1
|
Xin W, Gong S, Chen Y, Yao M, Qin S, Chen J, Zhang A, Yu W, Zhou S, Zhang B, Gu J, Zhao J, Huang Y. Self-Assembling P38 Peptide Inhibitor Nanoparticles Ameliorate the Transition from Acute to Chronic Kidney Disease by Suppressing Ferroptosis. Adv Healthc Mater 2024; 13:e2400441. [PMID: 38775779 DOI: 10.1002/adhm.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Accumulating evidence highlights p38 as a crucial factor highly activated during the process of acute kidney injury (AKI), but the application of p38 inhibitor in AKI is quite limited due to the low efficiency and poor kidney-targeting ability. Herein, a novel self-assembling peptide nanoparticle with specific p38-inhibiting activity is constructed, which linked mitogen-activated protein kinase kinase 3b (MKK3b), the functional domain of p38, with the cell-penetrating TAT sequence, ultimately self-assembling into TAT-MKK3b nanoparticles (TMNPs) through tyrosinase oxidation. Subsequent in vitro and in vivo studies demonstrated that TMNPs preferably accumulated in the renal tubular epithelial cells (RTECs) through forming protein coronas by binding to albumin, and strongly improved the reduced renal function of ischemia-reperfusion injury (IRI)-induced AKI and its transition to chronic kidney disease (CKD). Mechanically, TMNPs inhibited ferroptosis via its solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) axis-inducing capacity and synergistic potent antioxidant property in AKI. The findings indicated that the multifunctional TMNPs exhibited renal targeting, ROS-scavenging, and ferroptosis-mitigating capabilities, which may serve as a promising therapeutic agent for the treatment of AKI and its progression to CKD.
Collapse
Affiliation(s)
- Wang Xin
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Shuiqin Gong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Mengying Yao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Shaozong Qin
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jing Chen
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Aihong Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Wenrui Yu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Siyan Zhou
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Bo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jun Gu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, 100871, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| |
Collapse
|
2
|
Lu J, Xu X, Sun X, Du Y. Protein and peptide-based renal targeted drug delivery systems. J Control Release 2024; 366:65-84. [PMID: 38145662 DOI: 10.1016/j.jconrel.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Renal diseases have become an increasingly concerned public health problem in the world. Kidney-targeted drug delivery has profound transformative potential on increasing renal efficacy and reducing extra-renal toxicity. Protein and peptide-based kidney targeted drug delivery systems have garnered more and more attention due to its controllable synthesis, high biocompatibility and low immunogenicity. At the same time, the targeting methods based on protein/peptide are also abundant, including passive renal targeting based on macromolecular protein and active targeting mediated by renal targeting peptide. Here, we review the application and the drug loading strategy of different proteins or peptides in targeted drug delivery, including the ferritin family, albumin, low molecular weight protein (LMWP), different peptide sequence and antibodies. In addition, we summarized the factors influencing passive and active targeting in drug delivery system, the main receptors related to active targeting in different kidney diseases, and a variety of nano forms of proteins based on the controllable synthesis of proteins.
Collapse
Affiliation(s)
- Jingyi Lu
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoling Xu
- College of Medical Sciences, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, Zhejiang 310015, China.
