1
|
Eissa EM, El Sisi AM, Bekhet MA, El-Ela FIA, Kharshoum RM, Ali AA, Alrobaian M, Ali AMA. pH-Sensitive In Situ Gel of Mirtazapine Invasomes for Rectal Drug Delivery: Protruded Bioavailability and Anti-Depressant Efficacy. Pharmaceuticals (Basel) 2024; 17:978. [PMID: 39204084 PMCID: PMC11357403 DOI: 10.3390/ph17080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
The present research emphasizes fabrication alongside the assessment of an innovative nano-vesicular membranous system known as invasomes (NVMs) laden with Mirtazapine for rectal administration. This system could circumvent the confines of orally administered counterparts regarding dose schedules and bioavailability. Mirtazapine invasomes were tailored by amalgamating phospholipid, cineole, and ethanol through a thin-film hydration approach rooted in the Box-Behnken layout. Optimization of composition parameters used to fabricate desired NVMs' physicochemical attributes was undertaken using the Design-Expert® program. The optimal MRZ-NVMs were subsequently transformed to a pH-triggered in situ rectal gel followed by animal pharmacodynamic and pharmacokinetic investigations relative to rectal plain gel and oral suspension. The optimized NVMs revealed a diameter size of 201.3 nm, a z potential of -28.8 mV, an entrapment efficiency of 81.45%, a cumulative release within 12 h of 67.29%, and a cumulative daily permeated quantity of 468.68 µg/cm2. Compared to the oral suspension, pharmacokinetic studies revealed a 2.85- and 4.45-fold increase in calculated rectal bioavailability in circulation and brain, respectively. Pharmacodynamic and immunohistopathology evaluations exposed superior MRZ-NVMs attributed to the orally administered drug. Consequently, rectal MRZ-NVMs can potentially be regarded as a prospective nanoplatform with valuable pharmacokinetics and tolerability assets.
Collapse
Affiliation(s)
- Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Marina A. Bekhet
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Ahmed M. Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
2
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
3
|
Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release 2022; 351:361-380. [PMID: 36169040 DOI: 10.1016/j.jconrel.2022.09.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Upon exhaustive research, the transdermal drug delivery system (TDDS) has appeared as a potential, well-accepted, and popular approach to a novel drug delivery system. Ease of administration, easy handling, minimum systemic exposure, least discomfort, broad flexibility and tunability, controlled release, prolonged therapeutic effect, and many more perks make it a promising approach for effective drug delivery. Although, the primary challenge associated is poor skin permeability. Skin is an intact barrier that serves as a primary defense mechanism to preclude any foreign particle's entry into the body. Owing to the unique anatomical framework, i.e., compact packing of stratum corneum with tight junction and fast anti-inflammatory responses, etc., emerged as a critical physiological barrier for TDDS. Fusion with other novel approaches like nanocarriers, specially designed transdermal delivery devices, permeation enhancers, etc., can overcome the limitations. Utilizing such strategies, some of the products are under clinical trials, and many are under investigation. This review explores all dimensions that overcome poor permeability and allows the drug to attain maximum potential. The article initially compiles fundamental features, components, and design of TDDS, followed by critical aspects and various methods, including in vitro, ex vivo, and in vivo methods of assessing skin permeability. The work primarily aimed to highlight the recent advancement in novel strategies for effective transdermal drug delivery utilizing active methods like iontophoresis, electroporation, sonophoresis, microneedle, needleless jet injection, etc., and passive methods such as the use of liposomes, SLN, NLC, micro/nanoemulsions, dendrimers, transferosomes, and many more nanocarriers. In all, this compilation will provide a recent insight on the novel updates along with basic concepts, the current status of clinical development, and challenges for the clinical translation of TDDS.
Collapse
Affiliation(s)
- Vivek Phatale
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Shikha Jha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Dnyaneshwar Patil
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Mukta Agrawal
- SVKM's Narsee Monjee Institute of Management Studies (NMIMS), School of Pharmacy & Technology Management, Hyderabad 509301, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India.
| |
Collapse
|
4
|
Sharma A, Mahanty J, Rasheed S, Kumar S, Singh H. Potential of essential oils as alternative permeation enhancers for transdermal delivery. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.351508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Espinoza LC, Sosa L, Granda PC, Bozal N, Díaz-Garrido N, Chulca-Torres B, Calpena AC. Development of a Topical Amphotericin B and Bursera graveolens Essential Oil-Loaded Gel for the Treatment of Dermal Candidiasis. Pharmaceuticals (Basel) 2021; 14:ph14101033. [PMID: 34681257 PMCID: PMC8538170 DOI: 10.3390/ph14101033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
The higher molecular weight and low solubility of amphotericin B (AmB) hinders its topical administration. The aim of this study was to incorporate Bursera graveolens essential oil into an AmB topical gel (AmB + BGEO gel) in order to promote the diffusion of the drug through the skin in the treatment of cutaneous candidiasis. AmB + BGEO gel formulation was determined using a factorial experiment. Physical and chemical parameters, stability, in vitro release profile and ex vivo permeation in human skin were evaluated. In vitro antimicrobial activity was studied using strains of C. albicans, C. glabrata and C. parapsilosis. The tolerability was evaluated using in vitro and in vivo models. AmB + BGEO gel presented appropriate characteristics for topical administration, including pH of 5.85, pseudoplastic behavior, optimal extensibility, as well as high stability and acceptable tolerability. In vitro release studies showed that the formulation releases the drug following a Boltzmann sigmoidal model. Finally, AmB + BGEO gel exhibited higher amount of drug retained inside the skin and lower Minimum Inhibitory Concentration than a formulation sans essential oil. Therefore, these results suggest that the incorporation of B. graveolens essential oil in the formulation could be used as strategy to promote a local effect in the treatment of cutaneous candidiasis.
