1
|
Varun N, Ghoroi C. Engineered inhalable micro-balloon shaped drug particles for carrier-free dry powder inhalation (DPI) application. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Ignjatović J, Đuriš J, Cvijić S, Dobričić V, Montepietra A, Lombardi C, Ibrić S, Rossi A. Development of solid lipid microparticles by melt-emulsification/spray-drying processes as carriers for pulmonary drug delivery. Eur J Pharm Sci 2021; 156:105588. [PMID: 33045367 DOI: 10.1016/j.ejps.2020.105588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 01/24/2023]
Abstract
The aim of this study was to optimize the parameters of the complex melt-emulsification process coupled with the spray-drying, in order to maintain the balance between solid lipid microparticles (SLMs) powders aerodynamic performance and salbutamol sulfate release rate. Quality target product profile was identified and risk management and principal component analysis were used to guide formulation development. Obtained dry powders for inhalation (DPIs) were evaluated in terms of SLMs size distribution, morphology, true density, drug content, solid state characterization studies, in vitro aerosol performance and in vitro drug release. SLMs micrographs indicated spherical, porous particles. Selected powders showed satisfactory aerosol performance with a mean mass aerodynamic diameter of around 3 μm and acceptable fine particle fraction (FPF). Addition of trehalose positively affected SLMs aerodynamic properties. The results of in vitro dissolution testing indicated that salbutamol sulfate release from the tested SLMs formulations was modified, in comparison to the raw drug release. In conclusion, SLMs in a form of DPIs were successfully developed and numerous factors that affects SLMs properties were identified in this study. Further research is required for full understanding of each factor's influence on SLMs properties and optimization of DPIs with maximized FPFs.
Collapse
Affiliation(s)
- Jelisaveta Ignjatović
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Đuriš
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Agnese Montepietra
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - Chiara Lombardi
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Alessandra Rossi
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
3
|
Zhao Q, Li Y, Chai X, Zhang L, Xu L, Huang J, Ning P, Tian S. Interaction of nano carbon particles and anthracene with pulmonary surfactant: The potential hazards of inhaled nanoparticles. CHEMOSPHERE 2019; 215:746-752. [PMID: 30352372 DOI: 10.1016/j.chemosphere.2018.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Understanding the alteration of the air-liquid interfacial properties of pulmonary surfactant (PS) in the presence of nanoparticles (NPs) and polycyclic aromatic hydrocarbons (PAHs) is particularly important for pulmonary risk assessment. Here, we investigated the interaction of natural PS (extracted from pig's lungs) with nano carbon particles (NCPs) and anthracene as a representative PAH. Our results showed that PS exhibited a significant solubilization effect on anthracene. Solubilization experiment for the substructures of PS demonstrated that the mixed phospholipid components of PS played the primary role in the solubilization of PS for anthracene. Adsorption experiment indicated that in the mixed system of PS, NCPs, and anthracene, PS can inhibit the adsorption of anthracene on NCPs due to the solubilization, agglomeration, and competitive adsorption. In addition, the surface tension, phase behavior, and foaming ability of PS were obviously altered in the presence of NCPs. These findings indicate that the solubilization effect of PS on anthracene, the inhibitive effect of PS for the adsorption of anthracene on NCPs, and the alternation of air-liquid interfacial properties of PS containing NCPs may increase the pulmonary risk in the exposure of atmospheric environment containing both PAHs and NCPs.