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Yongzhong Du
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
3
|
Zhan HQ, Zhang X, Chen XL, Cheng L, Wang X. Application of nanotechnology in the treatment of glomerulonephritis: current status and future perspectives. J Nanobiotechnology 2024; 22:9. [PMID: 38169389 PMCID: PMC10763010 DOI: 10.1186/s12951-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaoxun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Li H, Dai W, Liu Z, He L. Renal Proximal Tubular Cells: A New Site for Targeted Delivery Therapy of Diabetic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:ph15121494. [PMID: 36558944 PMCID: PMC9786989 DOI: 10.3390/ph15121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD) worldwide. A significant number of drugs have been clinically investigated for the treatment of DKD. However, a large proportion of patients still develop end-stage kidney disease unstoppably. As a result, new effective therapies are urgently needed to slow down the progression of DKD. Recently, there is increasing evidence that targeted drug delivery strategies such as large molecule carriers, small molecule prodrugs, and nanoparticles can improve drug efficacy and reduce adverse side effects. There is no doubt that targeted drug delivery strategies have epoch-making significance and great application prospects for the treatment of DKD. In addition, the proximal tubule plays a very critical role in the progression of DKD. Consequently, the purpose of this paper is to summarize the current understanding of proximal tubule cell-targeted therapy, screen for optimal targeting strategies, and find new therapeutic approaches for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | - Liyu He
- Correspondence: ; Tel.: +86-731-8529-2064
| |
Collapse
|
5
|
Qin S, Wu B, Gong T, Zhang ZR, Fu Y. Targeted delivery via albumin corona nanocomplex to renal tubules to alleviate acute kidney injury. J Control Release 2022; 349:401-412. [PMID: 35835398 DOI: 10.1016/j.jconrel.2022.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Renal tubular epithelial cell (RTEC) is a critical target cell for the treatment of acute kidney injury (AKI). Despite various RTEC targeting strategies using ligand modified nanoparticles (NPs) following systemic administration, the nonspecific interaction between NPs and plasma proteins greatly weakens the targeting efficiency as well as the stability of NPs. Herein, celastrol (CLT) was entrapped in D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) forming a CLT-loaded nanocomplex core (CT) with a high loading capacity of ~50%. Bovine serum albumin (BSA) was then adsorbed onto the CT surface to afford a complete albumin corona without obvious denaturation (CTB). CTB showed uniform particle size distribution and sufficient stability in vitro and in vivo. Besides clathrin-mediated and macropinocytosis pathways, CTB was actively internalized through megalin receptor-mediated endocytosis in HK-2 cells. Per biodistribution studies, CTB demonstrates enhanced renal tubule-specific distribution and targetability in mice compared to CT without albumin corona. Furthermore, pharmacodynamic studies in vivo further support that CTB effectively alleviated ischemia-reperfusion induced injuries without obvious systemic side effects in AKI mice models.
Collapse
Affiliation(s)
- Shuo Qin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Beibei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Cao Z, Liu B, Li L, Lu P, Yan L, Lu C. Detoxification strategies of triptolide based on drug combinations and targeted delivery methods. Toxicology 2022; 469:153134. [PMID: 35202762 DOI: 10.1016/j.tox.2022.153134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Tripterygium wilfordii Hook f. has a long history of use in Chinese medicine. Triptolide (TP), as its main pharmacological component, has been widely explored in various diseases, including systemic lupus erythematosus, rheumatoid arthritis and cancer. However, due to its poor water solubility, limited therapeutic range and multi-organ toxicity, TP's clinical application has been greatly hampered. To improve its clinical potential, many attenuated drug combinations have been developed based on its toxicity mechanism and targeted delivery systems aimed at its water-solubility and structure. This review, conducted a systematic review of TP detoxification strategies including drug combination detoxification strategies from metabolic and toxic mechanisms, as well as drug delivery detoxification strategies from the prodrug strategy and nanotechnology. Many detoxification strategies have demonstrated promising potential in vitro and in vivo due to previous extensive studies on TP. Therefore, summarizing and discussing TP detoxification strategies for clinical problems can serve as a reference for developing novel TP detoxification strategies, and provide opportunities for future clinical applications.