Collapse
Affiliation(s)
- Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (B.C.-T.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
| | - Lilian Sosa
- Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
| | - Paulo C. Granda
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Bozal
- Department of Biology, Healthcare and the Environment, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of the University of Barcelona-Sant Joan de Déu Research Institute (IBUB-IRSJD), 08028 Barcelona, Spain
| | - Brenda Chulca-Torres
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (B.C.-T.)
| | - Ana Cristina Calpena
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
6
|
Agrawal MB, Patel MM. Design, development and in vivo evaluation of clozapine loaded adhesive diffusion controlled system for the treatment of schizophrenia. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Agrawal MB, Patel MM. Optimization and in vivo evaluation of quetiapine-loaded transdermal drug delivery system for the treatment of schizophrenia. Drug Dev Ind Pharm 2020; 46:1819-1831. [PMID: 32896163 DOI: 10.1080/03639045.2020.1821051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The prevailing studies were carried out to formulate and optimize the quetiapine transdermal matrix patch by the usage of Box-Behnken design for ameliorated bioavailability when contrasted with conventional drug delivery. The Box-Behnken design with three-level and three-factor was utilized to explore the intermingle impact of critical attributes on tensile strength, in vitro drug release, and flux. Optimized formulation was characterized for Fourier transform infrared, differential scanning calorimetry, in vivo pharmacokinetics, and skin irritation along with stability studies. The inference of the finalized batch (F14) depicted the flux of 51.81 ± 0.32 µg/h/cm2, TS of 6.46 ± 0.56 MPa, and the % drug release after 20 h of 82.98 ± 1.48% with no remarkable variation even after 6 months stability studies. Correlation between predicted and the observed values of the dependent variables was very closer. Optimized quetiapine transdermal patch did not exert any symptoms of skin irritation. The bioavailability of quetiapine was enhanced almost 4.59 times after topical delivery when contrasted with the conventional dosage form. The outputs of the research work divulged that the developed matrix patch of quetiapine for transdermal drug delivery can be a propitious opportunity that affords effective treatment of schizophrenia. Novelty statement The oral route is not suitable for the drugs having extensive first-pass metabolism which leads to reduced bioavailability. For the parenteral route, invasiveness causes the patient noncompliance while sterility contributes to the cost factor. Moreover, the treatment of schizophrenic patients is a challenging task for caregivers and doctors. Hence, the transdermal patch of quetiapine was developed to bypass the biotransformation of drugs and thereby to enhance the bioavailability as well as to provide sustained drug delivery which ultimately reduces the dosage frequency.
Collapse
Affiliation(s)
- Milan B Agrawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
8
|
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20903555] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Terpenoids, the most abundant compounds in natural products, are a set of important secondary metabolites in plants with diverse structures. Terpenoids play key roles in plant growth and development, response to the environment, and physiological processes. As raw materials, terpenoids were also widely used in pharmaceuticals, food, and cosmetics industries. Terpenoids possess antitumor, anti-inflammatory, antibacterial, antiviral, antimalarial effects, promote transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. In addition, previous studies have also found that terpenoids have many potential applications, such as insect resistance, immunoregulation, antioxidation, antiaging, and neuroprotection. Terpenoids have a complex structure with diverse effects and different mechanisms of action. Activities and mechanisms of terpenoids were reviewed in this paper. The development and application prospect of terpenoid compounds were also prospected, which provides a useful reference for new drug discovery and drug design based on terpenoids.
Collapse
Affiliation(s)
| | - Xu Chen
- School of Pharmacy, Linyi University, P. R. China
| | - Yanli Li
- School of Pharmacy, Linyi University, P. R. China
| | - Shaofen Guo
- School of Pharmacy, Linyi University, P. R. China
| | - Zhen Wang
- School of Pharmacy, Linyi University, P. R. China
| | - Xiuling Yu
- School of Pharmacy, Linyi University, P. R. China
| |
Collapse
|
9
|
Hashmat D, Shoaib MH, Ali FR, Siddiqui F. Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers. PLoS One 2020; 15:e0228908. [PMID: 32107483 PMCID: PMC7046209 DOI: 10.1371/journal.pone.0228908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of the current study was to develop membrane-based transdermal patches of lornoxicam gel using oleic acid (OA)and propylene glycol (PG) as penetration enhancers to improve drug delivery across the skin and to evaluate in vivo analgesic and anti-inflammatory activity. For this purpose, nine formulations were developed in accordance with 32 factorial design using Design Expert® 11. The concentration of propylene glycol (X1) and oleic acid (X2) were selected as independent variable whereas Q10 (Y1), flux (Y2) and lag time (Y3) were considered as the response variables. The impact of drug loading, surface area, gel concentration, membrane variation and agitation speed on drug release and permeation was also studied. The skin sensitivity reaction, analgesic activity and anti-inflammatory action of the optimized patch were also determined in Albino Wistar rats. Stability studies were performed for three months at three different temperature conditions. The result suggests that a membrane-based system with controlled zero-order drug release of 95.8 ± 1.121% for 10 h exhibiting flux of 126.51±1.19 μg/cm2/h and lag time of 0.908 ±0.57h was optimized with the desired analgesic and anti-inflammatory effect can be obtained by using propylene glycol and oleic acid co-solvents as a penetration enhancer. The patch was also found stable at 4˚C for a period of 6.44 months. Formulation F9 comprising of 10% PG and 3% OA was selected as an optimized formulation. The study demonstrates that the fabricated transdermal system of lornoxicam can deliver the drug through the skin in a controlled manner with desired analgesic and anti-inflammatory activity and can be considered as a suitable alternative of the oral route.
