1
|
Naseem N, Kushwaha P, Haider F. Leveraging nanostructured lipid carriers to enhance targeted delivery and efficacy in breast cancer therapy: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03408-w. [PMID: 39196394 DOI: 10.1007/s00210-024-03408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and proliferation, continues to be a major global health concern. Breast cancer, the most commonly diagnosed cancer among women, remains a leading cause of cancer-related deaths worldwide. Conventional treatment modalities such as surgery, radiation, and chemotherapy have made significant strides in improving patient outcomes. However, these approaches often face challenges such as limited efficacy, systemic toxicity, and multidrug resistance. Nanotechnology has emerged as a promising avenue for revolutionizing cancer therapy, offering targeted drug delivery, enhanced efficacy, and reduced side effects. Among the various nanocarrier systems, nanostructured lipid carriers (NLCs) have gained considerable attention for their unique advantages. Comprising a blend of solid and liquid lipids, NLCs offer improved drug loading capacity, enhanced stability, sustained release, and biocompatibility. This manuscript provides a comprehensive overview of the role of NLCs in breast cancer management, covering their formulation, methods of preparation, advantages, and disadvantages. Additionally, several studies are presented to illustrate the efficacy of NLCs in delivering anticancer drugs to breast tumors. These studies demonstrate the ability of NLCs to enhance drug cytotoxicity, improve tumor suppression, and minimize systemic toxicity. This manuscript aims to contribute to the existing literature by consolidating current knowledge and providing insights into the future directions of NLC-based therapeutics in breast cancer management.
Collapse
Affiliation(s)
- Nazish Naseem
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Faheem Haider
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| |
Collapse
|
2
|
Patil K, Gujarathi N, Sharma C, Ojha S, Goyal S, Agrawal Y. Quality-by-Design-Driven Nanostructured Lipid Scaffold of Apixaban: Optimization, Characterization, and Pharmacokinetic Evaluation. Pharmaceutics 2024; 16:910. [PMID: 39065607 PMCID: PMC11280014 DOI: 10.3390/pharmaceutics16070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Apixaban, an anticoagulant, is limited in its efficacy due to poor solubility, low bioavailability, and extensive metabolism. This study investigates the application of nanostructured lipid carriers (NLCs) to enhance the bioavailability of Apixaban. NLCs were prepared using the high-pressure homogenization method. The influence of independent variables, viz., the amount of Tween 80, HPH pressure, and the number of HPH cycles, were studied using a 23 factorial design. The average particle size, PDI, zeta potential, and entrapment efficiency of the optimized NLCs were found to be 232 ± 23 nm, with 0.514 ± 0.13 PDI and zeta potential of about -21.9 ± 2.1 mV, respectively. Additionally, concerning the thermal and crystallographic properties of the drug, the NLCs showed drug entrapment without altering its potency. The in-vitro drug release studies revealed an immediate release pattern, followed by sustained release for up to 48 h. In-vivo pharmacokinetic experiments demonstrated that Apixaban-loaded NLCs exhibited higher values of t1/2 (27.76 ± 1.18 h), AUC0-∞ (19,568.7 ± 1067.6 ng·h/mL), and Cmax (585.3 ± 87.6 ng/mL) compared to free drugs, indicating improved bioavailability. Moreover, a decrease in the elimination rate constant (Kel) reflected the sustained effect of Apixaban with NLCs. NLCs offer improved oral absorption rates and enhanced therapeutic impact compared to free drugs, potentially reducing dose frequency and improving patient outcomes.
Collapse
Affiliation(s)
- Kiran Patil
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Nayan Gujarathi
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Sameer Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| |
Collapse
|
3
|
Souza AD, Scarim CB, Cotrim PC, Junior FB, Rocha BA, Calixto LA, Correia CJ, de Barros Araújo GL, Löbenberg R, Bou-Chacra NA, Breithaupt-Faloppa AC. Hydroxymethylnitrofurazone lymphatic uptake with nanostructured lipid carrier after oral administration in rats. Nanomedicine (Lond) 2024; 19:293-301. [PMID: 38270378 DOI: 10.2217/nnm-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Background: Leishmaniasis, caused by the protozoan Leishmania sp., infects phagocyte cells present in lymphatic organs. This study demonstrates the influence of nanostructured lipid carrier-loaded hydroxymethylnitrofurazone (NLC-NFOH) on lymphatic uptake using a chylomicron-blocking flow model in rats. Method: Lymphatic uptake of NFOH was assessed 1 h after oral administration of dimethyl sulfoxide with NFOH or NLC-NFOH with and without cycloheximide pretreatment. Result: Dimethyl sulfoxide with NFOH and NLC-NFOH showed NFOH serum concentrations of 0.0316 and 0.0291 μg/ml, respectively. After chylomicron blocking, NFOH was not detected. Conclusion: Despite log P below 5, NFOH was successfully taken up by the lymphatic system. Long-chain fatty acids and particle size might be main factors in these findings. NLC-NFOH is a promising and convenient platform for treating leishmaniasis via oral administration.
Collapse
Affiliation(s)
- Aline de Souza
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Cauê Benito Scarim
- Department of Drugs & Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-901, Brazil
| | - Paulo Cesar Cotrim
- Seroepidemiology, Cellular & Molecular Immunology Laboratory, Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar 470, Jardim América, São Paulo, SP, 05403-000, Brazil
| | - Fernando Barbosa Junior
- Laboratory of Toxicology & Essentiality of Metals, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Bruno Alves Rocha
- Laboratory of Toxicology & Essentiality of Metals, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Leandro Augusto Calixto
- Federal University of São Paulo, Department of Pharmaceutical Sciences, Institute of Environmental, Chemical & Pharmaceutical Sciences, Diadema - SP, 09913-030, Brazil
| | - Cristiano Jesus Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-903, Brazil
| | | | - Raimar Löbenberg
- University of Alberta, Faculty of Pharmacy & Pharmaceutical Sciences, Edmonton, AB, T6G 2T9, Canada
| | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-903, Brazil
| |
Collapse
|
4
|
Jitta SR, Salwa, Bhaskaran NA, Marques SM, Kumar L, Cheruku SP, Rao V, Sharma P, Kulkarni OP. Enhanced tissue distribution of ritonavir-loaded nanostructured lipid carriers-recommending its dose reduction. Drug Deliv Transl Res 2024; 14:116-130. [PMID: 37402943 DOI: 10.1007/s13346-023-01386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Human immunodeficiency virus (HIV) mainly attacks lymphocytes of the human immune system. The untreated infection leads to acquired immune deficiency syndrome (AIDS). Ritonavir (RTV) belongs to protease inhibitors (PIs), the crucial contributors of the combination therapy used in the treatment of HIV that is called highly active antiretroviral therapy (HAART). Formulations targeting the lymphatic system (LS) play a key role in delivering and maintaining therapeutic drug concentrations in HIV reservoirs. In our previous study, we developed RTV-loaded nanostructured lipid carriers (NLCs), which contain the natural antioxidant alpha-tocopherol (AT). In the current study, the cytotoxicity of the formulation was studied in HepG2, MEK293, and H9C2 cell lines. The formulation efficacy to reach the LS was evaluated through a cycloheximide-injected chylomicron flow blockade model in Wistar rats. Biodistribution and toxicity studies were conducted in rodents to understand drug distribution patterns in various organs and to establish the safety profile of the optimized formulation (RTV-NLCs). From the MTT assay, it was found that the cell viability of the formulation is comparable with the pure drug (RTV-API). More than 2.5-folds difference in AUC was observed in animals treated with RTV-NLCs with and without cycloheximide injection. Biodistribution studies revealed higher drug exposure in the lymphoidal organs with the RTV-NLCs. No significant increase in serum biomarkers for hepatotoxicity was observed in rats dosed with the RTV-NLCs. The current study reveals the lymphatic uptake of the RTV-NLCs and their safety in rodents. As the tissue distribution of RTV-NLCs is high, hence re-adjusting the RTV-NLCs dose to get the response equivalent to RTV-API may be more beneficial with respect to its safety and efficacy.
