1
|
Zhuo X, Sener Z, Kabedev A, Zhao M, Arnous A, Leng D, Foderà V, Löbmann K. Mechanisms of Drug Solubility Enhancement Induced by β-Lactoglobulin-Based Amorphous Solid Dispersions. Mol Pharm 2023; 20:5206-5213. [PMID: 37669430 DOI: 10.1021/acs.molpharmaceut.3c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Protein-based amorphous solid dispersions (ASDs) have emerged as a promising approach for enhancing solubility in comparison to crystalline drugs. The dissolution behavior of protein-based amorphous solid dispersions (ASDs) was investigated in various pH media. ASDs of four poorly soluble model drugs with acidic (furosemide and indomethacin), basic (carvedilol), and neutral (celecoxib) properties were prepared by spray drying at 30 wt % drug loading with the protein β-lactoglobulin (BLG). The effect of spray-dried BLG (SD-BLG) solubility and protein binding ability with dissolved drugs in solution were investigated to retrieve the mechanisms governing the improvement of drug solubility from the BLG-based ASDs. Powder dissolution results showed that all ASDs obtained a higher maximum concentration (Cmax) compared to the respective pure crystalline drugs. It was found that the solubility increase of the drugs from the ASDs was to a large extent dependent on the solubility of the pure SD-BLG at the investigated pH values (low solubility at pH near the isoelectric point (pI) of BLG). Furthermore, drug-protein interactions in a solution were observed, in particular at pH values where the drugs were neutral. These drug-protein interactions also resulted, to some extent, in the stabilization of the drug in supersaturation.
Collapse
Affiliation(s)
- Xuezhi Zhuo
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Zeyneb Sener
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Min Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, U.K
| | - Anis Arnous
- Zerion Pharma A/S, Blokken 11, DK-3460 Birkerød, Denmark
| | - Donglei Leng
- Zerion Pharma A/S, Blokken 11, DK-3460 Birkerød, Denmark
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Zerion Pharma A/S, Blokken 11, DK-3460 Birkerød, Denmark
| |
Collapse
|
2
|
Brown B, Ward A, Fazili Z, Østergaard J, Asare-Addo K. Application of UV dissolution imaging to pharmaceutical systems. Adv Drug Deliv Rev 2021; 177:113949. [PMID: 34461199 DOI: 10.1016/j.addr.2021.113949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
UV-vis spectrometry is widely used in the pharmaceutical sciences for compound quantification, alone or in conjunction with separation techniques, due to most drug entities possessing a chromophore absorbing light in the range 190-800 nm. UV dissolution imaging, the scope of this review, generates spatially and temporally resolved absorbance maps by exploiting the UV absorbance of the analyte. This review aims to give an introduction to UV dissolution imaging and its use in the determination of intrinsic dissolution rates and drug release from whole dosage forms. Applications of UV imaging to non-oral formulations have started to emerge and are reviewed together with the possibility of utilizing UV imaging for physical chemical characterisation of drug substances. The benefits of imaging drug diffusion and transport processes are also discussed.
Collapse
|
3
|
Co-Amorphous Formulations of Furosemide with Arginine and P-Glycoprotein Inhibitor Drugs. Pharmaceutics 2021; 13:pharmaceutics13020171. [PMID: 33514009 PMCID: PMC7912042 DOI: 10.3390/pharmaceutics13020171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, the amino acid arginine (ARG) and P-glycoprotein (P-gp) inhibitors verapamil hydrochloride (VER), piperine (PIP) and quercetin (QRT) were used as co-formers for co-amorphous mixtures of a Biopharmaceutics classification system (BCS) class IV drug, furosemide (FUR). FUR mixtures with VER, PIP and QRT were prepared by solvent evaporation, and mixtures with ARG were prepared by spray drying in 1:1 and 1:2 molar ratios. The solid-state properties of the mixtures were characterized with X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) in stability studies under different storage conditions. Simultaneous dissolution/permeation studies were conducted in side-by-side diffusion cells with a PAMPA (parallel artificial membrane permeability assay) membrane as a permeation barrier. It was observed with XRPD that ARG, VER and PIP formed co-amorphous mixtures with FUR at both molar ratios. DSC and FTIR revealed single glass transition values for the mixtures (except for FUR:VER 1:2), with the formation of intermolecular interactions between the components, especially salt formation between FUR and ARG. The co-amorphous mixtures were found to be stable for at least two months under an elevated temperature/humidity, except FUR:ARG 1:2, which was sensitive to humidity. The dissolution/permeation studies showed that only the co-amorphous FUR:ARG mixtures were able to enhance both the dissolution and permeation of FUR. Thus, it is concluded that formulating co-amorphous salts with ARG may be a promising option for poorly soluble/permeable FUR.