Collapse
Affiliation(s)
- Durriya Hashmat
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Fatima Ramzan Ali
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
10
|
Transbuccal delivery of benznidazole associated with monoterpenes: permeation studies and mechanistic insights. Eur J Pharm Sci 2020; 143:105177. [PMID: 31812716 DOI: 10.1016/j.ejps.2019.105177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Benznidazole (BZN) represents the only drug currently available for the treatment of Chagas disease in most endemic countries. When administered orally, high doses are required due to its extensive hepatic metabolism and its toxicity represents the main reason for treatment withdrawals. Because of these complications, transbuccal administration of BZN was investigated. This route avoids the first-pass hepatic metabolism and presents high permeability, with direct access to the systemic circulation. BZN was applied on porcine buccal mucosa after pretreatment with pure eugenol, carvacrol or limonene. Thermal (DSC) and spectroscopic (FT-IR) analyzes were performed to investigate the mechanisms of drug absorption enhancement. The permeability coefficient values of BZN increased 2.6, 2.9 and 4.9-fold after pretreatment with eugenol, carvacrol and limonene, respectively. The lag time, in turn, was shortened in the pretreated samples. The DSC and FT-IR analyzes suggested that transport of BZN through the buccal mucosa is associated with log P and size of monoterpenes. Limonene, the most effective absorption enhancer, contributed to greater interaction with non-polar domains of the buccal epithelium. Overall, BZN showed to be efficiently transported through the buccal route, but in vivo pharmacokinetic studies should be performed to confirm these findings.
Collapse
|
11
|
Fujii MY, Asakawa Y, Fukami T. Potential application of novel liquid crystal nanoparticles of isostearyl glyceryl ether for transdermal delivery of 4-biphenyl acetic acid. Int J Pharm 2020; 575:118935. [PMID: 31816353 DOI: 10.1016/j.ijpharm.2019.118935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
Novel liquid crystal nanoparticles (LCNs) composed of isostearyl glyceryl ether (GE-IS) and ethoxylated hydrogenated castor oil (HCO-60) were developed for the enhanced transdermal delivery of 4-biphenyl acetic acid (BAA). The physical properties and pharmaceutical properties of the LCNs were measured. The interaction between the intercellular lipid model of the stratum corneum and the LCNs was observed to elucidate the skin permeation mechanism. In the formulation, the LCNs form niosomes with mean particles sizes of 180-300 nm. The skin absorption mechanisms of LCNs are different, depending upon the application and buffer concentration. The LCNs composed of GE-IS and HCO-60 are attractive tools for use as transdermal drug delivery systems carriers for medicines and cosmetics, due to their high efficiency and safety.
Collapse
Affiliation(s)
- Mika Yoshimura Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Yoko Asakawa
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| |
Collapse
|
12
|
Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation. Int J Pharm 2019; 570:118657. [PMID: 31491483 DOI: 10.1016/j.ijpharm.2019.118657] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 11/22/2022]
Abstract
Avanafil (AVA) is a recent FDA approved selective phosphodiesterase type 5 inhibitor used for oral treatment of erectile dysfunction. The oral bioavailability of the drug is challenged by its reduced water solubility, considerable presystemic metabolism, and altered absorption in the presence of food. Accordingly, this work aimed to surmount the aforementioned challenges through the development of optimized nanosized AVA invasomes with enhanced transdermal delivery. AVA invasomes were prepared according to a Box-Behnken experimental design to explore the impact of the following formulation factors: phospholipid % (X1), ethanol % (X2), terpene % (X3), and terpene type (X4) on vesicle size (Y1) and entrapment efficiency (Y2). The three numerical variables were used at three levels, while the categorical variable was used at two levels. The optimized formulation with vesicular size of 109.92 nm and entrapment efficiency of 96.98% was incorporated into a hydroxypropyl methyl cellulose-based transdermal film and characterized for its ex vivo permeation behavior and in vivo performance in rats. The optimized AVA invasomal film showed enhanced ex vivo permeation with an enhancement factor of 2.514 and a more than four-fold increase in relative bioavailability compared to the raw AVA film. These results provide insight into the capability of the optimized invasomal film to enhance the transdermal permeation and bioavailability of AVA.
Collapse
|
13
|
Zhang Y, Tian Z, Zhao X, Li N, Garamus VM, Yin P, Zou A. Dual-modified bufalin loaded liposomes for enhanced tumor targeting. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Lan YL, Lou JC, Jiang XW, Wang X, Xing JS, Li S, Zhang B. A research update on the anticancer effects of bufalin and its derivatives. Oncol Lett 2019; 17:3635-3640. [PMID: 30915168 DOI: 10.3892/ol.2019.10062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Bufalin (BF) is a cardiotonic steroid that has recently been found to have substantial anticancer activity; however, more efforts should be directed toward clarifying the detailed molecular mechanisms underlying this activity. BF could exert its anticancer effect by inducing apoptosis in various human cancer cells and thus triggering autophagic cancer cell death. The anti-inflammatory activities of BF are potentially important for its anticancer functions. Notably, some promising synthetic BF derivatives, including poly (ethylene glycol)-based polymeric prodrug of BF and BF211, have shown potent anticancer activity. Additionally, clinical trials regarding the use of BF-related agents in patients have supported the positive effect of BF as an anticancer treatment. Currently, large-scale randomized, double-blind, placebo or positive drug parallel controlled studies are required to confirm the anticancer potential of BF in various cancer types in the clinical setting. The present review will evaluate the potential mechanisms mediated by BF in intracellular signaling events in cancer cells and various promising BF derivatives that may have greater anticancer activity, thereby clarifying BF-mediated anticancer effects. The experimental and clinical results reviewed strongly emphasize the importance of this topic in future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xue-Wen Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
15
|
Cationic Moieties in Polystyrene Gels Swollen with d-Limonene Improved Transdermal Delivery System. Polymers (Basel) 2018; 10:polym10111200. [PMID: 30961125 PMCID: PMC6290618 DOI: 10.3390/polym10111200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
d-limonene, a terpene and natural compound, has been found to be an excellent penetration enhancer for transdermal drug delivery (TDD). It hence has been incorporated within various transdermal formulations. Herein, we report the application of polystyrene gel swollen with d-limonene and its derivatives for TDD. Poly(styrene-co-divinylbenzene) (PS gel), poly(styrene-co-divinylbenzene-co-4-vinylpyridine) (PS-4VP) gel and poly(styrene-co-divinylbenzene-co-(vinylbenzyl) trimethylammonium chloride) (PS-VBAC gel) were employed as chemical gels to improve the stability of the TDD substrates. The drug permeation properties from the PS gels swollen in limonene were examined, regarding the effect of its network density as well as their rheological properties. The lowest density of the network showed the highest steady flux of the permeation at 43.7 ± 0.3 μg/cm². FT-IR spectra were confirmed for PS-4VP and PS-VBAC, bearing cationic moieties and they could control the release of ibuprofen by the electrostatic interaction at the interface of organogel and skin. The steady state flux of skin permeation got low values from 55.2 ± 0.8 to 11.6 ± 2.0 μg/cm², when the cationic moieties were increased. Moreover, the chemical network of PS gel swollen in limonene showed high mechanical stability illustrated by elastic modulus (G') of about 98 kPa for 10% cross-linked PS gel. The developed PS gels swollen in limonene show highly promising results, suggesting their possible application in TDD.