Collapse
Affiliation(s)
- Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, 844 102, Vaishali, Bihar, India.
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, 500 078, Telangana State, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, 500 078, Telangana State, India
| |
Collapse
|
5
|
Zaky MF, Hammady TM, Gad S, Alattar A, Alshaman R, Hegazy A, Zaitone SA, Ghorab MM, Megahed MA. Influence of Surface-Modification via PEGylation or Chitosanization of Lipidic Nanocarriers on In Vivo Pharmacokinetic/Pharmacodynamic Profiles of Apixaban. Pharmaceutics 2023; 15:1668. [PMID: 37376116 DOI: 10.3390/pharmaceutics15061668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Nanostructured lipid carriers (NLCs) have been proven to significantly improve the bioavailability and efficacy of many drugs; however, they still have many limitations. These limitations could hinder their potential for enhancing the bioavailability of poorly water-soluble drugs and, therefore, require further amendments. From this perspective, we have investigated how the chitosanization and PEGylation of NLCs affected their ability to function as a delivery system for apixaban (APX). These surface modifications could enhance the ability of NLCs to improve the bioavailability and pharmacodynamic activity of the loaded drug. In vitro and in vivo studies were carried out to examine APX-loaded NLCs, chitosan-modified NLCs, and PEGylated NLCs. The three nanoarchitectures displayed a Higuchi-diffusion release pattern in vitro, in addition to having their vesicular outline proven via electron microscopy. PEGylated and chitosanized NLCs retained good stability over 3 months, versus the nonPEGylated and nonchitosanized NLCs. Interestingly, APX-loaded chitosan-modified NLCs displayed better stability than the APX-loaded PEGylated NLCs, in terms of mean vesicle size after 90 days. On the other hand, the absorption profile of APX (AUC0-inf) in rats pretreated with APX-loaded PEGylated NLCs (108.59 µg·mL-1·h-1) was significantly higher than the AUC0-inf of APX in rats pretreated with APX-loaded chitosan-modified NLCs (93.397 µg·mL-1·h-1), and both were also significantly higher than AUC0-inf of APX-Loaded NLCs (55.435 µg·mL-1·h-1). Chitosan-coated NLCs enhanced APX anticoagulant activity with increased prothrombin time and activated partial thromboplastin time by 1.6- and 1.55-folds, respectively, compared to unmodified NLCs, and by 1.23- and 1.37-folds, respectively, compared to PEGylated NLCs. The PEGylation and chitosanization of NLCs enhanced the bioavailability and anticoagulant activity of APX over the nonmodified NLCs; this highlighted the importance of both approaches.
Collapse
Affiliation(s)
- Mohamed F Zaky
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Taha M Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Abdullah Alattar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ann Hegazy
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed A Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| |
Collapse
|
6
|
Diethylene glycol monoethyl ether-mediated nanostructured lipid carriers enhance trans-ferulic acid delivery by Caco-2 cells superior to solid lipid nanoparticles. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:133-143. [PMID: 36692464 DOI: 10.2478/acph-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/25/2023]
Abstract
This work aimed to compare the performance of trans-ferulic acid-encapsulated nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) for transport by Caco-2 cells. The NLC particles (diameter: 102.6 nm) composed of Compritol® 888 ATO, ethyl oleate, Cremophor® EL, and Transcutol® P were larger than the SLNs (diameter: 86.0 nm) formed without liquid lipid (ethyl oleate), and the former had a higher encapsulation efficiency for trans-ferulic acid (p < 0.05). In vitro cultured Caco-2 cell transport was used to simulate intestinal absorption, and the cellular uptake of NLCs was higher than that of SLNs (p < 0.05). Compared to SLNs, NLCs greatly enhanced trans-ferulic acid permeation through the MillicellTM membrane (p < 0.05). This work confirms that NLCs have better properties than SLNs in terms of increasing drug transport by Caco-2 cells. This helps to comprehend the approach by which NLC-mediated oral bioavailability of trans-ferulic acid is better than that mediated by SLNs, as shown in our previous report.
