1
|
Pedziwiatr-Werbicka E, Horodecka K, Shcharbin D, Bryszewska M. Nanoparticles in Combating Cancer: Opportunities and Limitations. A Brief Review. Curr Med Chem 2021; 28:346-359. [PMID: 32000637 DOI: 10.2174/0929867327666200130101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022]
Abstract
Nanomedicine is a good alternative to traditional methods of cancer treatment but does not solve all the limitations of oncology. Nanoparticles used in anticancer therapy can work as carriers of drugs, nucleic acids, imaging agents or they can sensitize cells to radiation. The present review focuses on the application of nanoparticles to treating cancer, as well as on its problems and limitations. Using nanoparticles as drug carriers, significant improvement in the efficiency of transport of compounds and their targeting directly to the tumour has been achieved; it also reduces the side effects of chemotherapeutic drugs on the body. However, nanoparticles do not significantly improve the effectiveness of the chemotherapeutic agent itself. Most nanodrugs can reduce the toxicity of chemotherapy, but do not significantly affect the effectiveness of treatment. Nanodrugs should be developed that can be effective as an anti-metastatic treatment, e.g. by enhancing the ability of nanoparticles to transport chemotherapeutic loads to sentinel lymph nodes using the immune system and developing chemotherapy in specific metastatic areas. Gene therapy, however, is the most modern method of treating cancer, the cause of cancer being tackled by altering genetic material. Other applications of nanoparticles for radiotherapy and diagnostics are discussed.
Collapse
Affiliation(s)
- Elzbieta Pedziwiatr-Werbicka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Katarzyna Horodecka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| |
Collapse
|
2
|
Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Bryszewska M, Borowiec M, Franiak-Pietryga I. Anti-Tumour Activity of Glycodendrimer Nanoparticles in a Subcutaneous MEC-1 Xenograft Model of Human Chronic Lymphocytic Leukemia. Anticancer Agents Med Chem 2021; 20:325-334. [PMID: 31738155 DOI: 10.2174/1871520619666191019093558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic Lymphocytic Leukaemia (CLL) is an indolent disorder, which mainly affects older adults. Since the advent of chemoimmunotherapy, great progress has been made in its treatment. However, some patients develop a more aggressive form of the disease and are included in the group of high-risk CLL patients with a dismal prognosis and a need for new therapies. OBJECTIVE Maltotriose-modified poly(propylene imine) dendrimers were presented as potential agents in targeted therapy for CLL in the murine xenograft model. METHODS Tumour, brain and internal organs resected from NOD scid gamma mice were subjected to gross and histopathological evaluation. RESULTS The results of ex vivo tissue examination indicated that open-shell glycodendrimers prevented/inhibited the spread of CLL into the brain and internal organs and its transformation into a more aggressive form. CONCLUSION The results of the study have a potentially important impact on the design of future personalized therapies as well as clinical trials.
Collapse
Affiliation(s)
- Barbara Ziemba
- GeneaMed LTD, Lodz, Poland.,Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | | | | | - Wojciech Kuncman
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | - Marian Danilewicz
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- GeneaMed LTD, Lodz, Poland.,Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California, San Diego, CA, United States
| |
Collapse
|
3
|
Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Appelhans D, Bryszewska M, Borowiec M. Neurotoxicity of poly(propylene imine) glycodendrimers. Drug Chem Toxicol 2020; 45:1484-1492. [DOI: 10.1080/01480545.2020.1843472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
- GeneaMed LTD, Lodz, Poland
- University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
- GeneaMed LTD, Lodz, Poland
| | | | | | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol 2020; 403:115139. [PMID: 32687837 DOI: 10.1016/j.taap.2020.115139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cancer nanotherapeutics have shown promise in resolving some of the limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, and low therapeutic indices, Among the various nanoparticles that are available, dendrimers, highly branched macromolecules with a specific size and shape, are one of the most promising ones. In this preliminary study, we tested the anti-tumor activity of maltotriose-modified fourth-generation poly(propylene imine) glycodendrimers (PPI-G4-M3) in vivo in the subcutaneous MEC-1 xenograft model of human chronic lymphocytic leukemia (CLL) in NOD scid gamma mice. Fludarabine was used for model validation and as a positive treatment control. The anti-tumor response was calculated as tumor volume, tumor control ratio, and tumor growth inhibition. The study showed that PPI-G4-M3 inhibited subcutaneous tumor growth more efficiently than fludarabine. The anti-tumor response was dose-dependent. Cationic PPI-G4-M3 showed the highest anti-tumor activity but also higher toxicity than the neutral dendrimers and fludarabine. These first promising results warrant further studies in the optimization of dendrimers charge, dose, route and schedule of administration to combat CLL.