Collapse
|
4
|
Jurczak E, Mazurek AH, Szeleszczuk Ł, Pisklak DM, Zielińska-Pisklak M. Pharmaceutical Hydrates Analysis-Overview of Methods and Recent Advances. Pharmaceutics 2020; 12:pharmaceutics12100959. [PMID: 33050621 PMCID: PMC7601571 DOI: 10.3390/pharmaceutics12100959] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
This review discusses a set of instrumental and computational methods that are used to characterize hydrated forms of APIs (active pharmaceutical ingredients). The focus has been put on highlighting advantages as well as on presenting some limitations of the selected analytical approaches. This has been performed in order to facilitate the choice of an appropriate method depending on the type of the structural feature that is to be analyzed, that is, degree of hydration, crystal structure and dynamics, and (de)hydration kinetics. The presented techniques include X-ray diffraction (single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD)), spectroscopic (solid state nuclear magnetic resonance spectroscopy (ssNMR), Fourier-transformed infrared spectroscopy (FT-IR), Raman spectroscopy), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)), gravimetric (dynamic vapour sorption (DVS)), and computational (molecular mechanics (MM), Quantum Mechanics (QM), molecular dynamics (MD)) methods. Further, the successful applications of the presented methods in the studies of hydrated APIs as well as studies on the excipients' influence on these processes have been described in many examples.
Collapse
Affiliation(s)
- Ewa Jurczak
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Anna Helena Mazurek
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
- Correspondence: ; Tel.: +48-501-255-121
| | - Dariusz Maciej Pisklak
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland;
| |
Collapse
|
5
|
Design and development of a novel fused filament fabrication (FFF) 3D printed diffusion cell with UV imaging capabilities to characterise permeation in pharmaceutical formulations. Eur J Pharm Biopharm 2020; 152:202-209. [PMID: 32442737 DOI: 10.1016/j.ejpb.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022]
Abstract
The present work aimed at designing and developing a novel 3D printed diffusion cell capable of UV imaging using the fused filament fabrication (FFF) method. UV imaging has proven to be very versatile in the area of pharmaceutics giving insights into various phenomena including the dissolution behaviour of dosage forms, intrinsic dissolution rates and the drug precipitation processes. A 3D printed diffusion cell in the similitude of a Franz cell was successfully printed using polylactic acid (PLA) filaments equipped with quartz for the imaging area. A model ibuprofen (IBU) gel formulation was tested by introducing the dosage form through the 3D printed donor compartment. The drug concentration permeated through the skin mimic (silicone membrane) was determined from the 3D printed receptor compartment using UV imaging in real-time. The results showed successful UV imaging of the permeation of IBU gel in the novel diffusion cell potentially negating further analytical testing such as the HPLC process required for Franz cell tests thereby reducing costs. Potential interactions between the drug and filament used in the 3D printed process suggests although this concept can be moved towards commercialisation, care should be taken with choice of filament used in the 3D printing process.
Collapse
|
6
|
Etherson K, Dunn C, Matthews W, Pamelund H, Barragat C, Sanderson N, Izumi T, Mathews CDC, Halbert G, Wilson C, McAllister M, Mann J, Østergaard J, Butler J, Khadra I. An interlaboratory investigation of intrinsic dissolution rate determination using surface dissolution. Eur J Pharm Biopharm 2020; 150:24-32. [PMID: 32061919 DOI: 10.1016/j.ejpb.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to conduct an interlaboratory ring-study, with six partners (academic and industrial), investigating the measurement of intrinsic dissolution rate (IDR) using surface dissolution imaging (SDI) equipment. Measurement of IDR is important in pharmaceutical research as it provides characterising information on drugs and their formulations. This work allowed us to assess the SDI's interlaboratory performance for measuring IDR using a defined standard operating procedure (see supporting information) and six drugs assigned as low (tadalafil, bromocriptine mesylate), medium (carvedilol, indomethacin) and high (ibuprofen, valsartan) solubility compounds. Fasted State Simulated Intestinal Fluid (FaSSIF) and blank FaSSIF (without sodium taurocholate and lecithin) (pH 6.5) were used as media. Using the standardised protocol an IDR value was obtained for all compounds and the results show that the overall IDR rank order matched the solubility rank order. Interlaboratory variability was also examined and it was observed that the variability for lower solubility compounds was higher, coefficient of variation >50%, than for intermediate and high solubility compounds, with the exception of indomethacin in FaSSIF medium. Inter laboratory variability is a useful descriptor for understanding the robustness of the protocol and the system variability. On comparison to another published small-scale IDR study the rank ordering with respect to dissolution rate is identical except for the high solubility compounds. This results indicates that the SDI robustly measures IDR however, no recommendation on the use of one small scale method over the other is made.