Collapse
|
7
|
Wang J, Chen W, Du W, Zhang H, Ilmer M, Song L, Hu Y, Ma X. ROS Generative Black Phosphorus-Tamoxifen Nanosheets for Targeted Endocrine-Sonodynamic Synergistic Breast Cancer Therapy. Int J Nanomedicine 2023; 18:2389-2409. [PMID: 37192893 PMCID: PMC10182776 DOI: 10.2147/ijn.s406627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction Tamoxifen (TAM) has proven to be a therapeutic breakthrough to reduce mortality and recurrence in estrogen receptor-positive (ER+) breast cancer patients. However, the application of TAM exhibits low bioavailability, off-target toxicity, instinct and acquired TAM resistance. Methods We utilized black phosphorus (BP) as a drug carrier and sonosensitizer, integrated with TAM and tumor-targeting ligand folic acid (FA) to construct TAM@BP-FA for synergistic endocrine and sonodynamic therapy (SDT) of breast cancer. The exfoliated BP nanosheets were modified through in situ polymerization of dopamine, followed by electrostatic adsorption of TAM and FA. The anticancer effect of TAM@BP-FA was evaluated through in vitro cytotoxicity and in vivo antitumor model. RNA-sequencing (RNA-seq), quantitative real-time PCR, Western blot analysis, flow cytometry analysis and peripheral blood mononuclear cells (PBMCs) analysis were performed for mechanism investigation. Results TAM@BP-FA had satisfactory drug loading capacity, the TAM release behavior can be controlled through pH microenvironment and ultrasonic stimulation. An amount of hydroxyl radical (∙OH) and singlet oxygen (1O2) were as expected generated under ultrasound stimulation. TAM@BP-FA nanoplatform showed excellent internalization in both TAM-sensitive MCF7 and TAM-resistant (TMR) cells. Using TMR cells, TAM@BP-FA displayed significantly enhanced antitumor ability in comparison with TAM (7.7% vs 69.6% viability at 5μg/mL), the additional SDT further caused 15% more cell death. RNA-seq unraveled the TAM@BP-FA antitumor mechanisms including effects on cell cycle, apoptosis and cell proliferation. Further analysis showed additional SDT successfully triggering reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) reduction. Moreover, PBMCs exposed to TAM@BP-FA induced an antitumor immune response by natural killer (NK) cell upregulation and immunosuppression macrophage reduction. Conclusion The novel BP-based strategy not only delivers TAM specifically to tumor cells but also exhibits satisfactory antitumor effects through targeted therapy, SDT, and immune cell modulation. The nanoplatform may provide a superior synergistic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Weijian Chen
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Matthias Ilmer
- Department of General, Visceral, and Transplantation Surgery, Ludwig-Maximilians-University (LMU), Campus Grosshadern, Munich, 81377, Germany
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
- Correspondence: Yuan Hu; Xiaopeng Ma, Email ;
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| |
Collapse
|
8
|
Calderón-Colón X, Zhang Y, Tiburzi O, Wang J, Hou S, Raimondi G, Patrone J. Design and characterization of lipid nanocarriers for oral delivery of immunotherapeutic peptides. J Biomed Mater Res A 2022; 111:938-949. [PMID: 36585800 DOI: 10.1002/jbm.a.37477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 01/01/2023]
Abstract
The use of therapeutic proteins and peptides is of great interest for the treatment of many diseases, and advances in nanotechnology offer a path toward their stable delivery via preferred routes of administration. In this study, we sought to design and formulate a nanostructured lipid carrier (NLC) containing a nominal antigen (insulin peptide) for oral delivery. We utilized the design of experiments (DOE) statistical method to determine the dependencies of formulation variables on physicochemical particle characteristics including particle size, polydispersity (PDI), melting point, and latent heat of melting. The particles were determined to be non-toxic in vitro, readily taken up by primary immune cells, and found to accumulate in regional lymph nodes following oral administration. We believe that this platform technology could be broadly useful for the treatment of autoimmune diseases by supporting the development of oral delivery-based antigen specific immunotherapies.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olivia Tiburzi
- Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, USA
| | - Jialu Wang
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shenda Hou
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Giorgio Raimondi
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julia Patrone
- Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, USA
| |
Collapse
|
9
|
Zaky MF, Megahed MA, Hammady TM, Gad S, Ghorab MM, El-Say KM. Tailoring Apixaban in Nanostructured Lipid Carrier Enhancing Its Oral Bioavailability and Anticoagulant Activity. Pharmaceutics 2022; 15:80. [PMID: 36678709 PMCID: PMC9867073 DOI: 10.3390/pharmaceutics15010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Apixaban (Apx), an oral anticoagulant drug, is a direct factor Xa inhibitor for the prophylaxis against venous thromboembolism. Apx has limited oral bioavailability and poor water solubility. The goal of this study was to improve the formulation of an Apx-loaded nanostructured lipid carrier (NLC) to increase its bioavailability and effectiveness. As solid lipid, liquid lipid, hydrophilic, and lipophilic stabilizers, stearic acid, oleic acid, Tween 80, and lecithin were used, respectively. Utilizing Box-Behnken design, the effects of three factors on NLC particle size (Y1), zeta potential (Y2), and entrapment efficiency percent (Y3) were examined and optimized. The optimized formula was prepared, characterized, morphologically studied, and pharmacokinetically and pharmacodynamically assessed. The observed responses of the optimized Apx formula were 315.2 nm, -43.4 mV, and 89.84% for Y1, Y2, and Y3, respectively. Electron microscopy revealed the homogenous spherical shape of the NLC particles. The in vivo pharmacokinetic study conducted in male Wistar rats displayed an increase in AUC and Cmax by 8 and 2.67 folds, respectively, compared to oral Apx suspension. Moreover, the half-life was increased by 1.94 folds, and clearance was diminished by about 8 folds, which makes the NLC formula a promising sustained release system. Interestingly, the pharmacodynamic results displayed the superior effect of the optimized formula over the drug suspension with prolongation in the cuticle bleeding time. Moreover, both prothrombin time and activated partial thromboplastin time are significantly increased. So, incorporating Apx in an NLC formula significantly enhanced its oral bioavailability and pharmacodynamic activity.
Collapse
Affiliation(s)
- Mohamed F. Zaky
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mohamed A. Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Taha M. Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Enhancement of S(+)-zaltoprofen oral bioavailability using nanostructured lipid carrier system. Arch Pharm Res 2022; 45:822-835. [DOI: 10.1007/s12272-022-01413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
11
|
Agrawal YO, Husain M, Patil KD, Sodgir V, Patil TS, Agnihotri VV, Mahajan HS, Sharma C, Ojha S, Goyal SN. Verapamil hydrochloride loaded solid lipid nanoparticles: Preparation, optimization, characterisation, and assessment of cardioprotective effect in experimental model of myocardial infarcted rats. Biomed Pharmacother 2022; 154:113429. [PMID: 36007280 DOI: 10.1016/j.biopha.2022.113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
Abstract
Verapamil, a calcium channel blocker has poor bioavailability (20-30%) owing to extensive hepatic first-pass metabolism. Hence, the major objective of this research was to improve the oral bioavailability of Verapamil by Solid Lipid Nanoparticles (V-SLNs) using high shear homogenization and ultrasonication technology. A 32 factorial design was employed to statistically optimize the formulation to get minimum particle size with maximum entrapment efficiency. The average particle size was 218 nm and the entrapment efficiency was 80.32%. The V-SLN formulation exhibited biphasic behavior with a rapid release at first, then a steady release (75-80%) up to 24 h following the Korsmeyer Peppas release model. In the Isoproterenol induced myocardial necrosis model, oral administration of V-SLNs positively modulated almost all the studied hemodynamic parameters such as left ventricular end-diastolic pressure, cardiac injury markers, and tissue architecture. The cardioprotective effect was also confirmed with histopathological studies. When compared with free drugs, in-vivo pharmacokinetic studies demonstrated a rise in t1/2, AUC0-∞, and Cmax, indicating that bioavailability has improved. These encouraging results demonstrate the promising potential of developed V-SLNs for oral delivery and thereby improve the therapeutic outcome.
