1
|
Silva LB, Castro KADF, Botteon CEA, Oliveira CLP, da Silva RS, Marcato PD. Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:679128. [PMID: 34604182 PMCID: PMC8484888 DOI: 10.3389/fbioe.2021.679128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a potential non-invasive approach for application in oncological diseases, based on the activation of a photosensitizer (PS) by light at a specific wavelength in the presence of molecular oxygen to produce reactive oxygen species (ROS) that trigger the death tumor cells. In this context, porphyrins are interesting PS because they are robust, have high chemical, photo, thermal, and oxidative stability, and can generate singlet oxygen (1O2). However, porphyrins exhibit low solubility and a strong tendency to aggregate in a biological environment which limits their clinical application. To overcome these challenges, we developed hybrid nanostructures to immobilize 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-2,3,5,6-tetrafluorophenyl] (P), a new third-generation PS. The biological effect of this system was evaluated against bladder cancer (BC) cells with or without light exposition. The nanostructure composed of lipid carriers coated by porphyrin-chitosan (P-HNP), presented a size of ca. 130 nm and low polydispersity (ca. 0.25). The presence of the porphyrin-chitosan (P-chitosan) on lipid nanoparticle surfaces increased the nanoparticle size, changed the zeta potential to positive, decreased the recrystallization index, and increased the thermal stability of nanoparticles. Furthermore, P-chitosan incorporation on nanoparticles increased the stability and enhanced the self-organization of the system and the formation of spherical structures, as observed by small-angle X-ray scattering (SAXS) analysis. Furthermore, the immobilization process maintained the P photoactivity and improved the photophysical properties of PS, minimizing its aggregation in the cell culture medium. In the photoinduction assays, the P-HNP displayed high phototoxicity with IC50 3.2-folds lower than free porphyrin. This higher cytotoxic effect can be correlated to the high cellular uptake of porphyrin immobilized, as observed by confocal images. Moreover, the coated nanoparticles showed mucoadhesive properties interesting to its application in vivo. Therefore, the physical and chemical properties of nanoparticles may be relevant to improve the porphyrin photodynamic activity in BC cells.
Collapse
Affiliation(s)
- Letícia B. Silva
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly A. D. F. Castro
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline E. A. Botteon
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roberto S. da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Priscyla D. Marcato
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Guyon L, Groo AC, Malzert-Fréon A. Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Mol Pharm 2020; 18:44-64. [PMID: 33244972 DOI: 10.1021/acs.molpharmaceut.0c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface functionalization of lipid-based nanocarriers (LBNCs) with targeting ligands has attracted huge interest in the field of nanomedicines for their ability to overcome some physiological barriers and their potential to deliver an active molecule to a specific target without causing damage to healthy tissues. The principal objective of this review is to summarize the present knowledge on LBNC decoration used for biomedical applications, with an emphasis on the ligands used, the functionalization approaches, and the purification methods after ligand corona formation. The most potent experimental techniques for the LBNC surface characterization are described. The potential of promising methods such as nuclear magnetic resonance spectroscopy and isothermal titration calorimetry to characterize ligand surface corona is also outlined.
Collapse
Affiliation(s)
- Léna Guyon
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | - Anne-Claire Groo
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | | |
Collapse
|
3
|
Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2019; 230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
In recent years, phospholipid-polyethylene glycol-derived functional conjugates have been widely employed to decorate different nanomaterials, due to their excellent biocompatibility, long blood circulation characteristics, and specific targeting capability. Numerous in vivo studies have demonstrated that nanomedicines peripherally engineered with phospholipid-polyethylene glycol-derived functional conjugates show significantly increased selective and efficient internalization by target cells/tissues. Targeting moieties including small-molecule ligands, peptides, proteins, and antibodies are generally conjugated onto PEGylated phospholipids to decorate liposomes, micelles, hybrid nanoparticles, nanocomplexes, and nanoemulsions for targeted delivery of diagnostic and therapeutic agents to diseased sites. In this review, the synthesis methods of phospholipid-polyethylene glycol-derived functional conjugates, biophysicochemical properties of nanomedicines decorated with these conjugates, factors dominating their targeting efficiency, as well as their applications for in vivo molecular imaging and targeted therapy were summarized and discussed.