Collapse
|
16
|
El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Dapsone-Loaded Invasomes as a Potential Treatment of Acne: Preparation, Characterization, and In Vivo Skin Deposition Assay. AAPS PharmSciTech 2018; 19:2174-2184. [PMID: 29725903 DOI: 10.1208/s12249-018-1025-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Dapsone (DPS) is a unique sulfone with antibiotic and anti-inflammatory activity. Owing to its dual action, DPS has a great potential to treat acne. Topical DPS application is expected to be effective in treatment of mild to moderate acne conditions. Invasomes are novel vesicles composed of phosphatidylcholine, ethanol, and one or mixture of terpenes of enhanced percutaneous permeation. In this study, DPS-loaded invasomes were prepared using the thin film hydration technique. The effect of different terpenes (Limonene, Cineole, Fenchone, and Citral) in different concentrations on the properties of the prepared DPS-loaded invasomes was investigated using a full factorial experimental design, namely, the particle size, drug entrapment, and release efficiency. The optimized formulation was selected for morphological evaluation which showed spherical shaped vesicles. Further solid-state characterization using differential scanning calorimetry and X-ray diffractometry revealed that the drug was dispersed in an amorphous state within the prepared invasomes. Finally, the ability of the prepared DPS-loaded invasomes to deliver DPS through the skin was investigated in vivo using wistar rats. The maximum in vivo skin deposition amount of DPS was found to be 4.11 mcg/cm2 for invasomes versus 1.71 mcg/cm2 for the drug alcoholic solution, representing about 2.5-fold higher for the invasomes compared to the drug solution. The AUC0-10 calculated for DPS-loaded invasomes was nearly 2-fold greater than that of DPS solution (14.54 and 8.01 mcg.h/cm2 for the optimized invasomes and DPS solution, respectively). These results reveal that the skin retention of DPS can be enhanced using invasomes.
Collapse
|
17
|
Parhi R, Padilam S. In vitro permeation and stability studies on developed drug-in-adhesive transdermal patch of simvastatin. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bfopcu.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Shi XJ, Qiu YY, Yu H, Liu C, Yuan YX, Yin PH, Liu T. Increasing the anticancer performance of bufalin (BUF) by introducing an endosome-escaping polymer and tumor-targeting peptide in the design of a polymeric prodrug. Colloids Surf B Biointerfaces 2018; 166:224-234. [PMID: 29602078 DOI: 10.1016/j.colsurfb.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
A well-defined multifunctional brush-type polymeric prodrug covalently linked with an anticancer drug (bufalin, BUF), a tumor-targeting peptide (RGD), and an endosome-escaping polymer, poly(N,N-diethylaminoethyl methacrylate-co-butyl methacrylate (P(DEA-co-BMA)), was developed. Its anticancer performance against colon cancer was investigated in vitro and in vivo. Reversible addition-fragmentation transfer (RAFT) polymerization of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), 2-((3-(tert-butoxy)-3-oxopropyl)thio)ethyl methacrylate (BSTMA), and 2-(2-bromoisobutyryloxy)ethylmethacrylate (BIEM) afforded the multifunctional random copolymer, P(OEGMA-co-BSTMA-co-BIEM), in which hydrophilic POEGMA can stabilize nanoparticles in water, PBSTMA can be converted into carboxyl groups, and PBIEM can be employed as a macromolecular atom radical transfer polymerization (ATRP) initiator. The ATRP of DEA and BMA using P(OEGMA-co-BSTMA-co-BIEM) as a macromolecular ATRP initiator led to the formation of the pH-responsive brush-type copolymer, P(OEGMA-co-BSTMA)-g-P(DEA-co- BMA). After hydrolysis by trifluoroacetic acid and post-functionalization the final polymeric prodrug, P(OEGMA-co-BUF-co-RGD)-g-P(DEA-co-BMA), was obtained with a drug content of ∼7.8 wt%. P(OEGMA-co-BUF-co-RGD)-g-P(DEA-co-BMA) can be assembled into nanoparticles (BUF- NP-RGD) in aqueous solution with a diameter of 148.4 ± 0.7 nm and a zeta potential of -7.6 ± 0.4 mV. BUF-NP-RGD exhibited controlled drug release in the presence of esterase. Additionally, P(OEGMA-co- BSMA)-g-P(DEA-co-BMA) showed a significant hemolysis effect at a pH comparable to that of endosomes/lysosomes. Cell viability and a tumor-bearing nude mouse model were employed to evaluate the anticancer efficacy of BUF-NP-RGD. It was revealed that BUF-NP-RGD showed improved anticancer performance compared with that of free BUF both in vitro and in vivo. Histological and immunochemical analysis further demonstrated that BUF-NP-RGD exhibited improved cell apoptosis, angiogenesis inhibition, and an anti-proliferation effect.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yan-Yan Qiu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hui Yu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Cheng Liu
- Centralab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yu-Xia Yuan
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Pei-Hao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Tao Liu
- Centralab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
19
|
Human Skin Permeation Studies with PPARγ Agonist to Improve Its Permeability and Efficacy in Inflammatory Processes. Int J Mol Sci 2017; 18:ijms18122548. [PMID: 29182532 PMCID: PMC5751151 DOI: 10.3390/ijms18122548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
Rosacea is the most common inflammatory skin disease. It is characterized by erythema, inflammatory papules and pustules, visible blood vessels, and telangiectasia. The current treatment has limitations and unsatisfactory results. Pioglitazone (PGZ) is an agonist of peroxisome proliferator-activated receptors (PPARs), a nuclear receptor that regulates important cellular functions, including inflammatory responses. The purpose of this study was to evaluate the permeation of PGZ with a selection of penetration enhancers and to analyze its effectiveness for treating rosacea. The high-performance liquid chromatography (HPLC) method was validated for the quantitative determination of PGZ. Ex vivo permeation experiments were realized in Franz diffusion cells using human skin, in which PGZ with different penetration enhancers were assayed. The results showed that the limonene was the most effective penetration enhancer that promotes the permeation of PGZ through the skin. The cytotoxicity studies and the Draize test detected cell viability and the absence of skin irritation, respectively. The determination of the skin color using a skin colorimetric probe and the results of histopathological studies confirmed the ability of PGZ-limonene to reduce erythema and vasodilation. This study suggests new pharmacological indications of PGZ and its possible application in the treatment of skin diseases, namely rosacea.