Collapse
Affiliation(s)
- Yogeeta O Agrawal
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India.
| | - Muzammil Husain
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Kiran D Patil
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Vishal Sodgir
- Department of Pharmaceutics, N.D.M.V. P's College of Pharmacy, Nashik, Maharashtra, India
| | - Tulshidas S Patil
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Vinit V Agnihotri
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Hitendra S Mahajan
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, Maharashtra, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, India, 424001
| |
Collapse
|
12
|
Chaturvedi S, Garg A. A comprehensive review on novel delivery approaches for exemestane. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Shrivastava N, Parikh A, Dewangan RP, Biswas L, Verma AK, Mittal S, Ali J, Garg S, Baboota S. Solid Self-Nano Emulsifying Nanoplatform Loaded with Tamoxifen and Resveratrol for Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14071486. [PMID: 35890384 PMCID: PMC9318459 DOI: 10.3390/pharmaceutics14071486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The solid self-nanoemulsifying drug delivery system (s-SNEDDS) is a growing platform for the delivery of drugs via oral route. In the present work, tamoxifen (TAM) was loaded in SNEDDS with resveratrol (RES), which is a potent chemotherapeutic, antioxidant, anti-inflammatory and P-gp inhibitor for enhancing bioavailability and to obtain synergistic anti-cancer effect against breast cancer. SNEDDS were developed using capmul MCM as oil, Tween 80 as surfactant and transcutol-HP as co-surfactant and optimized by central composite rotatable design. Neusilin US2 concentration was optimized for adsorption of liquid SNEDDS to prepare s-SNEDDS. The developed formulation was characterized and investigated for various in vitro and cell line comparative studies. Optimized TAM-RES-s-SNEDDS showed spherical droplets of a size less than 200 nm. In all in vitro studies, TAM-RES-s-SNEDDS showed significantly improved (p ˂ 0.05) release and permeation across the dialysis membrane and intestinal lumen. Moreover, TAM-RES-s-SNEDDS possessed significantly greater therapeutic efficacy (p < 0.05) and better internalization on the MCF-7 cell line as compared to the conventional formulation. Additionally, oral bioavailability of TAM from SNEDDS was 1.63 folds significantly higher (p < 0.05) than that of combination suspension and 4.16 folds significantly higher (p < 0.05) than TAM suspension. Thus, findings suggest that TAM- RES-s-SNEDDS can be the future delivery system that potentially delivers both drugs to cancer cells for better treatment.
Collapse
Affiliation(s)
- Nupur Shrivastava
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Ankit Parikh
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Largee Biswas
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi 110007, India; (L.B.); (A.K.V.)
| | - Anita Kamra Verma
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi 110007, India; (L.B.); (A.K.V.)
| | - Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence: (S.G.); (S.B.)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
- Correspondence: (S.G.); (S.B.)
| |
Collapse
|
14
|
Ghadge D, Nangare S, Jadhav N. Formulation, optimization, and in vitro evaluation of anastrozole-loaded nanostructured lipid carriers for improved anticancer activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
16
|
Yoshida T, Kojima H, Sako K, Kondo H. Drug delivery to the intestinal lymph by oral formulations. Pharm Dev Technol 2022; 27:175-189. [PMID: 35037843 DOI: 10.1080/10837450.2022.2030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oral drug delivery systems (DDS) targeting lymphocytes in intestinal lymphatic vessels, ducts, and nodes are useful for treating diverse diseases. The intestinal lymph harbors numerous lymphocyte subsets, and DDS containing lipids such as triglycerides and fatty acids can deliver drugs to the lymph through the chylomicron pathway. DDS are efficient, thus allowing the administration of reduced drug doses, which mitigate systemic adverse effects. Here we review orally administered lipid formulations comprising oil solutions, suspensions, micro/nanoemulsions, self-micro/nano emulsifying DDS, liposomes, micelles, solid lipid nanoparticles, and nanostructured lipid carriers for targeting drugs to the lymph. We first describe the structures of lymphatic vessels and lymph nodes and the oral absorption of lipids and drugs into the intestinal lymph. We next summarize the effects of the properties and amounts of lipids and drugs delivered into the lymph and lymphocytes, as well as their effects on drug delivery ratios of lymph to blood. Finally, we describe lymphatic DDS containing saquinavir, tacrolimus, and methotrexate, and their potency that reduce drug concentrations in blood, which are associated with systemic adverse effects.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Drug Delivery, Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., Yaizu, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., Yaizu, Japan
| | - Kazuhiro Sako
- Corporate Advocacy, Astellas Pharma Inc., 2-5-1, Nihonbashi-honcho, Chuo-ku, Tokyo, 103-0023, Japan
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
17
|
Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021; 29:999-1012. [PMID: 34588846 PMCID: PMC8463508 DOI: 10.1016/j.jsps.2021.07.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
NLCs have provoked the incessant impulsion for the development of safe and valuable drug delivery systems owing to their exceptional physicochemical and then biocompatible characteristics. Throughout the earlier period, a lot of studies recounting NLCs based formulations have been noticeably increased. They are binary system which contains both solid and liquid lipids aiming to produce less ordered lipidic core. Their constituents particularly influence the physicochemical properties and effectiveness of the final product. NLCs can be fabricated by different techniques which are classified according to consumed energy. More utilization NLCs is essential due to overcome barriers surrounded by the technological procedure of lipid-based nanocarriers' formulation and increased information of the core mechanisms of their transport via various routes of administration. They can be used in different applications and by different routes such as oral, cutaneous, ocular and pulmonary. This review article seeks to present an overview on the existing situation of the art of NLCs for future clinics through exposition of their applications which shall foster their lucid use. The reported records evidently demonstrate the promise of NLCs for innovate therapeutic applications in the future.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia
| |
Collapse
|
18
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
20
|
Gurumukhi VC, Bari SB. Quality by design (QbD)-based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: bioavailability enhancement using chylomicron flow block model and toxicity studies. Drug Deliv Transl Res 2021; 12:1230-1252. [PMID: 34110597 DOI: 10.1007/s13346-021-01014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Atazanavir (ATV) is widely used as anti-HIV agent having poor aqueous solubility needs to modulate novel drug delivery system to enhance therapeutic efficiency and safety. The main objective of the present work was to fabricate ATV-loaded nanostructured lipid carriers (NLCs) employing quality by design (QbD) approach to address the challenges of bioavailability and their safety after oral administration. Herein, the main objective was to identify the influencing variables for the production of quality products. Considering this objective, quality target product profile (QTPP) was assigned and a systematic risk assessment study was performed to identify the critical material attributes (CMAs) and critical process parameter (CPP) having an influence on critical quality attributes (CQAs). Lipid concentrations, surfactant concentrations, and pressure of high-pressure homogenizer were identified as CMAs and CPP. ATV-NLCs were prepared by emulsification-high pressure homogenization method and further lyophilized to obtain solid-state NLCs. The effect of formulation variables (CMAs and CPP) on responses like particle size (Y1), polydispersity index (Y2), and zeta potential (Y3) was observed by central composite rotatable design (CCRD). The data were statistically evaluated by ANOVA for confirmation of a significant level (p < 0.05). The optimal conditions of NLCs were obtained by generating design space and desirability value. The lyophilized ATV-NLCs were characterized by DSC, powder X-ray diffraction, and FT-IR analysis. The morphology of NLCs was revealed by TEM and FESEM. In vitro study suggested a sustained release pattern of drug (92.37 ± 1.03%) with a mechanism of Korsmeyer-Peppas model (r2 = 0.925, and n = 0.63). In vivo evaluation in Wistar rats showed significantly higher (p < 0.001) plasma drug concentration of ATV-NLCs as compared to ATV-suspension using chylomicron flow block model. The relative bioavailability of ATV-NLCs was obtained to be 2.54 folds. Thus, a safe and promising drug targeting system was successfully developed to improve bioavailability and avoiding first-pass effect ensures to circumvent the acute-toxicity of liver.