Collapse
|
4
|
Liu Y, Chen S, Sun J, Zhu S, Chen C, Xie W, Zheng J, Zhu Y, Xiao L, Hao L, Wang Z, Chang S. Folate-Targeted and Oxygen/Indocyanine Green-Loaded Lipid Nanoparticles for Dual-Mode Imaging and Photo-sonodynamic/Photothermal Therapy of Ovarian Cancer in Vitro and in Vivo. Mol Pharm 2019; 16:4104-4120. [PMID: 31517495 DOI: 10.1021/acs.molpharmaceut.9b00339] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have successfully fabricated versatile folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles (FA-OINPs) for dual-mode imaging-guided therapy in ovarian cancer cells and subcutaneous xenograft models. FA-OINPs were demonstrated to have great potential as superb contrast agents to enhance ultrasound and photoacoustic (US/PA) imaging We have successfully fabricated versatile folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles (FA-OINPs) for dual-mode imaging-guided therapy in ovarian cancer cells and subcutaneous xenograft models. FA-OINPs were demonstrated to have great potential as superb contrast agents to enhance ultrasound and photoacoustic (US/PA) imaging in vitro and in vivo. Confocal laser scanning microscopy and flow cytometry analysis verified that FA-OINPs could specifically target SKOV3 ovarian cancer cells and be endocytosed with a remarkable efficiency. Compared with other therapeutic options, FA-OINPs exhibited an excellent therapeutic outcome after exposure to laser and ultrasound. The MTT assay and flow cytometry analysis confirmed that cytotoxicity effects and apoptosis/necrosis rates were significantly increased. The fluorescence microscopy and fluorescence microplate reader detection validated that the generation of intracellular reactive oxygen species (ROS) was dramatically improved. Immunohistochemical analyses of tumor tissues demonstrated the enhanced tumor apoptosis, the decreased vascular endothelial growth factor (VEGF) and microvascular density (MVD) expression, and the decreased expression of CD68 after treatment. The presented results suggest that photo-sonodynamic/photothermal mediated FA-OINPs could provide a promising strategy for synergistic therapy in ovarian cancer with the guidance of US/PA dual-mode imaging.
Collapse
Affiliation(s)
- Yujiao Liu
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shuning Chen
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shenyin Zhu
- Department of Pharmacy , the First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , China
| | - Chunyan Chen
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Wan Xie
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Yi Zhu
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Linlin Xiao
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Lan Hao
- Institute of Ultrasound Imaging , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Zhigang Wang
- Institute of Ultrasound Imaging , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shufang Chang
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| |
Collapse
|
5
|
Auricularia auriculajudae polysaccharide-cisplatin complexes conjugated with folic acid as new tumor targeting agents. Int J Biol Macromol 2018; 120:966-974. [DOI: 10.1016/j.ijbiomac.2018.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
|
6
|
Peres-Filho MJ, dos Santos AP, Nascimento TL, de Ávila RI, Ferreira FS, Valadares MC, Lima EM. Antiproliferative Activity and VEGF Expression Reduction in MCF7 and PC-3 Cancer Cells by Paclitaxel and Imatinib Co-encapsulation in Folate-Targeted Liposomes. AAPS PharmSciTech 2018; 19:201-212. [PMID: 28681330 DOI: 10.1208/s12249-017-0830-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
Co-encapsulation of anticancer drugs paclitaxel and imatinib in nanocarriers is a promising strategy to optimize cancer treatment. Aiming to combine the cytotoxic and antiangiogenic properties of the drugs, a liposome formulation targeted to folate receptor co-encapsulating paclitaxel and imatinib was designed in this work. An efficient method was optimized for the synthesis of the lipid anchor DSPE-PEG(2000)-folic acid (FA). The structure of the obtained product was confirmed by RMN, FT-IR, and ESI-MS techniques. A new analytical method was developed and validated for simultaneous quantification of the drugs by liquid chromatography. Liposomes, composed of phosphatidylcholine, cholesterol, and DSPE-mPEG(2000), were prepared by extrusion. Their surface was modified by post-insertion of DSPE-PEG(2000)-FA. Reaction yield for DSPE-PEG(2000)-FA synthesis was 87%. Liposomes had a mean diameter of 122.85 ± 1.48 nm and polydispersity index of 0.19 ± 0.01. Lyophilized formulations remained stable for 60 days in terms of size and drug loading. FA-targeted liposomes had a higher effect on MCF7 cell viability reduction (p < 0.05) when compared with non-targeted liposomes and free paclitaxel. On PC-3 cells, viability reduction was greater (p < 0.01) when cells were exposed to targeted vesicles co-encapsulating both drugs, compared with the non-targeted formulation. VEGF gene expression was reduced in MCF7 and PC-3 cells (p < 0.0001), with targeted vesicles exhibiting better performance than non-targeted liposomes. Our results demonstrate that multifunctional liposomes associating molecular targeting and multidrug co-encapsulation are an interesting strategy to achieve enhanced internalization and accumulation of drugs in targeted cells, combining multiple antitumor strategies.