Collapse
Affiliation(s)
- Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
8
|
van Asbeck AH, Dieker J, Boswinkel M, van der Vlag J, Brock R. Kidney-targeted therapies: A quantitative perspective. J Control Release 2020; 328:762-775. [DOI: 10.1016/j.jconrel.2020.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023]
|
9
|
Chen Z, Peng H, Zhang C. Advances in kidney-targeted drug delivery systems. Int J Pharm 2020; 587:119679. [PMID: 32717283 DOI: 10.1016/j.ijpharm.2020.119679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The management and treatment of kidney diseases currently have caused a huge global burden. Although the application of nanotechnology for the therapy of kidney diseases is still at an early stages, it has profound potential of development. More and more nano-based drug delivery systems provide novel solutions for the treatment of kidney diseases. This article summarizes the physiological and anatomical properties of the kidney and the biological and physicochemical characters of drug delivery systems, which affects the ability of drug to target the kidney, and highlights the prospects, opportunities, and challenges of nanotechnology in the therapy of kidney diseases.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| |
Collapse
|
10
|
Xu Y, Qin S, Niu Y, Gong T, Zhang Z, Fu Y. Effect of fluid shear stress on the internalization of kidney-targeted delivery systems in renal tubular epithelial cells. Acta Pharm Sin B 2020; 10:680-692. [PMID: 32322470 PMCID: PMC7161666 DOI: 10.1016/j.apsb.2019.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Renal tubular epithelial cells (RTECs) are important target cells for the development of kidney-targeted drug delivery systems. Under physiological conditions, RTECs are under constant fluid shear stress (FSS) from original urine in the renal tubule and respond to changes of FSS by altering their morphology and receptor expression patterns, which may affect reabsorption and cellular uptake. Using a microfluidic system, controlled shear stress was applied to proximal tubule epithelial cell line HK-2. Next, 2-glucosamine, bovine serum albumin, and albumin nanoparticles were selected as representative carriers to perform cell uptake studies in HK-2 cells using the microfluidic platform system with controlled FSS. FSS is proven to impact the morphology of HK-2 cells and upregulate the levels of megalin and clathrin, which then led to enhanced cellular uptake efficiencies of energy-driven carrier systems such as macromolecular and albumin nanoparticles in HK-2 cells. To further investigate the effects of FSS on endocytic behavior mediated by related receptors, a mice model of acute kidney injury with reduced fluid shear stress was established. Consistent with in vitro findings, in vivo studies have also shown reduced fluid shear stress down-regulated the levels of megalin receptors, thereby reducing the renal distribution of albumin nanoparticles.
Collapse
|
11
|
Raval N, Kumawat A, Kalyane D, Kalia K, Tekade RK. Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities. Drug Discov Today 2020; 25:862-878. [PMID: 31981791 DOI: 10.1016/j.drudis.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Diabetes and related complications are becoming a global encumbrance. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). The available therapeutic modalities related to DN do not treat DN at the molecular level, proposing further amendments in the management of DN based on the pathogenesis of DN. This manuscript discusses the concept and applications of nanomedicine for the treatment of DN that can improve renal targeting, retention and localization. This review also highlights the current issues related to targeting DN, challenges and allied opportunities toward the development of next-generation drugs and treatments for the management of DN.
Collapse
Affiliation(s)
- Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Akshant Kumawat
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Dnyaneshwar Kalyane
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India; Indian Institute of Technology-Jammu, Jagti, PO Nagrota, Jammu 181 221, J&K, India.
