1
|
Chen M, Li R, Lu X, Dai Y, Chen T, Xing Y, Xue L, Duan Z, Zhou W, Li J. Fabrication and characterization of l-ascorbyl palmitate and phospholipid-based hybrid liposomes and their impacts on the stability of loaded hydrophobic polyphenols. Food Chem 2023; 398:133953. [DOI: 10.1016/j.foodchem.2022.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
2
|
Sazalee SNF, Ruslan NAAA, Nordin N, Azmi WA, Suk VRE, Misran M, Yong TS, Teik KK, Chia PW. Synthesis of N-acyl glycine surfactant from palm oil as green repellent and toxicant to termite (Microcerotermes diversus). AN ACAD BRAS CIENC 2022; 94:e20201601. [PMID: 35920484 DOI: 10.1590/0001-3765202220201601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
This study described for the first time, the synthesis of a greener, safer, and more effective termiticide using a bio-based surfactant, N-acyl glycine derived from palm oil for the control of Microcerotermes diversus. Laboratory findings showed that the highest repellent activity was observed in N-acyl glycine surfactant (83.33%) at 50 ppm. In addition, N-acyl glycine surfactant also exhibited substantial time and concentration-dependent anti-termiticidal activity in which the highest termite mortality was observed after 3 days of exposure at 50 ppm of the surfactant (100%). Furthermore, 32.49 ppm concentration of N-acyl glycine surfactant (LC50 = 32.49 ppm) attained 50% of termite lethality. The current innovated termiticide with the use of N-acyl glycine surfactant offers a better efficacy, lower cost, and prevents the use of dangerous termiticides that are critical in creating a more sustainable environment, and controls Microcerotermes diversus at the same time.
Collapse
Affiliation(s)
- Syamimi N F Sazalee
- Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Eco-Innovation Research Interest Group, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nur A A A Ruslan
- Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Eco-Innovation Research Interest Group, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nurhamizah Nordin
- Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Eco-Innovation Research Interest Group, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wahizatul A Azmi
- Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Eco-Innovation Research Interest Group, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Vicit R E Suk
- Research & Development Centre, KL-Kepong Oleomas Sdn. Bhd., Lot 1 & 2, Solok Waja 3, Bukit Raja Industrial Estate, PO Box 83, 41710 Klang, Selangor, Malaysia
| | - Misni Misran
- Research & Development Centre, KL-Kepong Oleomas Sdn. Bhd., Lot 1 & 2, Solok Waja 3, Bukit Raja Industrial Estate, PO Box 83, 41710 Klang, Selangor, Malaysia
| | - Tan S Yong
- Universiti Malaysia Terengganu, Institute of Marine Biotechnology, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Koay K Teik
- Universiti Malaysia Terengganu, Institute of Marine Biotechnology, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Poh W Chia
- Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Eco-Innovation Research Interest Group, 21030 Kuala Nerus, Terengganu, Malaysia.,Universiti Malaysia Terengganu, Institute of Marine Biotechnology, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Eh Suk VR, Marlina A, Hussain Z, Misran M. N-Stearoyl Chitosan as a Coating Material for Liposomes Encapsulating Itraconazole. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Verma S, Utreja P. Oleic Acid Vesicles as a new Approach for Transdermal Delivery of Econazole Nitrate: Development, Characterization, and In-vivo Evaluation in Wistar rats. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2020; 16:PRI-EPUB-111375. [PMID: 33176662 DOI: 10.2174/1574891x15999201110212725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous candidiasis is a deep-seated skin fungal infection that is most commonly observed in immunocompromised patients. This fungal infection is conventionally treated with various formulations like gels and creams which are having different side effects and least therapeutic efficacy. Hence, it becomes necessary to develop a novel carrier system for the treatment of this deep-seated skin fungal infection. Econazole nitrate is the most widely used antifungal for the treatment of cutaneous candidiasis, therefore, in present research work we developed and evaluated econazole nitrate loaded oleic acid vesicles for treatment of cutaneous candidiasis through transdermal route. METHODS Econazole nitrate loaded oleic acid vesicles were prepared by thin-film hydration and characterized for drug entrapment, vesicle size, zeta potential, polydispersity index (PDI), Fourier Transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis. Furthermore, the oleic acid vesicular gel was evaluated for ex-vivo skin permeation/retention and in-vitro and in-vivo antifungal activity in Wistar rats. RESULTS Econazole nitrate loaded oleic acid vesicles showed high encapsulation of drug (74.76 ± 3.0%), acceptable size (373.4 ± 2.9 nm), and colloidal characteristics (PDI = 0.231 ± 0.078, zeta potential = -13.27 ± 0.80 mV). The oleic acid vesicular gel showed high skin permeation (Transdermal flux = 61.98 ± 2.45 μg/cm2/h), skin retention (35.90 ± 2.06%), in-vitro, and in-vivo antifungal activity compared to marketed cream (EcodermR) of econazole nitrate for a prolonged period of time (4 days). CONCLUSION Developed econazole nitrate loaded oleic acid vesicles could be used effectively in the treatment of cutaneous candidiasis with minimization of side effects of econazole nitrate with increased therapeutic efficacy.