Collapse
Affiliation(s)
- Kelly Etherson
- Product Development & Supply, GlaxoSmithKline R&D, Ware, UK
| | - Claire Dunn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Wayne Matthews
- Product Development & Supply, GlaxoSmithKline R&D, Stevenage, UK
| | - Henrik Pamelund
- Product Development & Supply, GlaxoSmithKline R&D, Stevenage, UK; Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Camille Barragat
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Sanderson
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Toshiko Izumi
- Drug Product Design, Pharmaceutical Sciences, Pfizer Ltd., Sandwich, UK
| | | | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Clive Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mark McAllister
- Drug Product Design, Pharmaceutical Sciences, Pfizer Ltd., Sandwich, UK
| | - James Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James Butler
- Product Development & Supply, GlaxoSmithKline R&D, Ware, UK
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
7
|
Biorelevant intrinsic dissolution profiling in early drug development: Fundamental, methodological, and industrial aspects. Eur J Pharm Biopharm 2019; 139:101-114. [PMID: 30862481 DOI: 10.1016/j.ejpb.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Abstract
Intrinsic dissolution rate (IDR) is the surface specific dissolution rate of a drug. In early drug development, this property (among other parameters) is measured in order to compare different polymorphs and salt forms, guide formulation decisions, and to provide a quality marker of the active pharmaceutical ingredient (API) during production. In this review, an update on different methods and small-scale techniques that have recently evolved for determination of IDR is provided. The importance of biorelevant media and the hydrodynamic conditions of dissolution are also discussed. Different preparation techniques for samples are presented with a focus on disc, particle- and crystal-based methods. A number of small-scale techniques are then described in detail, and their applicability domains are identified. Finally, an updated industrial perspective is provided about IDR's place in the early drug development process.
Collapse
|
8
|
Asare-Addo K, Alshafiee M, Walton K, Ward A, Totea AM, Taheri S, Mawla N, Adebisi AO, Elawad S, Diza C, Timmins P, Conway BR. Effect of preparation method on the surface properties and UV imaging of indomethacin solid dispersions. Eur J Pharm Biopharm 2019; 137:148-163. [PMID: 30836178 DOI: 10.1016/j.ejpb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/21/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
This work explores the use of UV imaging in solid dispersion systems. Solid dispersions are one of the common strategies used in improving the dissolution of poorly soluble drugs. Three manufacturing techniques (spray drying (SD), freeze drying (FD) and homogenising (HG)) are investigated. Differential Scanning Calorimetry (DSC) and X-Ray Powder Diffraction (XRPD) was used in characterising the solid dispersions. Advanced imaging was implemented to give an insight into how these solid dispersions performed. The DSC and XRPD results showed that all three methods and the various ratios studied produced amorphous solid dispersions. Ultra-Violet (UV) imaging of the pseudo Intrinsic Dissolution Rate (IDR) deduced only two samples to have superior pseudo IDR values to the IDR of the parent drug indomethacin (INDO). The whole dose imaging of the capsule formulation however showed all the samples (SD, FD and HG) to have superior dissolution to that of INDO which was in contrast to the IDR results. The UV images obtained from the determination of the pseudo IDR also showed a phenomenon the authors are reporting for the first time where increased polymer (Soluplus) content produced "web-like" strands that migrated to the top of the quartz cell which may have been responsible for the low pseudo IDR values. The authors also report for the first time using this UV imaging technique, the tip of a capsule coming off for drug to go into solution. The area under the curve suggested the best five samples dissolution wise to be 1:3 SD > 1:1 HG > 1:1 SD > 1:3 FD > 1:3 HG meaning a ratio of INDO to SOL in these dispersion of up to 1:3 being sufficient to produce significant dissolution increases. The developed interfacial (surface) area ratio (Sdr) highlighted how the surface area of the IDR compacts varied between the batches, in particular highlighting larger surface area gains for the FD and HG compacts. A choice of instrumentation/techniques to use in making solid dispersions may well come down to cost or instrument availability for a formulator as all three techniques were successful in improving the dissolution of indomethacin. This work thus highlights the importance of having both complimentary IDR and whole dosage imaging techniques in giving a better understanding of solid dispersion systems.
