1
|
Microparticles in the Development and Improvement of Pharmaceutical Formulations: An Analysis of In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:ijms24065441. [PMID: 36982517 PMCID: PMC10049314 DOI: 10.3390/ijms24065441] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
Microparticulate systems such as microparticles, microspheres, microcapsules or any particle in a micrometer scale (usually of 1–1000 µm) are widely used as drug delivery systems, because they offer higher therapeutic and diagnostic performance compared to conventional drug delivery forms. These systems can be manufactured with many raw materials, especially polymers, most of which have been effective in improving the physicochemical properties and biological activities of active compounds. This review will focus on the in vivo and in vitro application in the last decade (2012 to 2022) of different active pharmaceutical ingredients microencapsulated in polymeric or lipid matrices, the main formulation factors (excipients and techniques) and mostly their biological activities, with the aim of introducing and discussing the potential applicability of microparticulate systems in the pharmaceutical field.
Collapse
|
2
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Chen P, Luo H, Huang S, Liu J, Lin M, Yang F, Ban J, Huang Z, Lu Z, Xie Q, Chen Y. Preparation of High-Drug-Loaded Clarithromycin Gastric-Floating Sustained-Release Tablets Using 3D Printing. AAPS PharmSciTech 2021; 22:131. [PMID: 33839973 DOI: 10.1208/s12249-021-01994-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
The high-drug-loaded sustained-release gastric-floating clarithromycin (CAM) tablets were proposed and manufactured via semisolid extrusion (SSE)-based 3D printing. The physical and mechanical properties, such as dimensions, weight variation, friability, and hardness, were accessed according to the quality standards of Chinese Pharmacopoeia (Ch.P). The interactions among the drug-excipients were evaluated via differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) techniques. Next, the rheological properties of the paste and the effect of the excipients and solvents were evaluated. Finally, a very high drug-loading of up to 81.7% (w/w) with the sustain release time of 8 h (125 mg) and 12 h (250 mg) was achieved. The results revealed the potential of SSE for achieving a high drug loading and identified the suitable properties of the paste for SSE-based 3D printing.
Collapse
|
4
|
Spósito L, Fortunato GC, de Camargo BAF, Ramos MADS, Souza MPCD, Meneguin AB, Bauab TM, Chorilli M. Exploiting drug delivery systems for oral route in the peptic ulcer disease treatment. J Drug Target 2021; 29:1029-1047. [PMID: 33729081 DOI: 10.1080/1061186x.2021.1904249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptic ulcer disease (PUD) is a common condition that is induced by acid and pepsin causing lesions in the mucosa of the duodenum and stomach. The pathogenesis of PUD is a many-sided scenario, which involves an imbalance between protective factors, such as prostaglandins, blood flow, and cell renewal, and aggressive ones, like alcohol abuse, smoking, Helicobacter pylori colonisation, and the use of non-steroidal anti-inflammatory drugs. The standard oral treatment is well established; however, several problems can decrease the success of this therapy, such as drug degradation in the gastric environment, low oral bioavailability, and lack of vectorisation to the target site. In this way, the use of strategies to improve the effectiveness of these conventional drugs becomes interesting. Currently, the use of drug delivery systems is being explored as an option to improve the drug therapy limitations, such as antimicrobial resistance, low bioavailability, molecule degradation in an acid environment, and low concentration of the drug at the site of action. This article provides a review of oral drug delivery systems looking for improving the treatment of PUD.