Collapse
|
7
|
Wang L, Liu Y, Zhao J, Li C, Zhou Y, Du J, Wang Y. In vitro and in vivo evaluation of targeting tumor with folate-based amphiphilic multifunctional stabilizer for resveratrol nanosuspensions. Colloids Surf B Biointerfaces 2017; 160:462-472. [DOI: 10.1016/j.colsurfb.2017.09.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/12/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
8
|
Luo T, Sun J, Zhu S, He J, Hao L, Xiao L, Zhu Y, Wang Q, Pan X, Wang Z, Chang S. Ultrasound-mediated destruction of oxygen and paclitaxel loaded dual-targeting microbubbles for intraperitoneal treatment of ovarian cancer xenografts. Cancer Lett 2016; 391:1-11. [PMID: 28043912 DOI: 10.1016/j.canlet.2016.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Folate receptor (FR) is overexpressed in many epithelial cancers and tumor-associated macrophages (TAMs), which enable it to function as an appropriate target for cancer treatment. We have successfully synthesized multifunctional folate-targeted and oxygen/paclitaxel loaded microbubbles (TOPLMBs) for ultrasound (US) mediated delivery for combination therapy in an intraperitoneal ovarian cancer xenograft model. The TOPLMBs target both ovarian cancer cells and TAMs and provide a promising drug delivery strategy for the combination treatment of ovarian cancer and tumor microenvironment. Microscopic imaging and flow cytometric analysis showed that TOPLMBs significantly penetrated into ovarian cancer cells and tumor-associated macrophages (TAMs) within tumor ascites fluid and the tumor nodules. Immunohistochemical analyses of dissected tumor tissue confirmed the increased tumor apoptosis, the reduced expression of vascular endothelial growth factor (VEGF) and microvascular density (MVD), and the reduced expression of CD68 after treatment (P < 0.05). Our experiment results suggest that intraperitoneal injection of dual-targeting TOPLMBs followed by US mediation provide a promising drug delivery strategy for combination treatment of ovarian cancer and tumor microenvironment with the therapeutic outcome superior to that of conventional therapeutic options.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shenyin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juan He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lan Hao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linlin Xiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qianqian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
9
|
Pradhan L, Srivastava R, Bahadur D. Enhanced anticancer efficacy of folate-grafted lipid modified dual drug loaded nanoassemblies to reduce drug resistance in ovarian cancer. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/6/065005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Yang J, Ju Z, Dong S. Cisplatin and paclitaxel co-delivered by folate-decorated lipid carriers for the treatment of head and neck cancer. Drug Deliv 2016; 24:792-799. [PMID: 28494629 PMCID: PMC8241145 DOI: 10.1080/10717544.2016.1236849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023] Open
Abstract
CONTEXT For head and neck cancer therapy, co-delivery of two drugs, cisplatin (DDP) plus paclitaxel (PTX), are more effective than single drug therapy. Lipid carriers are promising drug carriers for anti-cancer delivery. OBJECTIVE The aim of this study is to construct a folate (FA) decorated nanostructured lipid carriers (NLCs) as nanocarriers for DDP and PTX delivery. MATERIALS AND METHODS In this study, DDP and PTX were incorporated into NLCs. Folate-PEG-DSPE (FA-PEG-DSPE) was synthesized and decorated the drugs-loaded NLCs (FA-DDP/PTX NLCs). Their average size, zeta potential, drug encapsulation efficiency, drug loading capacity, and in vitro drug release were evaluated. Head and neck cancer cells (FaDu cells) were used for the testing of in vitro cytotoxicity, and in vivo transfection efficiency of NLC was evaluated on mice bearing FaDu cells model. RESULTS The size of FA-DDP/PTX NLCs was around 127 nm, with a positive zeta potential of 26.7 mV. FA-DDP/PTX NLCs showed the highest cytotoxicity and synergistic effect of two drugs in head and neck cancer cells (FaDu cells) in vitro. The in vivo study revealed the greatest anti-tumor activity than all the other formulations in murine-bearing head and neck cancer model. DISCUSSION AND CONCLUSION FA-DDP/PTX NLCs effectively improves anticancer efficiency for head and neck cancer in vitro and in vivo. The constructed NLCs could be used as a novel carrier to co-delivery DDP and PTX for head and neck cancer therapy.
Collapse
Affiliation(s)
- Jiying Yang
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, PR China
| | - Zengjuan Ju
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, PR China
| | - Shufang Dong
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, PR China
| |
Collapse
|
11
|
Xing L, Shi Q, Zheng K, Shen M, Ma J, Li F, Liu Y, Lin L, Tu W, Duan Y, Du L. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer. Am J Cancer Res 2016; 6:1573-87. [PMID: 27446491 PMCID: PMC4955056 DOI: 10.7150/thno.15164] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer.
Collapse
|
12
|
Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods 2015; 118:106-12. [DOI: 10.1016/j.mimet.2015.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 11/21/2022]
|
13
|
Attia MF, Anton N, Bouchaala R, Didier P, Arntz Y, Messaddeq N, Klymchenko AS, Mély Y, Vandamme TF. Functionalization of nano-emulsions with an amino-silica shell at the oil–water interface. RSC Adv 2015. [DOI: 10.1039/c5ra12676b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A new and simple method of modify and functionalize the liquid/liquid interface of nano-emulsion droplets.
Collapse
Affiliation(s)
- Mohamed F. Attia
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Nicolas Anton
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Redouane Bouchaala
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Pascal Didier
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Youri Arntz
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Nadia Messaddeq
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire)
- Inserm U964
- CNRS UMR7104
- Université de Strasbourg
- 67404 Illkirch
| | - Andrey S. Klymchenko
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Yves Mély
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Thierry F. Vandamme
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| |
Collapse
|