Collapse
Affiliation(s)
- Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
| | - Maen Alshafiee
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Karl Walton
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Adam Ward
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Ana-Maria Totea
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sadaf Taheri
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Nihad Mawla
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Adeola O Adebisi
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sheima Elawad
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Chantel Diza
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Peter Timmins
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Barbara R Conway
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
9
|
Long CM, Tang K, Chokshi H, Fotaki N. Surface Dissolution UV Imaging for Investigation of Dissolution of Poorly Soluble Drugs and Their Amorphous Formulation. AAPS PharmSciTech 2019; 20:113. [PMID: 30761437 PMCID: PMC6394625 DOI: 10.1208/s12249-019-1317-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study is to investigate the dissolution properties of poorly soluble drugs from their pure form and their amorphous formulation under physiological relevant conditions for oral administration based on surface dissolution ultraviolet (UV) imaging. Dissolution of two poorly soluble drugs (cefuroxime axetil and itraconazole) and their amorphous formulations (Zinnat® and Sporanox®) was studied with the Sirius Surface Dissolution Imager (SDI). Media simulating the fasted state conditions (compendial and biorelevant) with sequential media/flow rate change were used. The dissolution mechanism of cefuroxime axetil in simulated gastric fluid (SGF), fasted state simulated gastric fluid (FaSSGF) and simulated intestinal fluid (SIF) is predominantly swelling as opposed to the convective flow in fasted state simulated intestinal fluid (FaSSIF-V1), attributed to the effect of mixed micelles. For the itraconazole compact in biorelevant media, a clear upward diffusion of the dissolved itraconazole into the bulk buffer solution is observed. Dissolution of itraconazole from the Sporanox® compact is affected by the polyethylene glycol (PEG) gelling layer and hydroxypropyl methylcellulose (HPMC) matrix, and a steady diffusional dissolution pattern is revealed. A visual representation and a quantitative assessment of dissolution properties of poorly soluble compounds and their amorphous formulation can be obtained with the use of surface dissolution imaging under in vivo relevant conditions.
Collapse
Affiliation(s)
- Chiau Ming Long
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Faculty of Pharmacy, Quest International University Perak, Ipoh, Perak, Malaysia
| | - Kin Tang
- Genentech, Inc., South San Francisco, California, USA
| | - Hitesh Chokshi
- Roche Pharma Research and Early Development, Roche Innovation Center, New York City, New York, USA
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
10
|
Asare-Addo K, Walton K, Ward A, Totea AM, Taheri S, Alshafiee M, Mawla N, Bondi A, Evans W, Adebisi A, Conway BR, Timmins P. Direct imaging of the dissolution of salt forms of a carboxylic acid drug. Int J Pharm 2018; 551:290-299. [PMID: 30243943 DOI: 10.1016/j.ijpharm.2018.09.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/29/2022]
Abstract
The optimisation of the pharmaceutical properties of carboxylic acid drugs is often conducted by salt formation. Often, the salt with the best solubility is not chosen due to other factors such as stability, solubility, dissolution and bioavailability that are taken into consideration during the preformulation stage. This work uses advanced imaging techniques to give insights into the preformulation properties that can aid in the empirical approach often used in industry for the selection of salts. Gemfibrozil (GEM) was used as a model poorly soluble drug. Four salts of GEM were made using cyclopropylamine (CPROP), cyclobutylamine (CBUT), cyclopentylamine (CPENT) and cyclohexylamine (CHEX) as counterions. DSC, XRD and SEM were used to confirm and characterise salt formation. IDR obtained using UV-imaging up to 10 min for all the salts showed that an increase in the chain length of the counterion caused a decrease in the IDR. Past the 10 min mark, there was an increase in the IDR value for the CPROP salt, which was visualised using UV-imaging. The developed interfacial (surface) area ratio (Sdr) showed significant surface gains for the compacts. Full dosage form (capsule) imaging showed an improvement over the GEM for all the salts with an increase in chain length of the counterion bringing about a decrease in dissolution which correlated with the obtained UV-imaging IDR data.