Collapse
|
20
|
Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery. Molecules 2016; 21:molecules21121709. [PMID: 27973428 PMCID: PMC6273457 DOI: 10.3390/molecules21121709] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
The greatest hindrance for transdermal drug delivery (TDD) is the barrier property of skin, especially the stratum corneum (SC). Various methodologies have been investigated and developed to enhance the penetration of drugs through the skin. Among them, the most popular approach is the application of penetration enhancers (PEs), including natural terpenes, a very safe and effective class of PEs. In the present paper, we focused on terpenes as skin PEs for TDD. The mechanism of their action, the factors affecting their penetration enhancement effect, as well as their possible skin toxicity were discussed. Terpenes abundant in nature have great potential in the development of PEs. Compared to synthetic PEs, natural terpenes have been proved to possess higher enhancement activity. Interaction with SC intercellular lipids is the main mechanism of action for terpenes. The key factor affecting the enhancement effect is the lipophilicity of both terpenes and drug molecules. In addition, a lot of terpenes have also been proved to be much less toxic compared to azone, the classic synthetic PE. In summary, terpenes may be preferred over the chemically synthesized compounds as safe and effective PEs to promote the percutaneous absorption of drugs.
Collapse
|
21
|
|
22
|
Santana de Freitas-Blanco V, Franz-Montan M, Groppo FC, de Carvalho JE, Figueira GM, Serpe L, Oliveira Sousa IM, Guilherme Damasio VA, Yamane LT, de Paula E, Ferreira Rodrigues RA. Development and Evaluation of a Novel Mucoadhesive Film Containing Acmella oleracea Extract for Oral Mucosa Topical Anesthesia. PLoS One 2016; 11:e0162850. [PMID: 27626796 PMCID: PMC5023158 DOI: 10.1371/journal.pone.0162850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/28/2016] [Indexed: 11/29/2022] Open
Abstract
Purpose To develop an anesthetic mucoadhesive film containing Acmella oleracea (jambu) extract for topical use on oral mucosa. Methods Ethanolic extracts from aerial parts of jambu were prepared by maceration. Pigment removal was obtained by adsorption with activated carbon. Three mucoadhesive films were developed using a film casting method: 10 or 20% of crude jambu extract (10% JB and 20% JB), and 10% of crude jambu extract treated with activated carbon (10% JBC). The mucoadhesive films were characterized regarding their uniformity, thickness, pH, and spilanthol content, and their stability was evaluated during 120 days. Gas chromatography was used to quantify the amount of spilanthol. In vitro tests determined the permeation of spilanthol across pig esophageal epithelium mucosa in Franz diffusion cells. Topical anesthetic efficacy was assessed in vivo using a tail flick test in mice. Results The three mucoadhesive films showed physical stability and visual appearances suitable for use on oral mucosa. The permeation study revealed that the spilanthol from 10% JBC presented higher flux and permeability coefficient values, compared to 10% or 20% JB (p < 0.001). Moreover, 10% JBC showed better topical anesthetic efficacy than the other films (p < 0.01). Conclusion Mucoadhesive film containing crude extract of jambu treated with activated carbon is a potential alternative for oral, topical use, encouraging future clinical studies.