Collapse
|
5
|
Rodriguez-Izquierdo I, Gasco S, Muñoz-Fernández MA. High Preventive Effect of G2-S16 Anionic Carbosilane Dendrimer against Sexually Transmitted HSV-2 Infection. Molecules 2020; 25:E2965. [PMID: 32605185 PMCID: PMC7412300 DOI: 10.3390/molecules25132965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Anionic carbosilane dendrimers such as G2-S16 are very effective in preventing HSV-2 infection both in vitro and in vivo. We present the main achievements obtained for the G2-S16 dendrimer in vivo, especially related to its efficacy against HSV-2 infection. Moreover, we discuss the mechanisms by which the G2-S16 dendrimer applied vaginally as a topical microbicide has been demonstrated to be safe and harmless for the vaginal microbiome balance, as both conditions present an essential step that has to be overcome during microbicide development. This review points to the marked protective effect of the G2-S16 dendrimer against sexually transmitted HSV-2 infection, supporting its role as a possible microbicide against HSV-2 infection.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Izquierdo
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Samanta Gasco
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
| | - Maria Angeles Muñoz-Fernández
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain
| |
Collapse
|
6
|
Ciepluch K, Biehl R, Bryszewska M, Arabski M. Poly(propylene imine) dendrimers can bind to PEGylated albumin at PEG and albumin surface: Biophysical examination of a PEGylated platform to transport cationic dendritic nanoparticles. Biopolymers 2020; 111:e23386. [PMID: 32544981 DOI: 10.1002/bip.23386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022]
Abstract
Cationic dendrimers are considered one of the best drug transporters in the body. However, in order to improve their biocompatibility, modification of them is required to reduce toxicity. In this way, many dendrimers may lose their original properties, for example, anticancer. To improve biocompatibility of dendrimers, it is possible to complex them with albumin, as is done very often in drug delivery. However, the interaction of dendrimers with albumin can lead to protein structure disruption or no complexation at all. Therefore, the investigation of the interaction between cationic poly-(propylene imine) dendrimers and polyethylene glycol (PEG)-albumin by fluorescence, circular dichroism, small angle X-ray scattering (SAXS), and transmission electron microscopy was carried out. Results show that cationic dendrimers bind to PEGylated albumin at PEG and albumin surfaces. The obtained results for 5k-PEG indicate a preferential binding of the dendrimers to PEG. For 20k-PEG binding of dendrimers to PEG and protein could induce a collapse of the PEG chain onto the protein surface. This opens up new possibilities to the use of PEGylated albumin as a platform to carry dendrimers without changing the albumin structure and improve the pharmacokinetic properties of dendrimers without further modification.