Collapse
Affiliation(s)
- Vishal C Gurumukhi
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India.
| | - Sanjaykumar B Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| |
Collapse
|
21
|
Exploring the therapeutic potential of nanostructured lipid carrier approaches to tackling the inherent lacuna of chemotherapeutics and herbal drugs against breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Rizwanullah M, Ahmad MZ, Garg A, Ahmad J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim Biophys Acta Gen Subj 2021; 1865:129936. [PMID: 34058266 DOI: 10.1016/j.bbagen.2021.129936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer development is associated with abnormal, uncontrolled cell growth and causes significant economic and social burdens to society. The global statistics of different cancers have been increasing because of the aging population, and the increasing prevalence of risk factors such as stress condition, overweight, changing reproductive patterns, and smoking. The prognosis of cancer treatment is high, if diagnosed in the early stage. Late-stage diagnosis, however, is still a big challenge for the clinician. The usual treatment scheme involves chemotherapy and surgery followed by radiotherapy. SCOPE OF REVIEW Chemotherapy is the most widely used therapeutic approach against cancer. However, it suffers from the major limitation of poor delivery of anticancer therapeutics to specific cancer-targeted tissues/cells. MAJOR CONCLUSIONS Nanomedicines, particularly nanostructured lipid carriers (NLCs) can improve the efficacy of encapsulated payload either through an active or passive targeting approach against different cancers. The targeted nanomedicine can be helpful in transporting drug carriers to the specifically tumor-targeted tissue/cells while sparing abstaining from the healthy tissue/cells. The active targeting utilizes the binding of a specific cancer ligand to the surface of the NLCs, which improves the therapeutic efficacy and safety of the cancer therapeutics. GENERAL SIGNIFICANCE This review shed light on the utilization of NLCs system for targeted therapy in different cancers. Furthermore, modification of NLCs as cancer theranostics is a recent advancement that is also discussed in the manuscript with a review of contemporary research carried out in this field.
Collapse
Affiliation(s)
- Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| |
Collapse
|
23
|
Chokshi NV, Rawal S, Solanki D, Gajjar S, Bora V, Patel BM, Patel MM. Fabrication and Characterization of Surface Engineered Rifampicin Loaded Lipid Nanoparticulate Systems for the Potential Treatment of Tuberculosis: An In Vitro and In Vivo Evaluation. J Pharm Sci 2021; 110:2221-2232. [PMID: 33610570 DOI: 10.1016/j.xphs.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The main aim of the present investigation highlights the development of mannose appended rifampicin containing solid lipid nanoparticles (Mn-RIF-SLNs) for the management of pulmonary TB. The developed Mn-RIF-SLNs showed particle size of Mn-RIF-SLNs (479 ± 13 nm) which was found to be greater than that of unconjugated SLNs (456 ± 11 nm), with marginal reduction in percentage entrapment efficiency (79.41 ± 2.42%). The in vitro dissolution studies depicted an initial burst release followed by sustained release profile indicating biphasic release pattern, close-fitting Weibull model having least F-value. The cytotoxicity studies using J774A.1 cell line represented that the developed SLNs were non-toxic and safe as compared to free drug. Fluorescence imaging and flow cytometric (FACS) analysis depicted significant (1.79-folds) intracellular uptake of coumarin-6 (fluorescent marker) loaded Mn-C6-SLNs. The in vivo pharmacokinetic studies in sprague-dawley rats were performed and Mn-RIF-SLNs showed remarkable enhancement in terms of relative bioavailability (~17-folds) as compared to its drug solution via oral administration. The biodistribution studies revealed higher lung accumulation (1.8-folds) of Mn-RIF-SLNs as compared to the Un-RIF-SLNs. In conclusion, the developed Mn-RIF-SLNs could serve as a promising tool for delivering the drug cargo to the site of infection (lungs) in the treatment of TB.
Collapse
Affiliation(s)
- Nimitt V Chokshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Dhruvi Solanki
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Saumitra Gajjar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Vivek Bora
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
24
|
S-Protected thiolated nanostructured lipid carriers exhibiting improved mucoadhesive properties. Int J Pharm 2020; 587:119690. [PMID: 32738459 DOI: 10.1016/j.ijpharm.2020.119690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The purpose of the present study was to design nanostructured lipid carriers (NLCs) exhibiting improved mucoadhesive properties. First, an S-protected thiolated fatty acid conjugate was synthesized by amide bond formation between a primary amino group of l-cystine and palmitic acid N-hydroxysuccinimide. NLCs were prepared by nano-template engineering technique using Span 60, polysorbate 80, sucrose stearate and PEG 400 as surfactant mixture, stearic acid as solid lipid and miglyol as liquid lipid. NLCs were loaded with the model drug bergapten and decorated with the S-protected thiolated fatty acid conjugate. NLCs were characterized regarding particle size, poly-dispersity index (PDI), zeta potential, drug entrapment efficiency (EE), drug loading capacity (LC), drug release and mucoadhesive properties. Furthermore, cytotoxicity studies were performed on MDA-MB-231 cells via resazurin assay. S-Protected thiolated NLCs displayed a mean size of 115 nm, PDI of 0.3, zeta potential of -30 mV, 80% drug EE and 5% drug LC. Drug-loaded S-protected thiolated NLCs exhibited a sustained drug release and strongly enhanced mucoadhesive properties. Surface decoration with cystine substructures raised the cytotoxic potential of NLCs to a minor extent. Due to the immobilization of cystine substructures on the surface of NLCs, their mucoadhesive properties can be strongly improved.
