche may benefit from supplementation with FGF-2 during HSV-1 brain infection.
Collapse
|