Collapse
Affiliation(s)
- Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland
| | - Ralf Biehl
- Jülich Centre for Neutron Science & Institute of Complex Systems (JCNS-1&ICS-1), Forschungszentrum Jülich, Jülich, Germany
| | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, Lodz, Poland
| | - Michał Arabski
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
7
|
Affecting NF-κB cell signaling pathway in chronic lymphocytic leukemia by dendrimers-based nanoparticles. Toxicol Appl Pharmacol 2018; 357:33-38. [DOI: 10.1016/j.taap.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023]
|
8
|
Liegertová M, Wrobel D, Herma R, Müllerová M, Šťastná LČ, Cuřínová P, Strašák T, Malý M, Čermák J, Smejkal J, Štofik M, Maly J. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology 2018; 12:797-818. [DOI: 10.1080/17435390.2018.1475582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michaela Liegertová
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Dominika Wrobel
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Regina Herma
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | | | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Marek Malý
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Čermák
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Jiří Smejkal
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marcel Štofik
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Maly
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| |
Collapse
|
9
|
Gorzkiewicz M, Jatczak-Pawlik I, Studzian M, Pułaski Ł, Appelhans D, Voit B, Klajnert-Maculewicz B. Glycodendrimer Nanocarriers for Direct Delivery of Fludarabine Triphosphate to Leukemic Cells: Improved Pharmacokinetics and Pharmacodynamics of Fludarabine. Biomacromolecules 2018; 19:531-543. [PMID: 29323872 DOI: 10.1021/acs.biomac.7b01650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fludarabine, a nucleoside analogue antimetabolite, has complicated pharmacokinetics requiring facilitated transmembrane transport and intracellular conversion to triphosphate nucleotide form (Ara-FATP), causing it to be susceptible to emergence of drug resistance. We are testing a promising strategy to improve its clinical efficacy by direct delivery of Ara-FATP utilizing a biocompatible glycodendrimer nanocarrier system. Here, we present results of a proof-of-concept experiment in several in vitro-cultured leukemic cell lines (CCRF, THP-1, U937) using noncovalent complexes of maltose-modified poly(propyleneimine) dendrimer and fludarabine triphosphate. We show that Ara-FATP has limited cytotoxic activity toward investigated cells relative to free nucleoside (Ara-FA), but complexation with the glycodendrimer (which does not otherwise influence cellular metabolism) drastically increases its toxicity. Moreover, we show that transport via hENT1 is a limiting step in Ara-FA toxicity, while complexation with dendrimer allows Ara-FATP to kill cells even in the presence of a hENT1 inhibitor. Thus, the use of glycodendrimers for drug delivery would allow us to circumvent naturally occurring drug resistance due to decreased transporter activity. Finally, we demonstrate that complex formation does not change the advantageous multifactorial intracellular pharmacodynamics of Ara-FATP, preserving its high capability to inhibit DNA and RNA synthesis and induce apoptosis via the intrinsic pathway. In comparison to other nucleoside analogue drugs, fludarabine is hereby demonstrated to be an optimal candidate for maltose glycodendrimer-mediated drug delivery in antileukemic therapy.
Collapse
Affiliation(s)
| | | | | | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS , 106 Lodowa Street, 93-232 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | | |
Collapse
|
10
|
Franiak-Pietryga I, Maciejewski H, Ziemba B, Appelhans D, Voit B, Robak T, Jander M, Treliński J, Bryszewska M, Borowiec M. Blockage of Wnt/β-Catenin Signaling by Nanoparticles Reduces Survival and Proliferation of CLL Cells In Vitro-Preliminary Study. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics; Medical University of Lodz; Pomorska Str. 251 92-213 Lodz Poland
- Laboratory of Clinical and Transplant Immunology and Genetics; Copernicus Memorial Hospital; Pabianicka Str. 62 93-513 Lodz Poland
- GeneaMed LTD; Kopcinskiego Str. 16/18/904 90-232 Lodz Poland
| | - Henryk Maciejewski
- Department of Computer Engineering; Wroclaw University of Technology; Janiszewskiego Str. 11/17 50-372 Wroclaw Poland
| | - Barbara Ziemba
- Department of Clinical and Laboratory Genetics; Medical University of Lodz; Pomorska Str. 251 92-213 Lodz Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden; Hohe Str. 6 D-01069 Dresden Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden; Hohe Str. 6 D-01069 Dresden Germany
| | - Tadeusz Robak
- Department of Hematology; Medical University of Lodz; Copernicus Memorial Hospital; Pabianicka Str. 62 93-513 Lodz Poland
| | | | - Jacek Treliński
- Department of Hematology; Medical University of Lodz; Copernicus Memorial Hospital; Pabianicka Str. 62 93-513 Lodz Poland
| | - Maria Bryszewska