Collapse
Affiliation(s)
- Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
| | - Karl Walton
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Adam Ward
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Ana-Maria Totea
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sadaf Taheri
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Maen Alshafiee
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Nihad Mawla
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Antony Bondi
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - William Evans
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Adeola Adebisi
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Barbara R Conway
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Peter Timmins
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
11
|
Najib MNM, Back K, Edkins K. The Complex Solid-State Landscape of Sodium Diatrizoate Hydrates. Chemistry 2017; 23:17339-17347. [PMID: 29044709 DOI: 10.1002/chem.201703658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Mohd Nadzri Mohd Najib
- School of Pharmacy; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7BL UK
- School of Medicine, Pharmacy and Health; Durham University; University Boulevard Stockton-on-Tees TS17 6BH UK
| | | | - Katharina Edkins
- School of Pharmacy; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7BL UK
| |
Collapse
|
12
|
Østergaard J. UV imaging in pharmaceutical analysis. J Pharm Biomed Anal 2017; 147:140-148. [PMID: 28797957 DOI: 10.1016/j.jpba.2017.07.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
UV imaging provides spatially and temporally resolved absorbance measurements, which are highly useful in pharmaceutical analysis. Commercial UV imaging instrumentation was originally developed as a detector for separation sciences, but the main use is in the area of in vitro dissolution and release testing studies. The review covers the basic principles of the technology and summarizes the main applications in relation to intrinsic dissolution rate determination, excipient compatibility studies and in vitro release characterization of drug substances and vehicles intended for parenteral administration. UV imaging has potential for providing new insights to drug dissolution and release processes in formulation development by real-time monitoring of swelling, precipitation, diffusion and partitioning phenomena. Limitations of current instrumentation are discussed and a perspective to new developments and opportunities given as new instrumentation is emerging.
Collapse
Affiliation(s)
- Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Calvo NL, Maggio RM, Kaufman TS. Chemometrics-assisted solid-state characterization of pharmaceutically relevant materials. Polymorphic substances. J Pharm Biomed Anal 2017; 147:518-537. [PMID: 28668295 DOI: 10.1016/j.jpba.2017.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 11/26/2022]
Abstract
Current regulations command to properly characterize pharmaceutically relevant solid systems. Chemometrics comprise a range of valuable tools, suitable to process large amounts of data and extract valuable information hidden in their structure. This review aims to detail the results of the fruitful association between analytical techniques and chemometrics methods, focusing on those which help to gain insight into the characteristics of drug polymorphism as an important aspect of the solid state of bulk drugs and drug products. Hence, the combination of Raman, terahertz, mid- and near- infrared spectroscopies, as well as instrumental signals resulting from X-ray powder diffraction, 13C solid state nuclear magnetic resonance spectroscopy and thermal methods with quali-and quantitative chemometrics methodologies are examined. The main issues reviewed, concerning pharmaceutical drug polymorphism, include the use of chemometrics-based approaches to perform polymorph classification and assignment of polymorphic identity, as well as the determination of given polymorphs in simple mixtures and complex systems. Aspects such as the solvation/desolvation of solids, phase transformation, crystallinity and the recrystallization from the amorphous state are also discussed. A brief perspective of the field for the next future is provided, based on the developments of the last decade and the current state of the art of analytical instrumentation and chemometrics methodologies.