Collapse
Affiliation(s)
- Larissa Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | | | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
5
|
Jia W, Kharraz JA, Guo J, An AK. Superhydrophobic (polyvinylidene fluoride-co-hexafluoropropylene)/ (polystyrene) composite membrane via a novel hybrid electrospin-electrospray process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Henriques PC, Costa LM, Seabra CL, Antunes B, Silva-Carvalho R, Junqueira-Neto S, Maia AF, Oliveira P, Magalhães A, Reis CA, Gartner F, Touati E, Gomes J, Costa P, Martins MCL, Gonçalves IC. Orally administrated chitosan microspheres bind Helicobacter pylori and decrease gastric infection in mice. Acta Biomater 2020; 114:206-220. [PMID: 32622054 DOI: 10.1016/j.actbio.2020.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Persistent Helicobacter pylori (H. pylori) infection is related to 90% of gastric cancers. With bacterial resistance rising and treatment inefficiency affecting 15% of the patients, alternative treatments urge. Chitosan microspheres (ChMics) have been proposed as an H. pylori-binding system. This work evaluates ChMics biocompatibility, mucopenetration and capacity to treat H. pylori infection in mice after oral administration. ChMics of different size (XL, ∼120 µm and XS, ∼40 µm) and degree of acetylation (6% and 16%) were developed and revealed to be able to adhere both human and mouse-adapted H. pylori strains without cytotoxicity towards human gastric cells. Ex vivo studies showed that smaller (XS) microspheres penetrate further within the gastric foveolae, suggesting their ability to reach deeply adherent bacteria. In vivo assays showed 88% reduction of infection when H. pylori-infected mice (C57BL/6) were treated with more mucoadhesive XL6 and XS6 ChMics. Overall, ChMics clearly demonstrate ability to reduce H. pylori gastric infection in mice, with chitosan degree of acetylation being a dominant factor over microspheres' size on H. pylori removal efficiency. These results evidence the strong potential of this strategy as an antibiotic-free approach to fight H. pylori infection, where microspheres are orally administered, bind H. pylori in the stomach, and remove them through the gastrointestinal tract. STATEMENT OF SIGNIFICANCE: Approximately 90% of gastric cancers are caused by the carcinogenic agent Helicobacter pylori, which infects >50% of the world population. Bacterial resistance, reduced antibiotic bioavailability, and the intricate distribution of bacteria in mucus and within gastric foveolae hamper the success of most strategies to fight H. pylori. We demonstrate that an antibiotic-free therapy based on bare chitosan microspheres that bind and remove H. pylori from stomach can achieve 88% reduction of infection from H. pylori-infected mice. Changing size and mucoadhesive properties, microspheres can reach different areas of gastric mucosa: smaller and less mucoadhesive can penetrate deeper into the foveolae. This promising, simple and inexpensive strategy paves the way for a faster bench-to-bedside transition, therefore holding great potential for clinical application.
Collapse
Affiliation(s)
- Patrícia C Henriques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Lia M Costa
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Catarina L Seabra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Bernardo Antunes
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ricardo Silva-Carvalho
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Susana Junqueira-Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Oliveira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fátima Gartner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015, Paris, France
| | - Joana Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Paulo Costa
- UCIBIO/REQUIMTE, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4150-755 Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Inês C Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
7
|
Morais AÍS, Vieira EG, Afewerki S, Sousa RB, Honorio LMC, Cambrussi ANCO, Santos JA, Bezerra RDS, Furtini JAO, Silva-Filho EC, Webster TJ, Lobo AO. Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters. J Funct Biomater 2020; 11:jfb11010004. [PMID: 31952157 PMCID: PMC7151563 DOI: 10.3390/jfb11010004] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Microparticles (MPs) with controlled morphologies and sizes have been investigated by several researchers due to their importance in pharmaceutical, ceramic, cosmetic, and food industries to just name a few. In particular, the electrospray (ES) technique has been shown to be a viable alternative for the development of single particles with different dimensions, multiple layers, and varied morphologies. In order to adjust these properties, it is necessary to optimize different experimental parameters, such as polymer solvent, voltage, flow rate (FR), type of collectors, and distance between the collector and needle tip, which will all be highlighted in this review. Moreover, the influence and contributions of each of these parameters on the design and fabrication of polymeric MPs are described. In addition, the most common configurations of ES systems for this purpose are discussed, for instance, the main configuration of an ES system with monoaxial, coaxial, triaxial, and multi-capillary delivery. Finally, the main types of collectors employed, types of synthesized MPs and their applications specifically in the pharmaceutical and biomedical fields will be emphasized. To date, ES is a promising and versatile technology with numerous excellent applications in the pharmaceutical and biomaterials field and such MPs generated should be employed for the improved treatment of cancer, healing of bone, and other persistent medical problems.