Collapse
|
25
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
26
|
Ryšánek P, Grus T, Šíma M, Slanař O. Lymphatic Transport of Drugs after Intestinal Absorption: Impact of Drug Formulation and Physicochemical Properties. Pharm Res 2020; 37:166. [PMID: 32770268 DOI: 10.1007/s11095-020-02858-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE To provide a comprehensive and up-to-date overview focusing on the extent of lymphatic transport of drugs following intestinal absorption and to summarize available data on the impact of molecular weight, lipophilicity, formulation and prandial state. METHODS Literature was searched for in vivo studies quantifying extent of lymphatic transport of drugs after enteral dosing. Pharmacokinetic data were extracted and summarized. Influence of molecular weight, log P, formulation and prandial state was analyzed using relative bioavailability via lymph (FRL) as the parameter for comparison. The methods and animal models used in the studies were also summarized. RESULTS Pharmacokinetic data on lymphatic transport were available for 103 drugs. Significantly higher FRL [median (IQR)] was observed in advanced lipid based formulations [54.4% (52.0)] and oil solutions [38.9% (60.8)] compared to simple formulations [2.0% (27.1)], p < 0.0001 and p = 0.004, respectively. Advanced lipid based formulations also provided substantial FRL in drugs with log P < 5, which was not observed in simple formulations and oil solutions. No relation was found between FRL and molecular weight. There were 10 distinct methods used for in vivo testing of lymphatic transport after intestinal absorption so far. CONCLUSION Advanced lipid based formulations provide superior ability to increase lymphatic absorption in drugs of various molecular weights and in drugs with moderate to low lipophilicity.
Collapse
Affiliation(s)
- Pavel Ryšánek
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Tomáš Grus
- Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
27
|
Poovi G, Damodharan N. Development of tamoxifen-loaded surface-modified nanostructured lipid carrier using experimental design: in vitro and ex vivo characterisation. IET Nanobiotechnol 2020; 14:261-274. [PMID: 32463016 DOI: 10.1049/iet-nbt.2019.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present study aimed to develop a surface-modified biocompatible nanostructured lipid carrier (NLCs) system using polyoxyethylene (40) stearate (POE-40-S) to improve the oral bioavailability of poorly water-soluble Biopharmaceutics Classification System class-II drug like tamoxifen (TMX). Also aimed to screen the most influential factors affecting the particle size (PS) using Taguchi (L12 (211)) orthogonal array design (TgL12OA). Then, to optimize the TMX loaded POE-40-S (P) surface-modified NLCs (TMX-loaded-PEG-40-S coated NLC (PNLCs) or PNLCs) by central composite design (CCD) using a four-factor, five-level model. The most influential factors affecting the PS was screened and optimized. The in-vitro study showed that increased drug-loading (DL) and encapsulation efficiency (EE), decreased PS and charge, sustained drug release for the prolonged period of the time with good stability and suppressed protein adsorption. The Ex-vivo study showed that decreased mucous binding with five-fold enhanced permeability of PNLC formulation after surface modification with POE-40-S. The in-vitro cytotoxicity study showed that the blank carrier is biocompatible and cytotoxicity of the formulation was dependent on the concentration of the drug. Finally, it can be concluded that the surface-modified PNLCs formulation was an effective, biocompatible, stable formulation in the enhancement of dissolution rate, solubility, stability with reduced mucus adhesion and increased permeability thereby which indicates its enhanced oral bioavailability.
Collapse
Affiliation(s)
- Ganesan Poovi
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Narayanasamy Damodharan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
28
|
Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101458] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Mangla B, Neupane YR, Singh A, Kohli K. Tamoxifen and Sulphoraphane for the breast cancer management: A synergistic nanomedicine approach. Med Hypotheses 2019; 132:109379. [PMID: 31454641 DOI: 10.1016/j.mehy.2019.109379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is second most leading cause of death in all over the world and not only limited to the females. Tamoxifen has been considered as the gold line therapy for estrogen receptor positive breast cancer. However, this chemopreventive approach has been focused at individuals in high risk group and limits its clinical applications to moderate and/or lower risk groups. Moreover, Tamoxifen treatment is associated with a dose related hepatotoxicity and nephrotoxicity and eventually results in poor quality of life of patients. Sulphoraphane, a naturally occurring isothiocyanate derivative has been investigated for its numerous potential biological activities including anticancer effects. The present hypothesis aims to put forward in which Tamoxifen is combined with a natural bioactive Sulphoraphane, both incorporated into a novel lipid based nanocarrier at a reduced dose, which would eventually shuttle the cargo to the target site. At the breast cancer, Sulphoraphane sensitizes the estrogen receptors and ameliorates the binding affinity of Tamoxifen to these receptors, thereby potentiating the anticancer efficacy and reducing the offsite toxicity of Tamoxifen. This dual loaded zero-dimension lipid carrier would be a value addition to the current treatment regimen for breast cancer management.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062 India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062 India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062 India.
| |
Collapse
|
30
|
Garg B, Beg S, Kumar R, Katare O, Singh B. Nanostructured lipidic carriers of lopinavir for effective management of HIV-associated neurocognitive disorder. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Siram K, Divakar S, Raghavan CV, Marslin G, Rahman H, Franklin G. Prediction and elucidation of factors affecting solubilisation of imatinib mesylate in lipids. Colloids Surf B Biointerfaces 2019; 174:443-450. [PMID: 30497005 DOI: 10.1016/j.colsurfb.2018.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
The physico-chemical properties of lipids influencing the solubilisation of imatinib mesylate (IM) in lipid matrix were evaluated and a statistical model to predict the same has been derived in the present study. After experimental quantification of IM solubility in various lipids, Hansen Hildebrand's total solubility parameters were calculated in order to study the role of various forces connected to lipid-drug interaction. To develop a relationship between the various descriptors of the lipids and experimental solubility of IM in lipids (% w/w), quantitative structure-solubility relationship (QSSR) was used. To generate equations that can predict the solubility of IM in lipids (%w/w), multiple linear regression was used. Amongst the various lipids tested, glyceryl monostearate and behenic acid solubilised the highest (6.19 ± 0.22%) and lowest (0.01 ± 0.01%) amounts of IM respectively. Our results suggested that alkyl chain length, polarity of the lipids, index of cohesive interaction in solids, estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution, estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution and solvent accessible surface area collectively play a significant role in solubilising IM in the lipids. The equation developed could predict the solubility of IM in lipids with good accuracy (R2pred = 0.912).