| |
Collapse
|
12
|
Li Q, Peterson N, Hanna RN, Kuszpit K, White J, Allen KL, Barnes A, Rickert KW, Shan L, Wu H, Dall'Acqua WF, Tsui P, Borrok MJ. Antibody Fragment F(ab') 2 Targeting Caveolae-Associated Protein PV1 for Selective Kidney Targeting and Retention. Mol Pharm 2019; 17:507-516. [PMID: 31841002 DOI: 10.1021/acs.molpharmaceut.9b00939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted strategies to deliver and retain drugs to kidneys are needed to improve drug accumulation and efficacy in a myriad of kidney diseases. These drug delivery systems show potential for improving the therapeutic windows of drugs acting in the kidney. Biodistribution of antibody-based therapeutics in vivo is governed by several factors including binding affinity, size, and valency. Investigations of how the biophysical and biochemical properties of biologics enable them to overcome biological barriers and reach kidneys are therefore of interest. Although renal accumulation of antibody fragments in cancer diagnostics and treatment has been observed, reports on effective delivery of antibody fragments to the kidneys remain scarce. Previously, we demonstrated that targeting plasmalemma vesicle-associated protein (PV1), a caveolae-associated protein, can promote accumulation of antibodies in both the lungs and the kidneys. Here, by fine-tuning the binding affinity of an antibody toward PV1, we observe that the anti-PV1 antibody with reduced binding affinity lost the capability for kidney targeting while retaining the lung targeting activity, suggesting that binding affinity is a critical factor for kidney targeting of the anti-PV1 antibody. We next use the antibody fragment F(ab')2 targeting PV1 to assess the dual effects of rapid kidney filtration and PV1 targeting on kidney-selective targeting. Ex vivo fluorescence imaging results demonstrated that after rapidly accumulating in kidneys at 4 h, PV1-targeted F(ab')2 was continually retained in the kidney at 24 h, whereas the isotype control F(ab')2 underwent urinary elimination with significantly reduced signaling in the kidney. Confocal imaging studies confirmed the localization of PV1-targeted F(ab')2 in the kidney. In addition, the monovalent antibody fragment (Fab-C4) lost the capability for kidney homing, indicating that the binding avidity of anti-PV1 F(ab')2 is important for kidney targeting. Our findings suggest that PV1-targeted F(ab')2 might be useful as a drug carrier for renal targeting and highlight the importance of affinity optimization for tissue targeting antibodies.
Collapse
|
13
|
Liu C, Hu Y, Lin J, Fu H, Lim LY, Yuan Z. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med Res Rev 2018; 39:561-578. [DOI: 10.1002/med.21532] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Chun‐Ping Liu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - You Hu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Ju‐Chun Lin
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Hua‐Lin Fu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Lee Yong Lim
- Pharmacy, Centre for Optimization of Medicines, School of Allied Health, The University of Western AustraliaCrawley Australia
| | - Zhi‐Xiang Yuan
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| |
Collapse
|
14
|
Ge L, You X, Huang J, Chen Y, Chen L, Zhu Y, Zhang Y, Liu X, Wu J, Hai Q. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy. Front Pharmacol 2018; 9:582. [PMID: 29946256 PMCID: PMC6005878 DOI: 10.3389/fphar.2018.00582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023] Open
Abstract
For enhanced anti-cancer performance, human serum albumin fragments (HSAFs) nanoparticles (NPs) were developed as paclitaxel (PTX) carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs.
Collapse
Affiliation(s)
- Liang Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuejian Chen
- Nanjing iPharma Technology, Co., Ltd., Nanjing, China
| | - Li Chen
- School of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Ying Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiqiang Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qian Hai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Yuan ZX, Jia L, Lim LY, Lin JC, Shu G, Zhao L, Ye G, Liang XX, Ji H, Fu HL. Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes. Int J Nanomedicine 2017; 12:5673-5686. [PMID: 28848346 PMCID: PMC5557620 DOI: 10.2147/ijn.s141095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previously, 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20)-modified liposomes were reported to specifically target mesangial cells (MCs) in glomeruli. To further gain a better understanding of the characteristics and potential application for glomerular diseases of TRX-20-modified liposomes, we synthesized TRX-20 and prepared TRX-20-modified liposomes (TRX-LPs) with different molar ratios - 6% (6%-TRX-LP), 11% (11%-TRX-LP), and 14% (14%-TRX-LP) - of TRX-20 to total lipid in the present study. All TRX-LPs exhibited concentration-dependent toxicity against the MCs at a lipid concentration ranging from 0.01 to 1.0 mg/mL with IC50 values of 3.45, 1.13, and 0.55 mg/mL, respectively. Comparison of the cell viability of TRX-LPs indicated that high levels of TRX-20 caused severe cell mortality, with 11%-TRX-LP showing the higher cytoplasmic accumulation in the MCs. Triptolide (TP) as a model drug was first loaded into 11%-TRX-LP and the liposomes were further modified with PEG5000 (PEG-TRX-TP-LP) in an attempt to prolong their circulation in blood and enhance TP-mediated immune suppression. Due to specific binding to MCs, PEG-TRX-TP-LP undoubtedly showed better anti-inflammatory action in vitro, evidenced by the inhibition of release of nitric oxide (NO) and tumor necrosis factor-α from lipopolysaccharide-stimulated MCs, compared with free TP at the same dose. In vivo, the PEG-TRX-TP-LP effectively attenuated the symptoms of membranous nephropathic (MN) rats and improved biochemical markers including proteinuria, serum cholesterol, and albumin. Therefore, it can be concluded that the TRX-modified liposome is an effective platform to target the delivery of TP to glomeruli for the treatment of MN.