Collapse
Affiliation(s)
- Verônica Santana de Freitas-Blanco
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Chemical, Biological and Agricultural Research Center (CPQBA), University of Campinas, Paulinia, Brazil
| | - Michelle Franz-Montan
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - João Ernesto de Carvalho
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Chemical, Biological and Agricultural Research Center (CPQBA), University of Campinas, Paulinia, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Glyn Mara Figueira
- Chemical, Biological and Agricultural Research Center (CPQBA), University of Campinas, Paulinia, Brazil
| | - Luciano Serpe
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Ilza Maria Oliveira Sousa
- Chemical, Biological and Agricultural Research Center (CPQBA), University of Campinas, Paulinia, Brazil
| | | | - Lais Thiemi Yamane
- Chemical, Biological and Agricultural Research Center (CPQBA), University of Campinas, Paulinia, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rodney Alexandre Ferreira Rodrigues
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Chemical, Biological and Agricultural Research Center (CPQBA), University of Campinas, Paulinia, Brazil
- * E-mail:
| |
Collapse
|
23
|
Kondamudi PK, Tirumalasetty PP, Malayandi R, Mutalik S, Pillai R. Lidocaine Transdermal Patch: Pharmacokinetic Modeling and In Vitro-In Vivo Correlation (IVIVC). AAPS PharmSciTech 2016; 17:588-96. [PMID: 26283198 DOI: 10.1208/s12249-015-0390-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/22/2023] Open
Abstract
The present study aims to develop the correlation between in vitro and in vivo skin permeation of lidocaine in its transdermal patch. In order to minimize the run-to-run variability during in vitro skin permeation studies, release normalized cumulative percent (%Ct n) was calculated. A suitable polynomial mathematical model was used to establish a correlation between time and %Ct n. Percent in vivo absorbed was calculated by using numerical deconvolution (NDC) and non-compartmental analysis (NCA) methods. Pharmacokinetic (PK) parameters such as AUC last and C max were predicted with the established in vitro-in vivo correlation (IVIVC) models. The minimum prediction errors in NDC method for C max were found to be -30.9 and -25.4% for studies I (in vivo study in human volunteers with one batch of Lidoderm patch; internal validation) and II (in vivo study in human volunteers with another batch of Lidoderm patch; external validation), respectively, whereas minimum prediction errors in NCA method were relatively low (3.9 and 0.03% for studies I and II, respectively) compared to those in NDC method. The prediction errors for AUC last were found to be less than 2% for both methods and studies. The established method in this study could be a potential approach for predicting the bioavailability and/or bioequivalence for transdermal drug delivery systems.
Collapse
|
24
|
Polymeric prodrug of bufalin for increasing solubility and stability: Synthesis and anticancer study in vitro and in vivo. Int J Pharm 2016; 506:382-93. [DOI: 10.1016/j.ijpharm.2016.04.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
|
25
|
Patel H, Joshi A, Joshi A, Stagni G. Transdermal Delivery of Etoposide Phosphate II: In Vitro In Vivo Correlations (IVIVC). J Pharm Sci 2016; 105:2139-45. [PMID: 27233686 DOI: 10.1016/j.xphs.2016.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
A dependable in vitro in vivo correlation (IVIVC) is a vital tool to optimize drug formulation and expedite product development time. Although many IVIVC examples are available for oral delivery systems, IVIVC for transdermal delivery is far less common, especially for electrical-assisted delivery. The objective of this study was to develop an IVIVC for the iontophoretic delivery of the anticancer drug etoposide. Iontophoresis was performed at 4 current densities (100, 200, 300, and 400 μA/cm(2)) both in vitro using a standard Franz-cell apparatus with excised porcine skin as membrane, and in vivo in a rabbit model. There was strong correlation between the in vitro % permeated across porcine skin and in vivo absorption (AUC, Cmax) in the range 100-300 μA/cm(2). The correlation between in vitro flux and in vivo input rate (R0) permitted to predict the R0 from a different set of in vitro data (external validation). Convolution of such input rate accurately predicted in vivo plasma profiles (PE% <15) in the absorption phase, whereas the elimination phase was slightly under-predicted (PE% >20). In vivo absorption profiles obtained with deconvolution did not overlap directly with the in vitro profiles; however, correction for the lag time and the application of a scaling factor estimated from Levy' s plots resulted in excellent correlation.
Collapse
Affiliation(s)
- Hiren Patel
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201
| | - Abhay Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201
| | - Amit Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201
| | - Grazia Stagni
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201.
| |
Collapse
|
26
|
Liu T, Jia T, Yuan X, Liu C, Sun J, Ni Z, Xu J, Wang X, Yuan Y. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo. Int J Nanomedicine 2016; 11:2235-50. [PMID: 27284243 PMCID: PMC4883818 DOI: 10.2147/ijn.s100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Development of polymeric prodrugs of small molecular anticancer drugs has become one of the most promising strategies to overcome the intrinsic shortcomings of small molecular anticancer drugs and improve their anticancer performance. MATERIALS AND METHODS In the current work, we fabricated a novel octreotide (Oct)-modified esterase-sensitive tumor-targeting polymeric prodrug of bufalin (BUF) and explored its anticancer performance against somatostatin receptor 2 overexpressing breast cancer. RESULTS The obtained tumor-targeting polymeric prodrug of BUF, P(oligo[ethylene glycol] monomethyl ether methacrylate [OEGMA]-co-BUF-co-Oct), showed a nanosize dimension and controlled drug release features in the presence of esterase. It was demonstrated by in vitro experiment that P(OEGMA-co-BUF-co-Oct) showed enhanced cytotoxicity, cellular uptake, and apoptosis in comparison with those of free BUF. In vivo experiment further revealed the improved accumulation of drugs in tumor tissues and enhanced anticancer performance of P(OEGMA-co-BUF-co-Oct). CONCLUSION Taken together, this study indicated that polymeric prodrug of BUF holds promising potential toward the treatment of somatostatin receptor 2 overexpressing breast cancer.