Collapse
Affiliation(s)
- Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, India
| | - Selvaraj Divakar
- Department of Pharmacology, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, India
| | | | - Gregory Marslin
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Habibur Rahman
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, India; Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Gregory Franklin
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
32
|
Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A. Lipid-Based Oral Formulation Strategies for Lipophilic Drugs. AAPS PharmSciTech 2018; 19:3609-3630. [PMID: 30255474 DOI: 10.1208/s12249-018-1188-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023] Open
Abstract
Partition coefficient (log P) is a key physicochemical characteristic of lipophilic drugs which plays a significant role in formulation development for oral administration. Lipid-based formulation strategies can increase lymphatic transport of these drugs and can enhance bioavailability many folds. The number of lipophilic drugs in pharmacopoeias and under discovery are continuously increasing and making the job of the formulation scientist difficult to develop suitable formulation of these drugs due to potent nature and water insolubility of these drugs. Recently, many natural and synthetic lipids are appearing in the market which are helpful in the development of lipid-based formulations of these types of drugs having enhanced solubility and bioavailability. One such reason for this enhanced bioavailability is the accessibility of the lymphatic transport as well as avoidance of first-pass effect. This review discusses the impact of lipophilicity in enhancing the intestinal lymphatic drug transport thereby reducing first-pass metabolism. The most appropriate strategy for developing a lipid-based formulation depending upon the degree of lipophilicity has been critically discussed and provides information on how to develop optimum formulation. Various formulation strategies are discussed in-depth by classifying lipid-based oral drug delivery systems with case studies of few marketed formulations with challenges and opportunities for the future of the formulations.
Collapse
|
33
|
Chokshi NV, Khatri HN, Patel MM. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm 2018; 44:1975-1989. [DOI: 10.1080/03639045.2018.1506472] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimitt V. Chokshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, India
| | - Hiren N. Khatri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, India
| | - Mayur M. Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, India
| |
Collapse
|
34
|
Gambhire VM, Salunkhe SM, Gambhire MS. Atorvastatin-loaded lipid nanoparticles: antitumor activity studies on MCF-7 breast cancer cells. Drug Dev Ind Pharm 2018; 44:1685-1692. [DOI: 10.1080/03639045.2018.1492605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Dudhipala N, Janga KY, Gorre T. Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:616-625. [DOI: 10.1080/21691401.2018.1465068] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Narendar Dudhipala
- Department of Pharmaceutics, Vaagdevi Pharmacy College, Warangal, Telangana, India
| | | | - Thirupathi Gorre
- Department of Pharmaceutics, Vaagdevi Pharmacy College, Warangal, Telangana, India
| |
Collapse
|
36
|
|
37
|
Sreekanth V, Medatwal N, Kumar S, Pal S, Vamshikrishna M, Kar A, Bhargava P, Naaz A, Kumar N, Sengupta S, Bajaj A. Tethering of Chemotherapeutic Drug/Imaging Agent to Bile Acid-Phospholipid Increases the Efficacy and Bioavailability with Reduced Hepatotoxicity. Bioconjug Chem 2017; 28:2942-2953. [DOI: 10.1021/acs.bioconjchem.7b00564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- KIIT University, Bhubaneswar, Odisha 751024, India
| | - Malyla Vamshikrishna
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Animesh Kar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Priyanshu Bhargava
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Aaliya Naaz
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Nitin Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
38
|
El-Leithy ES, Abdel-Rashid RS. Lipid nanocarriers for tamoxifen citrate/coenzyme Q10 dual delivery. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Kumar R, Siril PF, Javid F. Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1335-44. [DOI: 10.1016/j.msec.2016.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/10/2023]
|
40
|
Evidence for an expanded time-window to mitigate a reactivated fear memory by tamoxifen. Eur Neuropsychopharmacol 2016; 26:1601-9. [PMID: 27554635 DOI: 10.1016/j.euroneuro.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
The mechanisms underpinning the persistence of emotional memories are inaccurately understood. Advancing the current level of understanding with regards to this aspect is of potential translational value for the treatment of post-traumatic stress disorder (PTSD), which stems from an abnormal aversive memory formation. Tamoxifen (TMX) is a drug used in chemotherapy for breast cancer and associated with poor cognitive performances. The present study investigated whether the systemic administration of TMX (1.0-50mg/kg) during and/or beyond the reconsolidation time-window could attenuate a reactivated contextual fear memory in laboratory animals. When administered 0, 6 or 9h (but not 12h) post-memory retrieval and reactivation, TMX (50mg/kg) reduced the freezing behavior in male rats re-exposed to the paired context on day 7, but not on day 1, suggesting a specific impairing effect on memory persistence. Importantly, this effect lasts up to 21 days, but it is prevented by omitting the memory retrieval or memory reactivation. When female rats in the diestrous or proestrous phase were used, the administration of TMX 6h after retrieving and reactivating the fear memory also impaired its persistence. Altogether, regardless of the gender, the present results indicate that the TMX is able to disrupt the persistence of reactivated fear memories in an expanded time-window, which could shed light on a new promising therapeutic strategy for PTSD.
Collapse
|
41
|
Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci OA 2016; 2:FSO135. [PMID: 28031979 PMCID: PMC5137980 DOI: 10.4155/fsoa-2016-0030] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
Oral delivery is the most accepted and economical route for drug administration and leads to substantial reduction in dosing frequency. However, this route still remains a challenge for the pharmaceutical industry due to poorly soluble and permeable drugs leading to poor oral bioavailability. Incorporating bioactives into nanostructured lipid carriers (NLCs) has helped in boosting their therapeutic functionality and prolonged release from these carrier systems thus providing improved pharmacokinetic parameters. The present review provides an overview of noteworthy studies reporting impending benefits of NLCs in oral delivery and highlights recent advancements for developing engineered NLCs either by conjugating polymers over their surface or modifying their charge to overcome the mucosal barrier of GI tract for active transport across intestinal membrane. Lay abstract: Oral administration of drugs is considered to be a convenient route; however, various drugs that are insoluble in water or unable to permeate across GI tract membrane cannot be delivered by this route. To deliver them effectively, various lipid carriers have been widely explored by researchers. Lipid carriers encapsulate drug inside them and deliver them effectively via the oral route. Also, encapsulation of drug protects them from degradation inside GI tract and safely delivers them to the site of action. This review summarizes application of lipid carriers, in other words, nanostructured lipid carriers, in eradicating these problems, with suitable examples.