Collapse
Affiliation(s)
- Natalia L Calvo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Rubén M Maggio
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina.
| |
Collapse
|
14
|
Kurek M, Carnoy M, Larsen PE, Nielsen LH, Hansen O, Rades T, Schmid S, Boisen A. Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maksymilian Kurek
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Matthias Carnoy
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Peter E. Larsen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Line H. Nielsen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Ole Hansen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Thomas Rades
- Department of Pharmacy; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems; TU Wien; Gusshausstrasse 27-29 1040 Vienna Austria
| | - Anja Boisen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| |
Collapse
|
15
|
Kurek M, Carnoy M, Larsen PE, Nielsen LH, Hansen O, Rades T, Schmid S, Boisen A. Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis. Angew Chem Int Ed Engl 2017; 56:3901-3905. [PMID: 28266106 DOI: 10.1002/anie.201700052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/31/2017] [Indexed: 12/30/2022]
Abstract
Standard infrared spectroscopy techniques are well-developed and widely used. However, they typically require milligrams of sample and can involve time-consuming sample preparation. A promising alternative is represented by nanomechanical infrared spectroscopy (NAM-IR) based on the photothermal response of a nanomechanical resonator, which enables the chemical analysis of picograms of analyte directly from a liquid solution in only a few minutes. Herein, we present NAM-IR using perforated membranes (filters). The method was tested with the pharmaceutical compound indomethacin to successfully perform a chemical and morphological analysis on roughly 100 pg of sample. With an absolute estimated sensitivity of 109±15 fg, the presented method is suitable for ultrasensitive vibrational spectroscopy.
Collapse
Affiliation(s)
- Maksymilian Kurek
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Matthias Carnoy
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Peter E Larsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Line H Nielsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Ole Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040, Vienna, Austria
| | - Anja Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
He Y, Ho C, Yang D, Chen J, Orton E. Measurement and Accurate Interpretation of the Solubility of Pharmaceutical Salts. J Pharm Sci 2017; 106:1190-1196. [PMID: 28153596 DOI: 10.1016/j.xphs.2017.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
Abstract
Salt formation is one of the primary approaches to improve the developability of ionizable poorly water-soluble compounds. Solubility determination of the salt candidates in aqueous media or biorelevant fluids is a critical step in salt screening. Salt solubility measurements can be complicated due to dynamic changes in both solution and solid phases. Because of the early implementation of salt screening in research, solubility measurements often are performed using minimal amount of material. Some salts have transient high solubility on dissolution. Recognition of these transients can be critical in developing these salts into drug products. This minireview focuses on challenges in salt solubility measurements due to the changes in solution caused by self-buffering effects of dissolved species and the changes in solid phase due to solid-state phase transformations. Solubility measurements and their accurate interpretation are assessed in the context of dissolution monitoring and solid-phase analysis technologies. A harmonized method for reporting salt solubility measurements is recommended to reduce errors and to align with the U.S. Pharmacopeial policy and Food and Drug Administration recommendations for drug products containing pharmaceutical salts.
Collapse
Affiliation(s)
- Yan He
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451.
| | - Chris Ho
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451
| | - Donglai Yang
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451
| | - Jeane Chen
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451
| | - Edward Orton
- Prescient Drug Delivery LLC, Berkeley Heights, New Jersey 07922
| |
Collapse
|
17
|
Sun Y, Østergaard J. Application of UV Imaging in Formulation Development. Pharm Res 2016; 34:929-940. [PMID: 27766463 DOI: 10.1007/s11095-016-2047-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
Abstract
Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
18
|
Polymeric microcontainers improve oral bioavailability of furosemide. Int J Pharm 2016; 504:98-109. [DOI: 10.1016/j.ijpharm.2016.03.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 12/18/2022]
|
19
|
Abstract
Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followed by coating of the microwell cavities with a gastro-resistant lid of Eudragit® L100. The release behavior of ASSF from the coated microwells was investigated using a μ-Diss profiler and a UV imaging system, and under conditions simulating the changing environment of the gastrointestinal tract. Biorelevant gastric medium (pH 1.6) was employed, after which a change to biorelevant intestinal release medium (pH 6.5) was carried out. Both μ-Diss profiler and UV imaging release experiments showed that sealing of microwell cavities with an Eudragit® layer prevented drug release in biorelevant gastric medium. An immediate release of the ASSF from coated microwells was observed in the intestinal medium. This pH-triggered release behavior demonstrates the future potential of PLLA microwells as a site-specific oral drug delivery system.
Collapse
|
20
|
Tres F, Coombes SR, Phillips AR, Hughes LP, Wren SAC, Aylott JW, Burley JC. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR. Molecules 2015; 20:16404-18. [PMID: 26378506 PMCID: PMC6331940 DOI: 10.3390/molecules200916404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 01/31/2023] Open
Abstract
We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.