Collapse
Affiliation(s)
- Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Xiaolong Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Linzhen Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Davies MJ, Leach AG, Riley F. An investigation into drug partitioning behaviour in simulated pulmonary surfactant monolayers with associated molecular modelling. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael J. Davies
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Andrew G. Leach
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Fatima Riley
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
5
|
Davies MJ, Taylor Z, Leach AG, Ren J, Gibbons P. Crystallisation of aspirin via simulated pulmonary surfactant monolayers and lung-specific additives. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael J. Davies
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Zoe Taylor
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Andrew G. Leach
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - James Ren
- Department of Maritime and Mechanical Engineering; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Paul Gibbons
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
6
|
Davies MJ, Leach AG, Fullwood D, Mistry D, Hope A. The pH dependent interaction between nicotine and simulated pulmonary surfactant monolayers with associated molecular modelling. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael J. Davies
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Andrew G. Leach
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Danielle Fullwood
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Dinesh Mistry
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Alexandra Hope
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
7
|
Davies MJ, Birkett JW, Kotwa M, Tomlinson L, Woldetinsae R. The impact of cigarette/e-cigarette vapour on simulated pulmonary surfactant monolayers under physiologically relevant conditions. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael J. Davies
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Jason W. Birkett
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Mateusz Kotwa
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Lauren Tomlinson
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Rezene Woldetinsae
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
8
|
Williams DR. Particle engineering in pharmaceutical solids processing: surface energy considerations. Curr Pharm Des 2016; 21:2677-94. [PMID: 25876912 PMCID: PMC5421142 DOI: 10.2174/1381612821666150416100319] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/07/2015] [Indexed: 11/22/2022]
Abstract
During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance.
Collapse
Affiliation(s)
- Daryl R Williams
- Department of Chemical Engineering, Imperial College London, Prince Consort Road, Kensington London SW7 2AZ, United Kingdom.
| |
Collapse
|
9
|
Mohammadi-Jam S, Waters K. Inverse gas chromatography applications: a review. Adv Colloid Interface Sci 2014; 212:21-44. [PMID: 25092057 DOI: 10.1016/j.cis.2014.07.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/27/2022]
Abstract
Inverse gas chromatography (IGC) is a versatile, powerful, sensitive and relatively fast technique for characterizing the physicochemical properties of materials. Due to its applicability in determining surface properties of solids in any form such as films, fibres and powders of both crystalline and amorphous structures, IGC became a popular technique for surface characterization, used extensively soon after its development. One of the most appealing features of IGC that led to its popularity among analytical scientists in early years was its similarity in principle to analytical gas chromatography (GC). The main aspect which distinguishes IGC experiments from conventional GC is the role of mobile and stationary phases. Contrary to conventional GC, the material under investigation is placed in the chromatographic column and a known probe vapour is used to provide information on the surface. In this review, information concerning the history, instrumentation and applications is discussed. Examples of the many experiments developed for IGC method are selected and described. Materials that have been analysed include polymers, pharmaceuticals, minerals, surfactants, and nanomaterials. The properties that can be determined using the IGC technique include enthalpy and entropy of sorption, surface energy (dispersive and specific components), work of co/adhesion, miscibility and solubility parameters, surface heterogeneity, glass transition temperature, and specific surface area.
Collapse
|
10
|
Stefaniu C, Brezesinski G, Möhwald H. Langmuir monolayers as models to study processes at membrane surfaces. Adv Colloid Interface Sci 2014; 208:197-213. [PMID: 24612663 DOI: 10.1016/j.cis.2014.02.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
The use of new sophisticated and highly surface sensitive techniques as synchrotron based X-ray scattering techniques and in-house infrared reflection absorption spectroscopy (IRRAS) has revolutionized the monolayer research. Not only the determination of monolayer structures but also interactions between amphiphilic monolayers at the soft air/liquid interface and molecules dissolved in the subphase are important for many areas in material and life sciences. Monolayers are convenient quasi-two-dimensional model systems. This review focuses on interactions between amphiphilic molecules in binary and ternary mixtures as well as on interfacial interactions with interesting biomolecules dissolved in the subphase. The phase state of monolayers can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction or IRRAS. The interactions can be indirectly determined by the observed structure changes. Additionally, the yield of enzymatic reaction can be quantitatively determined, secondary structures of peptides and proteins can be measured and compared with those observed in bulk. In this way, the influence of a confinement on the structural properties of biomolecules can be determined. The adsorption of DNA can be quantified as well as the competing adsorption of ions at charged interfaces. The influence of modified nanoparticles on model membranes can be clearly determined. In this review, the relevance and utility of Langmuir monolayers as suitable models to study physical and chemical interactions at membrane surfaces are clearly demonstrated.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
11
|
Wilke N. Lipid Monolayers at the Air–Water Interface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|