Collapse
Affiliation(s)
- Tao Liu
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tingting Jia
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xia Yuan
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Cheng Liu
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian Sun
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhenhua Ni
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian Xu
- Centralab, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xuhui Wang
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Yuan
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
27
|
Wu SH, Hsiao YT, Kuo CL, Yu FS, Hsu SC, Wu PP, Chen JC, Hsia TC, Liu HC, Hsu WH, Chung JG. Bufalin Inhibits NCI-H460 Human Lung Cancer Cell Metastasis In Vitro by Inhibiting MAPKs, MMPs, and NF-κB Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1247-64. [PMID: 26446205 DOI: 10.1142/s0192415x15500718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bufalin, a component of Chan Su (a traditional Chinese medicine), has been known to have antitumor effects for thousands of years. In this study, we investigated its anti-metastasis effects on NCI-H460 lung cancer cells. Under sub-lethal concentrations (from 25 up to 100 nM), bufalin significantly inhibits the invasion and migration nature of NCI-H460 cells that were measured by Matrigel Cell Migration Assay and Invasion System. Bufalin also suppressed the enzymatic activity of matrix metalloproteinase (MMP)-9, which was examined by gelatin zymography methods. Western blotting revealed that bufalin depressed several key metastasis-related proteins, such as NF-κB, MMP-2, MMP-9, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3-K), phosphorylated Akt, growth factor receptor-bound protein 2 (GRB2), phosphorylated extracellular signal-regulated kinase (ERK), phosphorylated p38, and phosphorylated c-Jun NH2-terminal kinase (JNK). As evidenced by immunostaining and the electrophoretic mobility shift assay (EMSA), bufalin induced not only a decreased cytoplasmic NF-κB production, but also decreased its nuclear translocation. Several metastasis-related genes, including Rho-associated (Rho A), coiled-coil-containing protein kinase 1 (ROCK1), and focal adhesion kinase (FAK), were down-regulated after bufalin treatment. In conclusion, bufalin is effective in inhibiting the metastatic nature of NCI-H460 cells in low, sub-lethal concentrations. Such an effect involves many mechanisms including MMPs, mitogen-activated protein kinases (MAPKs) and NF-κB systems. Bufalin has a potential to evolve into an anti-metastasis drug for human lung cancer in the future.
Collapse
Affiliation(s)
- Shin-Hwar Wu
- Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Critical Care Medicine, Department of Medicine, Changhua Christian Hospital, Changhua 505, Taiwan
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung 404, Taiwan
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Te-Chun Hsia
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsin-Chung Liu
- Department of Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Wu-Huei Hsu
- Department of Internal Medicine, China Medical University, Taichung 404, Taiwan.,Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Jing-Gung Chung
- Department of Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
28
|
Parhi R, Suresh P, Pattnaik S. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: effect of solvents/penetration enhancers on ex vivo permeation. Drug Deliv Transl Res 2016; 6:243-53. [DOI: 10.1007/s13346-015-0276-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Saoji SD, Atram SC, Dhore PW, Deole PS, Raut NA, Dave VS. Influence of the Component Excipients on the Quality and Functionality of a Transdermal Film Formulation. AAPS PharmSciTech 2015; 16:1344-56. [PMID: 25922089 DOI: 10.1208/s12249-015-0322-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022] Open
Abstract
The influence of formulation variables, i.e., a hydrophilic polymer (Methocel(®) E15) and a film-forming polymer (Eudragit(®) RL 100 and Eudragit(®) RS 100), on the physicochemical and functional properties of a transdermal film formulation was assessed. Several terpenes were initially evaluated for their drug permeation enhancement effects on the transdermal film formulations. D-Limonene was found to be the most efficient permeation enhancer among the tested terpenes. Transdermal film formulations containing granisetron (GRN) as a model drug, D-limonene as a permeation enhancer, and different ratios of a hydrophilic polymer (Methocel(®) E15) and a film-forming polymer (Eudragit(®) RL 100 or Eudragit(®) RS 100) were prepared. The prepared films were evaluated for their physicochemical properties such as weight variation, thickness, tensile strength, folding endurance, elongation (%), flatness, moisture content, moisture uptake, and the drug content uniformity. The films were also evaluated for the in vitro drug release and ex vivo drug permeation. The increasing ratios of Methocel(®):Eudragit(®) polymers in the formulation linearly and significantly increased the moisture content, moisture uptake, water vapor transmission rate (WVTR), and the transdermal flux of GRN from the film formulations. Increasing levels of Methocel(®) in the formulations also increased the rate and extent of the GRN release and the GRN permeation from the prepared films.
Collapse
|
30
|
Abstract
To achieve an efficient skin penetration of most compounds it is necessary to overcome the barrier function of the skin, provided mainly (but not only) by the stratum corneum. Among various strategies used or studied to date, chemical penetration enhancers are the most frequently employed with one of the longest histories of use. There is a multitude of agents described as penetration enhancers, and they present varying properties and structures. In this manuscript, we aim to provide a brief overview of traditional enhancers and some of their properties, focusing on the benefits of combination of chemical enhancers and on selected novel compounds that have shown promise to increase drug delivery into/across the skin.
Collapse
|
31
|
González-García I, Mangas-Sanjuán V, Merino-Sanjuán M, Bermejo M. In vitro–in vivocorrelations: general concepts, methodologies and regulatory applications. Drug Dev Ind Pharm 2015; 41:1935-47. [DOI: 10.3109/03639045.2015.1054833] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Wang Y, Zhao XP, Ruan JW. Transdermal Drug Delivery System of Aceclofenac for Rheumatoid Arthritis and the Effect of Permeation Enhancers: In vitro and in vivo Characterization. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.456.462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Kim TS, Jin SE, Sun B, Kim MS, Hwang SJ. Comparison of adhesion and dissolution of fentanyl patches: Fentadur® and Durogesic DTrans®. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0195-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Saoji SD, Atram SC, Dhore PW, Deole PS, Raut NA, Dave VS. Influence of the Component Excipients on the Quality and Functionality of a Transdermal Film Formulation. AAPS PharmSciTech 2015. [PMID: 25922089 DOI: 10.1208/s12249-015-0322-0.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The influence of formulation variables, i.e., a hydrophilic polymer (Methocel(®) E15) and a film-forming polymer (Eudragit(®) RL 100 and Eudragit(®) RS 100), on the physicochemical and functional properties of a transdermal film formulation was assessed. Several terpenes were initially evaluated for their drug permeation enhancement effects on the transdermal film formulations. D-Limonene was found to be the most efficient permeation enhancer among the tested terpenes. Transdermal film formulations containing granisetron (GRN) as a model drug, D-limonene as a permeation enhancer, and different ratios of a hydrophilic polymer (Methocel(®) E15) and a film-forming polymer (Eudragit(®) RL 100 or Eudragit(®) RS 100) were prepared. The prepared films were evaluated for their physicochemical properties such as weight variation, thickness, tensile strength, folding endurance, elongation (%), flatness, moisture content, moisture uptake, and the drug content uniformity. The films were also evaluated for the in vitro drug release and ex vivo drug permeation. The increasing ratios of Methocel(®):Eudragit(®) polymers in the formulation linearly and significantly increased the moisture content, moisture uptake, water vapor transmission rate (WVTR), and the transdermal flux of GRN from the film formulations. Increasing levels of Methocel(®) in the formulations also increased the rate and extent of the GRN release and the GRN permeation from the prepared films.
