1
|
Cao Y, Yang Y, Feng S, Wan Y. Biomimetic cancer cell-coated albumin nanoparticles for enhanced colloidal stability and homotypic targeting of breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
2
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Skoll K, Ritschka M, Fuchs S, Wirth M, Gabor F. Characterization of sonochemically prepared human serum albumin nanocapsules using different plant oils as core component for targeted drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 76:105617. [PMID: 34126523 PMCID: PMC8202343 DOI: 10.1016/j.ultsonch.2021.105617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 05/21/2023]
Abstract
The focus of this study is the preparation of proteinaceous human serum albumin (HSA) nanocapsules with biocompatible plant oil cores avoiding toxic cross-linker and noxious non-aqueous liquids. The sonochemical preparation of HSA capsules with different plant oils yields particles with narrow size distribution forming suspensions stable for at least 14 days and enabling long-term storage by freezing. Furthermore, wheat germ agglutinin (WGA) as a targeting molecule was successfully embedded into the proteinaceous particle shell at a molar ratio of 7:1 (HSA/WGA). As urothelial cell binding studies revealed up to 55% higher cell binding potential of WGA-grafted particles than those without a targeter, targeted protein nanocapsules represent the first step towards new and innovative formulations.
Collapse
Affiliation(s)
- Katharina Skoll
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| | - Matthias Ritschka
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Stefanie Fuchs
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Michael Wirth
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| | - Franz Gabor
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Zhang X, Gao X, Zhou J, Gao Z, Tang Y, Tian Z, Ning P, Xia Y. Albumin-based fluorescence resonance energy transfer nanoprobes for multileveled tumor tissue imaging and dye release imaging. Colloids Surf B Biointerfaces 2020; 199:111537. [PMID: 33385821 DOI: 10.1016/j.colsurfb.2020.111537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Tumor tissue imaging and drug release imaging are both crucial for tumor imaging and image-guided drug delivery. It is urgent to develop a multileveled tumor imaging platform to realize the multiple imaging applications. In this work, we synthesized an albumin-based fluorescence resonance energy transfer (FRET) probe Cy5/7@HSA NPs containing two near-infrared cyanine dyes (CyBI5 and CyBI7) with high FRET efficiency (97 %). Excellent brightness and efficient FRET inside Cy5/7@HSA NPs enabled high-sensitive cell imaging and tumor imaging. This unique nanoprobe imaged 4T1 tumor-bearing mice with high sensitivity (TBR = 5.2) at 24 h post-injection and the dyes penetrated the tumor interior around 4 h post-injection. The release of dyes from nanoprobes was also tracked. This result shows the strong potential of this albumin-based FRET nanoprobe as multileveled tumor imaging platform for in vivo tumor imaging, drug delivery and image-guided surgery.
Collapse
Affiliation(s)
- Xianghan Zhang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Xiaohan Gao
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jialin Zhou
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Zhiqing Gao
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Yingdi Tang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Zuhong Tian
- Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Pengbo Ning
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China.
| |
Collapse
|
5
|
Tallian C, Herrero-Rollett A, Stadler K, Vielnascher R, Wieland K, Weihs AM, Pellis A, Teuschl AH, Lendl B, Amenitsch H, Guebitz GM. Structural insights into pH-responsive drug release of self-assembling human serum albumin-silk fibroin nanocapsules. Eur J Pharm Biopharm 2018; 133:176-187. [PMID: 30291964 DOI: 10.1016/j.ejpb.2018.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
Inflammation processes are associated with significant decreases in tissue or lysosomal pH from 7.4 to 4, a fact that argues for the application of pH-responsive drug delivery systems. However, for their design and optimization a full understanding of the release mechanism is crucial. In this study we investigated the pH-depending drug release mechanism and the influence of silk fibroin (SF) concentration and SF degradation degree of human serum albumin (HSA)-SF nanocapsules. Sonochemically produced nanocapsules were investigated regarding particle size, colloidal stability, protein encapsulation, thermal stability and drug loading properties. Particles of the monodisperse phase showed average hydrodynamic radii between 438 and 888 nm as measured by DLS and AFM and a zeta potential of -11.12 ± 3.27 mV. Together with DSC results this indicated the successful production of stable nanocapsules. ATR-FTIR analysis demonstrated that SF had a positive effect on particle formation and stability due to induced beta-sheet formation and enhanced crosslinking. The pH-responsive release was found to depend on the SF concentration. In in-vitro release studies, HSA-SF nanocapsules composed of 50% SF showed an increased pH-responsive release for all tested model substances (Rhodamine B, Crystal Violet and Evans Blue) and methotrexate at the lowered pH of 4.5 to pH 5.4, while HSA capsules without SF did not show any pH-responsive drug release. Mechanistic studies using confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS) analyses showed that increases in particle porosity and decreases in particle densities are directly linked to pH-responsive release properties. Therefore, the pH-responsive release mechanism was identified as diffusion controlled in a novel and unique approach by linking scattering results with in-vitro studies. Finally, cytotoxicity studies using the human monocytic THP-1 cell line indicated non-toxic behavior of the drug loaded nanocapsules when applied in a concentration of 62.5 µg mL-1. Based on the obtained release properties of HSA-SF nanocapsules formulations and the results of in-vitro MTT assays, formulations containing 50% SF showed the highest requirements arguing for future in vivo experiments and application in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Tallian
- Institute of Environmental Biotechnology, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Alexandra Herrero-Rollett
- Institute of Environmental Biotechnology, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria.