- Department of General Biophysics; Faculty of Biology and Environmental Protection; University of Lodz; Pomorska Str. 141/143 90-236 Lodz Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics; Medical University of Lodz; Pomorska Str. 251 92-213 Lodz Poland
| |
Collapse
|
11
|
Tietze S, Schau I, Michen S, Ennen F, Janke A, Schackert G, Aigner A, Appelhans D, Temme A. A Poly(Propyleneimine) Dendrimer-Based Polyplex-System for Single-Chain Antibody-Mediated Targeted Delivery and Cellular Uptake of SiRNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700072. [PMID: 28544767 DOI: 10.1002/smll.201700072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Therapeutics based on small interfering RNAs (siRNAs) offer a great potential to treat so far incurable diseases or metastatic cancer. However, the broad application of siRNAs using various nonviral carrier systems is hampered by unspecific toxic side effects, poor pharmacokinetics due to unwanted delivery of siRNA-loaded nanoparticles into nontarget organs, or rapid renal excretion. In order to overcome these obstacles, several targeting strategies using chemically linked antibodies and ligands have emerged. This study reports a new modular polyplex carrier system for targeted delivery of siRNA, which is based on transfection-disabled maltose-modified poly(propyleneimine)-dendrimers (mal-PPI) bioconjugated to single chain fragment variables (scFvs). To achieve targeted delivery into tumor cells expressing the epidermal growth factor receptor variant III (EGFRvIII), monobiotinylated anti-EGFRvIII scFv fused to a Propionibacterium shermanii transcarboxylase-derived biotinylation acceptor (P-BAP) is bioconjugated to mal-PPI through a novel coupling strategy solely based on biotin-neutravidin bridging. In contrast to polyplexes containing an unspecific control scFv-P-BAP, the generated EGFRvIII-specific polyplexes are able to exclusively deliver siRNA to tumor cells and tumors by receptor-mediated endocytosis. These results suggest that receptor-mediated uptake of otherwise noninternalized mal-PPI-based polyplexes is a promising avenue to improve siRNA therapy of cancer, and introduce a novel strategy for modular bioconjugation of protein ligands to nanoparticles.
Collapse
Affiliation(s)
- Stefanie Tietze
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Isabell Schau
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Franka Ennen
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069, Dresden, Germany
| | - Andreas Janke
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden German Cancer Research Center (DKFZ) Heidelberg, German and National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University Medicine Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069, Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden German Cancer Research Center (DKFZ) Heidelberg, German and National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
| |
Collapse
|
12
|
Abstract
Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.
Collapse
|
13
|
Studzian M, Szulc A, Janaszewska A, Appelhans D, Pułaski Ł, Klajnert-Maculewicz B. Mechanisms of Internalization of Maltose-Modified Poly(propyleneimine) Glycodendrimers into Leukemic Cell Lines. Biomacromolecules 2017; 18:1509-1520. [DOI: 10.1021/acs.biomac.7b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Łukasz Pułaski
- Laboratory
of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | | |
Collapse
|
14
|
Andreozzi E, Antonelli A, Cangiotti M, Canonico B, Sfara C, Pianetti A, Bruscolini F, Sahre K, Appelhans D, Papa S, Ottaviani MF. Interactions of Nitroxide-Conjugated and Non-Conjugated Glycodendrimers with Normal and Cancer Cells and Biocompatibility Studies. Bioconjug Chem 2017; 28:524-538. [PMID: 28068077 DOI: 10.1021/acs.bioconjchem.6b00635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(propyleneimine) glycodendrimers fully modified with maltose units were administered to different cancer cell lines and their effect on cell viability was evaluated by using MTS assay and flow cytometry. The mechanism of dendrimer-cell interactions was investigated by the electron paramagnetic resonance (EPR) technique by using a new nitroxide-conjugated glycodendrimer. The nitroxide groups did not modify both the biological properties (cell viability and apoptosis degree) of the dendrimers in the presence of the cells and the dendrimer-cell interactions. Since this class of dendrimers is already known to be biocompatible for human healthy cells, noncancer cells such as human peripheral blood mononuclear cells (PBMCs) and macrophages were also treated with the glycodendrimer, and EPR spectra of the nitroxide-conjugated glycodendrimer were compared for cancer and noncancer cells. It was found that this dendrimer selectively affects the cell viability of tumor cells, while, surprisingly, PBMC proliferation is induced. Moreover, H-bond-active glycodendrimer-cell interactions were different for the different cancer cell lines and noncancer cells. The nitroxide-conjugated glycodendrimer was able to interact with the cell membrane and eventually cross it, getting in contact with cytosol antioxidants. This study helps to clarify the potential anticancer effect of this class of dendrimers opening to future applications of these macromolecules as new antitumor agents.