Collapse
Affiliation(s)
- Shivani Verma
- Department of Pharmaceutics, Rayat-Bahra College of Pharmacy, Hoshiarpur, Punjab 146001,
India
- Research Scholar, I.K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| | - Puneet Utreja
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, PCTE Group of Institutes, Ludhiana, Punjab 142021, India
- Research Supervisor, I.K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| |
Collapse
|
7
|
Hassane Hamadou A, Huang WC, Xue C, Mao X. Comparison of β-carotene loaded marine and egg phospholipids nanoliposomes. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Formulation of vitamin C encapsulation in marine phospholipids nanoliposomes: Characterization and stability evaluation during long term storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Feng S, Sun Y, Wang P, Sun P, Ritzoulis C, Shao P. Co‐encapsulation of resveratrol and epigallocatechin gallate in low methoxyl pectin‐coated liposomes with great stability in orange juice. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Yuxin Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Pei Wang
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Peilong Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Christos Ritzoulis
- Department of Food Technology ATEI of Thessaloniki 574000 Thessaloniki Greece
| | - Ping Shao
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| |
Collapse
|
10
|
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem 2019; 272:494-506. [PMID: 30309574 DOI: 10.1016/j.foodchem.2018.07.205] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
11
|
Jia MQ, Liu QZ, Zhu LJ, Zhang Y, Chen ZX. Influence of polysaccharides on the dynamic self-assembly of medium-chain fatty acid vesicles and hydrolysis of decanoic acid anhydrides. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.07.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Tiew SX, Misran M. Physicochemical properties of acylated low molecular weight chitosans. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1362637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shu Xian Tiew
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Tiew SX, Misran M. Encapsulation of salicylic acid in acylated low molecular weight chitosan for sustained release topical application. J Appl Polym Sci 2017. [DOI: 10.1002/app.45273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shu Xian Tiew
- Department of Chemistry; Faculty of Science, University of Malaya; 50603 Kuala Lumpur Malaysia
- International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Misni Misran
- Department of Chemistry; Faculty of Science, University of Malaya; 50603 Kuala Lumpur Malaysia
- International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
14
|
Eh Suk VR, Misran M. Preparation, characterization and physicochemical properties of DOPE-PEG2000 stabilized oleic acid-soy lecithin liposomes (POLL). Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Development and Characterization of DOPEPEG2000 Coated Oleic Acid Liposomes Encapsulating Anticancer Drugs. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1914-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Optimization of Phospholipid Nanoparticle Formulations Using Response Surface Methodology. J SURFACTANTS DETERG 2015. [DOI: 10.1007/s11743-015-1757-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Zhou W, Liu W, Zou L, Liu W, Liu C, Liang R, Chen J. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf B Biointerfaces 2014; 117:330-7. [DOI: 10.1016/j.colsurfb.2014.02.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 11/16/2022]
|
18
|
Bai G, Wang Y, Nichifor M, Bastos M. Critical role of the degree of substitution in the interaction of biocompatible cholic acid-modified dextrans with phosphatidylcholine liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13258-13268. [PMID: 24079348 DOI: 10.1021/la402754y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interaction between biocompatible cholic acid-modified dextrans with different pendent cholic acid groups' content and phosphatidylcholine liposomes was studied by a variety of techniques including isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), turbidity measurements, microscopy imaging (transmission electron microscopy (TEM), and cryo-scanning electron microscopy (cryo-SEM)). The variation of the interaction enthalpy with polymer concentration, as obtained by ITC, highlighted the formation of different aggregates. Complete phase modification, from vesicles covered with a few polymer chains to vesicle disintegration, was observed by turbidity measurements. DSC showed the effect of polymer addition to the liposome gel to liquid-crystalline phase transition, and microscopy images gave information about the size and morphology of the aggregates. The composition, structure, and morphology of polymer/liposome aggregates were found to be strongly influenced by the cholic acid content in the polymer (degree of substitution, DS). Along with a rather monotonous change in the polymer/liposome system's properties with increasing DS, a discontinuity in behavior could also be observed at DS = 4 mol %. For DS ≤ 4 mol %, the polymer/liposome interaction takes place mainly between individual components, and liposome disintegration occurs in a narrow concentration range, whereas for DS > 4 mol % extended physical networks are formed, which last over a wide concentration range. A mechanism of interaction, as a function of DS, is proposed and discussed in detail.
Collapse
Affiliation(s)
- Guangyue Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, China
| | | | | | | |
Collapse
|