Collapse
Affiliation(s)
- Zhi-xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People’ Hospital, Taiyuan, China
| | - Lee Yong Lim
- Pharmacy, Centre for Optimization of Medicines, School of Allied Health, The University of Western Australia, Crawley, Australia
| | - Ju-chun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Xiao-xia Liang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People’ Hospital, Taiyuan, China
| | - Hua-lin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| |
Collapse
|
16
|
Gene based therapies for kidney regeneration. Eur J Pharmacol 2016; 790:99-108. [DOI: 10.1016/j.ejphar.2016.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022]
|
17
|
Sarko D. Kidney-Specific Drug Delivery: Review of Opportunities, Achievements, and Challenges. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/japlr.2016.02.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther 2016; 9:2873-84. [PMID: 27274282 PMCID: PMC4876107 DOI: 10.2147/ott.s104691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few years, nanomaterial-based drug delivery systems have been applied to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting efficacy, even when targeting modalities and surface markers are introduced. Immunological problems have also limited their wide applications. Biological drug delivery systems, such as erythrocytes, platelets, and albumin, have been extensively investigated because of their unique properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug delivery systems. Their properties, applications, advantages, and limitations in disease treatment are explained. This review confirms that these systems can be used to facilitate a specific, biocompatible, and smart drug delivery.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ruju Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaohui Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Wu XJ, Tang EK, Xu CQ, Yuan ZX. Hemocompatibility evaluation for peptide fragments of human serum albumin cleaved by cyanogens bromide. J Biomater Appl 2015; 30:974-82. [PMID: 26482572 DOI: 10.1177/0885328215608018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously demonstrated that peptide fragments of human serum albumin can be developed into potential renal targeting drug carriers. However, the interactions of these peptide fragments with red blood cells and plasma components are not evaluated well and there is yet no report on the evaluation of the hemocompatibility of peptide fragments. In this study, three kinds of peptide fragments were prepared and identified by amino acid analysis, and the blood compatibility of the peptide fragments was investigated by measuring blood coagulation, platelet and complement activation and hemolysis activity. Results indicated that all the peptide fragments prepared were highly hemocompatible without causing any clot formation, red blood cell aggregation or immune response. In addition, data from the cytotoxicity assay using HeLa cells and Madin-Darby canine kidney cells suggested that these peptide fragments do not induce toxicity towards either cell lines at concentrations up to 5 mg/ml. Therefore, it can be concluded that peptide fragments exhibit good hemocompatibility with no unwanted effect on the viability of renal cells, preliminarily demonstrating that it is safe to use peptide fragments as renal targeting drug carriers.
Collapse
Affiliation(s)
- Xiao-juan Wu
- Integrative Traditional and Western Medicine Hospital of Sichuan Province, Chengdu, Sichuan, China
| | - Edith Kai Tang
- Pharmacy, School of Medicine and Pharmacology, the University of Western Australia, Western Australia, Australia
| | - Chao-qun Xu
- Institute of Pharmacy, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Zhi-xiang Yuan
- Institute of Pharmacy, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Yuan ZX, Wu XJ, Mo J, Wang YL, Xu CQ, Lim LY. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin. Eur J Pharm Biopharm 2015; 94:363-71. [DOI: 10.1016/j.ejpb.2015.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/14/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
|