Collapse
Affiliation(s)
- Francesco Tres
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Steven R Coombes
- Pharmaceutical Development, AstraZeneca, Macclesfield SK10 2NA, UK.
| | | | - Leslie P Hughes
- Pharmaceutical Development, AstraZeneca, Macclesfield SK10 2NA, UK.
| | - Stephen A C Wren
- Pharmaceutical Development, AstraZeneca, Macclesfield SK10 2NA, UK.
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jonathan C Burley
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
21
|
Nielsen LH, Rades T, Müllertz A. Stabilisation of amorphous furosemide increases the oral drug bioavailability in rats. Int J Pharm 2015; 490:334-40. [PMID: 26026252 DOI: 10.1016/j.ijpharm.2015.05.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/24/2015] [Accepted: 05/25/2015] [Indexed: 12/24/2022]
Abstract
A glass solution of the amorphous sodium salt of furosemide (ASSF) and polyvinylpyrrolidone (PVP) (80:20 w/w%) was prepared by spray drying. It was investigated if PVP was able to stabilise ASSF during storage and dissolution and whether this influenced the in vivo performance of the glass solution after oral dosing to rats. The glass solution had a glass transition temperature of 121.3 ± 0.5°C, which was significantly higher than that of the pure drug (101.2°C). ASSF in the glass solution was stable for at least 168 days when stored at 20°C and 0% relative humidity. The glass solution exhibited fast dissolution in simulated intestinal medium, pH 6.5; the intrinsic dissolution rate was found to be 10.1 ± 0.6 mg/cm(2)/min, which was significantly faster than the pure ASSF. When investigating the stability during dissolution in stimulated intestinal medium at pH 6.5, the ASSF in the glass solution showed signs of crystallinity after 1 min of dissolution, but crystallised to a lesser extent than pure ASSF. The stabilising effect of PVP on ASSF, led to improved relative oral bioavailability in rats of 263%, when compared to the pure ASSF.
Collapse
Affiliation(s)
- Line Hagner Nielsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345B, 2800 Kongens Lyngby, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Real-time UV imaging identifies the role of pH in insulin dissolution behavior in hydrogel-based subcutaneous tissue surrogate. Eur J Pharm Sci 2015; 69:26-36. [DOI: 10.1016/j.ejps.2014.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/28/2022]
|
23
|
Selen A, Dickinson PA, Müllertz A, Crison JR, Mistry HB, Cruañes MT, Martinez MN, Lennernäs H, Wigal TL, Swinney DC, Polli JE, Serajuddin AT, Cook JA, Dressman JB. The Biopharmaceutics Risk Assessment Roadmap for Optimizing Clinical Drug Product Performance. J Pharm Sci 2014; 103:3377-3397. [DOI: 10.1002/jps.24162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
|
24
|
Kuentz M. Analytical technologies for real-time drug dissolution and precipitation testing on a small scale. J Pharm Pharmacol 2014; 67:143-59. [DOI: 10.1111/jphp.12271] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 12/24/2022]
Abstract
Abstract
Objectives
This review focuses on real-time analytics of drug dissolution and precipitation testing on a comparatively small scale.
Key findings
Miniaturisation of test equipment is an important trend in pharmaceutics, and several small-scale experiments have been reported for drug dissolution and precipitation testing. Such tests typically employ analytics in real-time. Fibre optic ultraviolet (UV) analytics has become a well-established method in this field. Novel imaging techniques are emerging that use visible or UV light; also promising is Fourier transform infrared imaging based on attenuated total reflection. More information than just a rate constant is obtained from these methods. The early phase of a dissolution process can be assessed and drug precipitation may eventually be observed. Some real-time techniques are particularly well suited to studying drug precipitation during formulation dispersion; for example, turbidity, focused beam reflectance measurement and Raman spectroscopy.
Summary
Small-scale dissolution tests equipped with real-time analytics have become important to screen drug candidates as well as to study prototype formulations in early development. Future approaches are likely to combine different analytical techniques including imaging. Miniaturisation started with mini-vessels or small vials and future assays of dissolution research will probably more often reach the level of parallel well plates and microfluidic channels.
Collapse
Affiliation(s)
- Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
25
|
Grohganz H, Priemel PA, Löbmann K, Nielsen LH, Laitinen R, Mullertz A, Van den Mooter G, Rades T. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin Drug Deliv 2014; 11:977-89. [DOI: 10.1517/17425247.2014.911728] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|