| | - Karina Stadler
- Institute of Environmental Biotechnology, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Robert Vielnascher
- Institute of Environmental Biotechnology, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria; ACIB - Austrian Centre of Industrial Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Karin Wieland
- Institute of Chemical Technologies and Analytics, Division of Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/164 AC, 1060 Vienna, Austria
| | - Anna M Weihs
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alessandro Pellis
- Institute of Environmental Biotechnology, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria; Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Andreas H Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Division of Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/164 AC, 1060 Vienna, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010 Graz, Austria
| | - Georg M Guebitz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria; ACIB - Austrian Centre of Industrial Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
6
|
Liu L, Guo W, Liang XJ. Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. Biotechnol J 2018; 14:e1800024. [DOI: 10.1002/biot.201800024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease; The Second Affiliated Hospital; Guangzhou Medical University; Guangzhou 510260 P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
7
|
Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017; 246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
A major challenge in the field of nanomedicine is to transform laboratory innovations into commercially successful clinical products. In this campaign, a variety of nanoenabled approaches have been designed and investigated for their role in biomedical applications. The advantages associated with the unique structure of albumin imparts it with the ability to interact with variety of molecules, while the functional groups present on their surface provide base for large number of modifications making it as an ideal nanocarrier system. So far, a variety of albumin based nanoenabled approaches have been intensively exploited for effective diagnosis and personalized medicine, among them some have successfully completed their journey from lab bench to marketed products. This review focuses on the recent most promising advancement in the field of albumin based nanoenabled approaches for various biomedical applications and their potential use in cancer diagnosis and therapy.
Collapse
|
8
|
Protein Formulations for Emulsions and Solid-in-Oil Dispersions. Trends Biotechnol 2016; 34:496-505. [DOI: 10.1016/j.tibtech.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 01/28/2023]
|
9
|
Pei Y, Yeo Y. Drug delivery to macrophages: Challenges and opportunities. J Control Release 2015; 240:202-211. [PMID: 26686082 DOI: 10.1016/j.jconrel.2015.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Macrophages are prevalent in the body and have roles in almost every aspect of human biology. They have often been considered a subject to avoid during drug delivery. However, with recent understanding of their diverse functions in diseases, macrophages have gained increasing interest as important therapeutic targets. To develop drug carriers to macrophages, it is important to understand their biological roles and requirements for efficient targeting. This review provides an overview of representative carriers and various approaches to address challenges in drug delivery to macrophages such as biodistribution, cellular uptake, intracellular trafficking, and drug release.
Collapse
Affiliation(s)
- Yihua Pei
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
10
|
Huang R, Sun Y, Zhang XY, Sun BW, Wang QC, Zhu J. Biological evaluation of a novel Herceptin-platinum (II) conjugate for efficient and cancer cell specific delivery. Biomed Pharmacother 2015. [DOI: 10.1016/j.biopha.2015.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Ferrari M, Onuoha SC, Pitzalis C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol 2015; 11:328-37. [DOI: 10.1038/nrrheum.2015.17] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|