Collapse
Affiliation(s)
- Alan Í. S. Morais
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Ewerton G. Vieira
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women’s Hospital, Cambridge, MA 02139, USA;
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA 02139, USA
| | - Ricardo B. Sousa
- Federal Institute of Education, Science and Technology of Tocantins, Dianápolis Campus, IFTO, Dianápolis 77300-000, Tocantins, Brazil;
| | - Luzia M. C. Honorio
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Anallyne N. C. O. Cambrussi
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Jailson A. Santos
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Josy A. O. Furtini
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Anderson O. Lobo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
- Correspondence: ; Tel.: +55-86-3237-1057
| |
Collapse
|
8
|
Li Z, Zeng R, Yang L, Ren X, Maffucci KG, Qu Y. Development and Characterization of PCL Electrospun Membrane-Coated Bletilla striata Polysaccharide-Based Gastroretentive Drug Delivery System. AAPS PharmSciTech 2020; 21:66. [PMID: 31932983 DOI: 10.1208/s12249-019-1607-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to investigate the potential of Bletilla striata polysaccharide (BSP, a natural glucomannan material) for the development of a gastroretentive drug delivery system for the first time. Novel BSP-based porous wafer was prepared for levofloxacin hydrochloride (LFH) delivery by combining floating, swelling, and mucoadhesion mechanisms. The influences of BSP and ethyl cellulose (EC) on drug release and mucoadhesive strength were studied by 32 factorial design. The optimized matrix was coated with polycaprolactone (PCL) electrospun membrane by electrospinning and heat treatment technology. The optimized formula (F6, coated) exhibited Q4 h of 41.20 ± 1.90%, Q8 h of 76.49 ± 1.69%, and mucoadhesive strength of 86.11 ± 1.33 gf, and its drug release profile most closely resembled the Korsmeyer-Peppas model with anomalous diffusion driving mechanism. F6 (coated) also presented excellent buoyancy, preferred swelling characteristic due to the porous structure formed by freeze-drying. Meanwhile, the internal morphology, physical state, drug-excipient compatibility, and thermal behavior were recorded. The negligible cytotoxicity of F6 (coated) was observed in human gastric epithelial cell cultures. In the in vitro antimicrobial experiment, the prepared wafer exhibited obvious bacterial inhibition zone, and due to its longer gastric retention, the wafer also performed a more effective Helicobacter pylori clearance than free LFH in vivo. Graphical abstract.
Collapse
|
9
|
Development of Gabapentin Expandable Gastroretentive Controlled Drug Delivery System. Sci Rep 2019; 9:11675. [PMID: 31406203 PMCID: PMC6690886 DOI: 10.1038/s41598-019-48260-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Expandable drug delivery systems are one of many gastroretentive delivery systems which have emerged during the last few years. Expandable systems are usually folded in a capsule and expand to dimensions greater than the pyloric sphincter upon contact with gastric fluid. This prevents them from being evacuated by gastric emptying. The main objective of developing such systems is to increase the residence time of a specific drug in stomach; controlling its release, increasing its bioavailability and decreasing its side effects and dosing frequency. An expandable gastroretentive drug delivery system containing Gabapentin was developed using experimental design (D-optimal reduced quadratic design). This system was able to unfold at stomach pH in less than 15 minutes and obtain a controlled release of 78.1 ± 4.7% in 6 hours following zero-order release kinetic model. It is rigid in stomach and its rigidity decreases at intestinal pH. FTIR analysis indicated the occurrence of hydrogen bonding in Gabapentin when present in the developed system, which might be responsible for the drug’s controlled release. XRD analysis indicated that Gabapentin physical properties changed from crystalline in the typical state to amorphous in the developed system.