Collapse
Affiliation(s)
- Suprit D Saoji
- Department of Pharmaceutical Sciences, R. T. M. Nagpur University, Nagpur, India
| | | | - Pradip W Dhore
- Department of Pharmaceutical Sciences, R. T. M. Nagpur University, Nagpur, India
| | | | - Nishikant A Raut
- Department of Pharmaceutical Sciences, R. T. M. Nagpur University, Nagpur, India
| | - Vivek S Dave
- St. John Fisher College, Wegmans School of Pharmacy, 3690 East Avenue, Rochester, New York, 14618, USA.
| |
Collapse
|
35
|
Galipoğlu M, Erdal MS, Güngör S. Biopolymer-based transdermal films of donepezil as an alternative delivery approach in Alzheimer's disease treatment. AAPS PharmSciTech 2015; 16:284-92. [PMID: 25273029 PMCID: PMC4370960 DOI: 10.1208/s12249-014-0224-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022] Open
Abstract
Matrix type transdermal films of donepezil (DNP) as an alternative delivery approach was designed to improve patient compliance to Alzheimer disease treatment. Sodium alginate, a natural polysaccharide, was used as matrix-forming agent in the optimization of transdermal films. Propylene glycol and dl-limonene was added into films as a plasticizer and permeation enhancer, respectively. As well as mechanical strength and bioadhesiveness of optimized transdermal films of DNP, the impact of dl-limonene concentration in films on DNP in vitro permeation across pig skin was assessed. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) measurements were carried out to examine the effects of enhancer on in vitro conformational order of the stratum corneum intercellular lipids following permeation study. Results showed that transdermal formulations of DNP were suitable due to both mechanical and bioadhesive features of the films. In vitro skin permeation study indicated that dl-limonene at a concentration of 3% was optimum with high drug flux. ATR-FTIR results confirmed a more fluidized stratum corneum lipid state in the presence of dl-limonene, indicating its permeation enhancement effect. Regarding to achieve therapeutic levels of DNP, it seems to be feasible deliver DNP with transdermal films for the management of Alzheimer disease.
Collapse
Affiliation(s)
- Maviye Galipoğlu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Beyazit 34116 Istanbul, Turkey
| | - Meryem Sedef Erdal
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Beyazit 34116 Istanbul, Turkey
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Beyazit 34116 Istanbul, Turkey
| |
Collapse
|
36
|
Yu M, Ma H, Lei M, Li N, Tan F. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur J Pharm Biopharm 2014; 88:92-103. [DOI: 10.1016/j.ejpb.2014.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 11/27/2022]
|
37
|
Limpongsa E, Jaipakdee N, Pongjanyakul T. Skin deposition and permeation of finasteridein vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate. Pharm Dev Technol 2014; 20:984-991. [DOI: 10.3109/10837450.2014.954727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Formulation optimization of arecoline patches. ScientificWorldJournal 2014; 2014:945168. [PMID: 24707220 PMCID: PMC3953398 DOI: 10.1155/2014/945168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022] Open
Abstract
The response surface methodology (RSM) including polynomial equations has been used to design an optimal patch formulation with appropriate adhesion and flux. The patch formulations were composed of different polymers, including Eudragit RS 100 (ERS), Eudragit RL 100 (ERL) and polyvinylpyrrolidone K30 (PVP), plasticizers (PEG 400), and drug. In addition, using terpenes as enhancers could increase the flux of the drug. Menthol showed the highest enhancement effect on the flux of arecoline.
Collapse
|
39
|
Ren Q, Deng C, Meng L, Chen Y, Chen L, Sha X, Fang X. In vitro, ex vivo, and in vivo evaluation of the effect of saturated fat acid chain length on the transdermal behavior of ibuprofen-loaded microemulsions. J Pharm Sci 2014; 103:1680-91. [PMID: 24700251 DOI: 10.1002/jps.23958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 11/07/2022]
Abstract
In this study, the effect of the saturated fatty acid (FA) chain length in the oil phase on the behavior of Ibuprofen (IBU)-loaded transdermal microemulsion (ME) was evaluated in vitro, ex vivo, and in vivo. Three oils classified as long (LFA), medium (MFA), and short (SFA) chain length oils, Cremophor RH40 (surfactant) and Transcutol P (cosurfactant) were selected after experimental optimization. The physicochemical properties of ME were characterized, including IBU solubility in excipients, pseudo-ternary phase diagram construction, particle size, zeta potential, viscosity, and stability. Permeation flux and residual amount of IBU ex vivo using Franz cell system occurred in the following order: MFA-based ME > LFA-based ME > SFA-based ME, which correlated well with the results of confocal scanning laser microscopy study and the in vivo retention study. The results of in vitro cytotoxicity study and skin irritation tests measured by differential scanning calorimetry were ranked in the following order: LFA-based ME > MFA-based ME > SFA-based ME. Moreover, MFA-based ME has the highest analgesic activity among all the treatment groups. MFA was found to be an optimal oil phase with appropriate FA chain length for IBU-loaded transdermal ME, which exhibited excellent physicochemical properties, low toxicity, and good permeability profile.
Collapse
Affiliation(s)
- Qiuyue Ren
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Kaur M, Ita KB, Popova IE, Parikh SJ, Bair DA. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur J Pharm Biopharm 2014; 86:284-91. [DOI: 10.1016/j.ejpb.2013.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
|
41
|
|