Collapse
|
42
|
|
43
|
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:143-61. [DOI: 10.1016/j.nano.2015.09.004] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/25/2022]
|
44
|
Singh P, Arya M, Kanoujia J, Singh M, Gupta KP, Saraf SA. Design of topical nanostructured lipid carrier of silymarin and its effect on 7,12-dimethylbenz[a]anthracene (DMBA) induced cellular differentiation in mouse skin. RSC Adv 2016. [DOI: 10.1039/c6ra20231d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effect of silymarin NLC on DMBA induced cell changes in mouse skin.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | - Malti Arya
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | - Mahendra Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | - Krishna P. Gupta
- Environmental Carcinogenesis Division
- CSIR-Indian Institute of Toxicology Research
- Lucknow 226001
- India
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| |
Collapse
|
45
|
Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig 2015; 5:182-91. [PMID: 26682188 PMCID: PMC4674999 DOI: 10.4103/2230-973x.167661] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nowadays exploration of novel lipid-based formulations is akin to a magnet for researchers worldwide for improving the in vivo performance of highly lipophilic drugs. Over the last few years, new compositions of lipids have been developed, and the probable bioavailability enhancement has been investigated. We reviewed the most recent data dealing with backlogs of conventional lipid-based formulations such as physical instability, limited drug loading capacities, drug expulsion during storage along with all the possible hindrances resulting in poor absorption of highly lipophilic drugs such as P-glycoprotein efflux, extensive metabolism by cytochrome P450 etc. In tandem with these aspects, an exclusive formulation approach has been discussed in detail in this paper. Therefore, this review focuses on resolving the concerned ambiguity with successful oral administration of highly lipophilic drugs through designing novel lipidic formulations (nanostructured lipid carriers [NLC]) that constitute a blend of solid and liquid lipids. The article highlights the potential role of such formulation in normalizing the in vivo fate of poorly soluble drugs. Finally, the present manuscript discusses the dominance of NLC over other lipid-based formulations and provides a perspective of how they defeat and overcome the barriers that lead to the poor bioavailability of hydrophobic drugs.
Collapse
Affiliation(s)
- Saba Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Sana Khan
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Ramandeep Singh Narang
- Department of Oral and Maxillofacial Pathology, SGRD Dental College, Amritsar, Punjab, India
| | - Jasjeet Kaur Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| |
Collapse
|
46
|
Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV. Lipid-based nanocarriers for breast cancer treatment – comprehensive review. Drug Deliv 2015; 23:1291-305. [DOI: 10.3109/10717544.2015.1092183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Siddartha Venkata Talluri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | | | - Shashank Tummala
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | | |
Collapse
|
47
|
Shete H, Sable S, Tidke P, Selkar N, Pawar Y, Chakraborty A, De A, Vanage G, Patravale V. Mono-guanidine heterolipid based SMEDDS: A promising tool for cytosolic delivery of antineoplastics. Biomaterials 2015; 57:116-32. [PMID: 25916500 DOI: 10.1016/j.biomaterials.2015.03.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
In the present work, we designed and synthesized a novel mono-guanidine heterolipid (MGH) and confirmed its structure by NMR and ESI-MS. The MGH was used as cationic lipid in developing etoposide loaded cationic self-microemulsifying drug delivery system (ECS) intended to be delivered by intratumoral route. The ECS exhibited size <50 nm and zeta potential +32.6 mV on dilution with various isotonic vehicles with no phase separation or drug precipitation. The ECS could be easily sterilized by membrane filtration method and showed excellent stability for 6 months. The ECS demonstrated excellent in vitro antiproliferative activity against B16F10 cells which is attributed to its high transfection efficiency and capability to cause prolonged drug release in cytosolic space. In vivo antitumor activity of ECS was conducted in B16F10 induced melanoma tumor model. ECS at 12 mg/kg dose showed superior tumor suppression ability and exhibited 100% survival compared to other formulations. Mice treated with ECS by intratumoral route, showed neither systemic side effect nor any evidences of hepatotoxicity and nephrotoxicity. In contrast, etoposide administered by intravenous route showed remarkable systemic toxicity, hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Harshad Shete
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Sandip Sable
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Pritish Tidke
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Nilakash Selkar
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai 400012, Maharashtra, India
| | - Yogita Pawar
- Radiation Medicine Centre (BARC), C/o Tata Memorial Centre Annex, J. W. Road, Parel, Mumbai 400012, Maharashtra, India
| | - Avik Chakraborty
- Radiation Medicine Centre (BARC), C/o Tata Memorial Centre Annex, J. W. Road, Parel, Mumbai 400012, Maharashtra, India
| | - Abhijit De
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India.
| | - Geeta Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai 400012, Maharashtra, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
48
|
Khan S, Khan S, Baboota S, Ali J. Immunosuppressive drug therapy – biopharmaceutical challenges and remedies. Expert Opin Drug Deliv 2015; 12:1333-49. [DOI: 10.1517/17425247.2015.1005072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Chaudhary S, Garg T, Murthy RSR, Rath G, Goyal AK. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target 2014; 22:871-82. [PMID: 25148607 DOI: 10.3109/1061186x.2014.950664] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lymphatic system is a key target in research field due to its distinctive makeup and huge contributing functions within the body. Intestinal lymphatic drug transport (chylomicron pathway) is intensely described in research field till date because it is considered to be the best for improving oral drug delivery by avoiding first pass metabolism. The lymphatic imaging techniques and potential therapeutic candidates are engaged for evaluating disease states and overcoming these conditions. The novel drug delivery systems such as self-microemulsifying drug delivery system, nanoparticles, liposomes, nano-lipid carriers, solid lipid carriers are employed for delivering drugs through lymphatic system via various routes such as subcutaneous route, intraperitoneal route, pulmonary route, gastric sub-mucosal injection, intrapleural and intradermal. Among these colloidal particles, lipid-based delivery system is considered to be the best for lymphatic delivery. From the last few decades, mesenteric lymph duct cannulation and thoracic lymph duct cannulation are followed to assess lymphatic uptake of drugs. Due to their limitations, chylomicrons inhibitors and in-vitro models are employed, i.e. lipolysis model and permeability model. Currently, research on this topic still continues and drainage system used to deliver the drugs against lymphatic disease as well as targeting other organs by modulating the chylomicron pathway.
Collapse
Affiliation(s)
- Shilpa Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy , Moga, Punjab , India
| | | | | | | | | |
Collapse
|
50
|
Shete HK, Selkar N, Vanage GR, Patravale VB. Tamoxifen nanostructured lipid carriers: Enhanced in vivo antitumor efficacy with reduced adverse drug effects. Int J Pharm 2014; 468:1-14. [DOI: 10.1016/j.ijpharm.2014.03.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 11/29/2022]
|