Collapse
Affiliation(s)
- Elisa Andreozzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo , Via Ca' Le Suore 2/4, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Carla Sfara
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Anna Pianetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Francesca Bruscolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Karin Sahre
- Leibniz Institute of Polymer Research Dresden , Department Bioactive and Responsive Polymers, Hohe Strasse 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden , Department Bioactive and Responsive Polymers, Hohe Strasse 6, 01069 Dresden, Germany
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Maria Francesca Ottaviani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo , Via Ca' Le Suore 2/4, 61029 Urbino, Italy
| |
Collapse
|
15
|
Szulc A, Pulaski L, Appelhans D, Voit B, Klajnert-Maculewicz B. Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance. Int J Pharm 2016; 513:572-583. [DOI: 10.1016/j.ijpharm.2016.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
|
16
|
Franiak-Pietryga I, Maciejewski H, Ostrowska K, Appelhans D, Voit B, Misiewicz M, Kowalczyk P, Bryszewska M, Borowiec M. Dendrimer-based nanoparticles for potential personalized therapy in chronic lymphocytic leukemia: Targeting the BCR-signaling pathway. Int J Biol Macromol 2016; 88:156-61. [DOI: 10.1016/j.ijbiomac.2016.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/08/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
|
17
|
Szulc A, Signorelli M, Schiraldi A, Appelhans D, Voit B, Bryszewska M, Klajnert-Maculewicz B, Fessas D. Maltose modified poly(propylene imine) dendrimers as potential carriers of nucleoside analog 5'-triphosphates. Int J Pharm 2015; 495:940-7. [PMID: 26456295 DOI: 10.1016/j.ijpharm.2015.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 01/15/2023]
Abstract
Poly(propylene imine) (PPI) dendrimers contained surface maltose modification are proposed as drug carriers for nucleoside analog (NA) 5'-triphosphates. The aim of this study was to investigate the interactions between PPI dendrimers of 3rd (G3) or 4th (G4) generation and cytidine-5'-triphosphate (CTP) by Isothermal Titration Calorimetry method. CTP was used as a model molecule of pyrimidine nucleoside analog-cytarabine (ara-CTP) commonly used in leukemia treatment. Complexes of PPI dendrimers with NAs may help to overcome severe limitations of NAs associated with their low solubility and stability or resistance in cancer cells. In the present work, we evaluated stoichiometry and a mechanism of forming complexes between dendrimers and the nucleotide. Moreover, we examined the efficiency of complex formation in relation to dendrimer generations, a type of dendrimer modification with maltose residues and a type of solvent. It was observed that PPI dendrimers create complexes with CTP with high efficiency that makes them promising candidates for a drug delivery system.