Collapse
|
10
|
Treesinchai S, Puttipipatkhachorn S, Pitaksuteepong T, Sungthongjeen S. Development of curcumin floating beads with low density materials and solubilizers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Cheng Z, Chen X, Zhai D, Gao F, Guo T, Li W, Hao S, Ji J, Wang B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnology 2018; 16:24. [PMID: 29554910 PMCID: PMC5858146 DOI: 10.1186/s12951-018-0353-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/02/2022] Open
Abstract
Background Nanotechnology-based drug delivery systems have been widely used for oral and systemic dosage forms delivery depending on the mucoadhesive interaction, and keratin has been applied for biomedical applications and drug delivery. However, few reports have focused on the keratin-based mucoadhesive drug delivery system and their mechanisms of mucoadhesion. Thus, the mucoadhesion controlled kerateine (reduced keratin, KTN)/keratose (oxidized keratin, KOS) composite nanoparticles were prepared via adjusting the proportion of KTN and KOS to achieve controlled gastric mucoadhesion and drug release based on their different mucoadhesive abilities and pH-sensitive properties. Furthermore, the mechanisms of mucoadhesion for KTN and KOS were also investigated in the present study. Results The composite keratin nanoparticles (KNPs) with different mass ratio of KTN to KOS, including 100/0 (KNP-1), 75/25 (KNP-2), 50/50 (KNP-3), and 25/75 (KNP-4), displayed different drug release rates and gastric mucoadhesion capacities, and then altered the drug pharmacokinetic performances. The stronger mucoadhesive ability of nanoparticle could supply longer gastric retention time, indicating that KTN displayed a stronger mucoadhesion than that of KOS. Furthermore, the mechanisms of mucoadhesion for KTN and KOS at different pH conditions were also investigated. The binding between KTN and porcine gastric mucin (PGM) is dominated by electrostatic attractions and hydrogen bondings at pH 4.5, and disulfide bonds also plays a key role in the interaction at pH 7.4. While, the main mechanisms of KOS and PGM interactions are hydrogen bondings and hydrophobic interactions in pH 7.4 condition and were hydrogen bondings at pH 4.5. Conclusions The resulting knowledge offer an efficient strategy to control the gastric mucoadhesion and drug release of nano drug delivery systems, and the elaboration of mucoadhesive mechanism of keratins will enable the rational design of nanocarriers for specific mucoadhesive drug delivery. Electronic supplementary material The online version of this article (10.1186/s12951-018-0353-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030, China
| | - Dongliang Zhai
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030, China
| | - Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China. .,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China.
| | - Jingou Ji
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China. .,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China. .,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
12
|
Nohemann L, Almeida MPD, Ferrari PC. Floating ability and drug release evaluation of gastroretentive microparticles system containing metronidazole obtained by spray drying. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000115218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Formulation development and evaluation of a novel bi-dependent clarithromycin gastroretentive drug delivery system using Box-Behnken design. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Modification of drug delivery to improve antibiotic targeting to the stomach. Ther Deliv 2016; 6:741-62. [PMID: 26149788 DOI: 10.4155/tde.15.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The obstacles to the successful eradication of Helicobacter pylori infections include the presence of antibiotic-resistant bacteria and therapy requiring multiple drugs with complicated dosing schedules. Other obstacles include bacterial residence in an environment where high antibiotic concentrations are difficult to achieve. Biofilm production by the bacteria is an additional challenge to the effective treatment of this infection. Conventional oral formulations used in the treatment of this infection have a short gastric residence time, thus limiting the duration of exposure of drug to the bacteria. This review summarizes the current research in the development of gastroretentive formulations and the prospective future applications of this approach in the targeted delivery of drugs such as antibiotics to the stomach.
Collapse
|
15
|
Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm 2016; 510:144-58. [PMID: 27173823 DOI: 10.1016/j.ijpharm.2016.05.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Abstract
In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.
Collapse
|
16
|
Chakravarty R, Hong H, Cai W. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Curr Drug Targets 2016; 16:592-609. [PMID: 25182469 DOI: 10.2174/1389450115666140902125657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called 'image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for the treatment of cancer but might also find utility in the management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
17
|
Verma A, Dubey J, Hegde RR, Rastogi V, Pandit JK. Helicobacter pylori: past, current and future treatment strategies with gastroretentive drug delivery systems. J Drug Target 2016; 24:897-915. [DOI: 10.3109/1061186x.2016.1171326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Jing ZW, Jia YY, Wan N, Luo M, Huan ML, Kang TB, Zhou SY, Zhang BL. Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to Helicobacter pylori. Biomaterials 2016; 84:276-285. [DOI: 10.1016/j.biomaterials.2016.01.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
|
19
|
Kim SY, Choi DJ, Chung JW. Antibiotic treatment for Helicobacter pylori: Is the end coming? World J Gastrointest Pharmacol Ther 2015; 6:183-198. [PMID: 26558152 PMCID: PMC4635158 DOI: 10.4292/wjgpt.v6.i4.183] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 08/01/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Infection with the Gram-negative pathogen Helicobacter pylori (H. pylori) has been associated with gastro-duodenal disease and the importance of H. pylori eradication is underscored by its designation as a group I carcinogen. The standard triple therapy consists of a proton pump inhibitor, amoxicillin and clarithromycin, although many other regimens are used, including quadruple, sequential and concomitant therapy regimens supplemented with metronidazole, clarithromycin and levofloxacin. Despite these efforts, current therapeutic regimens lack efficacy in eradication due to antibiotic resistance, drug compliance and antibiotic degradation by the acidic stomach environment. Antibiotic resistance to clarithromycin and metronidazole is particularly problematic and several approaches have been proposed to overcome this issue, such as complementary probiotic therapy with Lactobacillus. Other studies have identified novel molecules with an anti-H. pylori effect, as well as tailored therapy and nanotechnology as viable alternative eradication strategies. This review discusses current antibiotic therapy for H. pylori infections, limitations of this type of therapy and predicts the availability of newly developed therapies for H. pylori eradication.