Collapse
Affiliation(s)
- Aleksandra Szulc
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| | - Alberto Schiraldi
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| |
Collapse
|
18
|
Bugno J, Hsu HJ, Hong S. Recent advances in targeted drug delivery approaches using dendritic polymers. Biomater Sci 2015; 3:1025-34. [PMID: 26221937 PMCID: PMC4519693 DOI: 10.1039/c4bm00351a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since they were first synthesized over 30 years ago, dendrimers have seen rapid translation into various biomedical applications. A number of reports have not only demonstrated their clinical utility, but also revealed novel design approaches and strategies based on the elucidation of underlying mechanisms governing their biological interactions. This review focuses on presenting the latest advances in dendrimer design, discussing the current mechanistic understandings, and highlighting recent developments and targeted approaches using dendrimers in drug/gene delivery.
Collapse
Affiliation(s)
- Jason Bugno
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
19
|
Yassin MA, Appelhans D, Wiedemuth R, Formanek P, Boye S, Lederer A, Temme A, Voit B. Overcoming concealment effects of targeting moieties in the PEG corona: controlled permeable polymersomes decorated with folate-antennae for selective targeting of tumor cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1580-1591. [PMID: 25363281 DOI: 10.1002/smll.201402581] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 06/04/2023]
Abstract
In the context of diligent efforts to improve the tumor targeting efficiency of drug carriers, a shape-persistent polymersome which possess a pH-tunable membrane as well as folate targeting antennae is reported. The membrane of such polymersomes behaves as gate which undergoes "on" and "off" switches in response to pH stimuli. Thus, polymersomes can effectively prohibit the premature release of chemotherapeutic agents such as doxorubicin in physiological conditions, but promote drug release once they are triggered in the acidified endosomal compartment. Importantly, the folate moieties are installed on the surface of polymersomes as protruding antennae by doping the polymersomes with folate-terminated block copolymers designed to have longer PEG segments. Thereby, the folate moieties are freed from concealment and steric effects exerted by the dense PEG corona. The cellular uptake of the FA-antennae polymersomes by tumor cells is significantly enhanced facilitated by the freely accessible folate antennae; however, the normal cells record a low level of cellular uptake due to the stealth property of the PEG corona. Overall, the excellent biocompatibility, controlled permeability, targeted internalization, as well as selective cytotoxicity of such polymersomes set up the basis for properly smart carrier for targeted drug delivery.
Collapse
Affiliation(s)
- Mohamed A Yassin
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany; Organic Chemistry of Polymers, Technische Universität Dresden, Dresden, 01062, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015; 44:3968-96. [DOI: 10.1039/c4cs00339j] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
Collapse
Affiliation(s)
- Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Anna Janaszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Joanna Lazniewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Organic Chemistry of Polymers
- Technische Universität Dresden
| |
Collapse
|
21
|
Furlan S, La Penna G, Appelhans D, Cangiotti M, Ottaviani MF, Danani A. Combined EPR and molecular modeling study of PPI dendrimers interacting with copper ions: effect of generation and maltose decoration. J Phys Chem B 2014; 118:12098-111. [PMID: 25247928 DOI: 10.1021/jp505420s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the early onset of neurodegeneration is crucial to deploy specific treatments for patients before the process becomes irreversible. Copper has been proposed as a biomarker for many neurodegenerative disorders, being the ion released by pathologically unfolded proteins involved in many biochemical pathways. Dendrimers are macromolecules that bind metal ions with a large ion/ligand ratio, thus, allowing a massive collection of copper. This work provides structural information, obtained via molecular modeling and EPR, for the binding sites of copper in polypropyleneimine (PPI) dendrimers, especially in the maltose decorated form that has potential applications in diagnosis and therapies for various types of neurodegenerations. The analysis of the EPR spectra showed that, at the lowest Cu concentrations, the results are well supported by the calculations. Moreover, EPR analysis at increasing Cu(II) concentration allowed us to follow the saturation behavior of the interacting sites identified by the modeling study.
Collapse
Affiliation(s)
- Sara Furlan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via Giorgieri 1, I-34127 Trieste, Italy
| | | | | | | | | | | |
Collapse
|