Collapse
|
20
|
Hao S, Wang B, Wang Y. Porous hydrophilic core/hydrophobic shell nanoparticles for particle size and drug release control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:51-57. [DOI: 10.1016/j.msec.2014.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/17/2014] [Accepted: 12/05/2014] [Indexed: 01/29/2023]
|
21
|
Density-dependent gastroretentive microparticles motion in human gastric emptying studied using computer simulation. Eur J Pharm Sci 2015; 70:72-81. [PMID: 25640913 DOI: 10.1016/j.ejps.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/19/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022]
Abstract
Density-dependent gastroretentive drug delivery systems have been used to prolong the gastric retention time of drugs since the 1960s. The design of density-dependent gastroretentive dosage forms, however, usually focuses on specific parameters rather than combines with the fluid dynamics of dosage form in the gastric emptying. Therefore, the purpose of the present study was to develop a 2-D model of multiple-phase flows for the simulation of gastric emptying and gastroretentive microparticles motion, and the influence of microparticle density, microparticle viscosity, and gastric juice viscosity on the gastric retention were studied. The recirculating flows, formed in the gastric emptying, could mix the conventional-density microparticles and transport them to the pylorus. However, the low-density microparticles remained floating on the surface of gastric juice, while the high-density microparticles could sink and deposit in the bottom of the stomach. The remaining integral area of microparticles was higher than 90% after 18.33min of simulation when the density of microparticles was lower than 550kg/m(3) or higher than 2500kg/m(3), which was higher compared to conventional-density microparticles (67.05%). These results are in good agreement with experimental data previously reported. In addition, the viscosity of microparticle and gastric juice also influenced the remaining integral area of gastroretentive microparticles. This study shows that the multiple-phase computational fluid dynamics models could provide detailed insights into the fluid dynamics of density-dependent gastroretentive microparticles in gastric emptying, which offers a powerful tool to further understand the mechanism of gastric retention for gastroretentive dosage forms and study the influence of different parameters on their ability for gastric retention.
Collapse
|
22
|
Hao S, Wang B, Wang Y. Researching the dose ratio in a controlled release multiple-drug delivery system: using combination therapy with porous microparticles for the treatment of Helicobacter pylori infection. J Mater Chem B 2015; 3:417-431. [DOI: 10.1039/c4tb01127a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triple-drug loaded porous gastroretentive microparticles were prepared to treat Helicobacter pylori infection, and the mass ratios of the released drugs were in accordance with that in a triple therapy regimen.
Collapse
Affiliation(s)
- Shilei Hao
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400030
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400030
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400030
| |
Collapse
|
23
|
Goganian AM, Hamishehkar H, Arsalani N, Khiabani HK. Microwave-Promoted Synthesis of Smart Superporous Hydrogel for the Development of Gastroretentive Drug Delivery System. ADVANCES IN POLYMER TECHNOLOGY 2014. [DOI: 10.1002/adv.21490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amir Mohammad Goganian
- Research Laboratory of Polymer, Department of Organic and Biochemistry; Faculty of Chemistry, University of Tabriz; Tabriz Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry; Faculty of Chemistry, University of Tabriz; Tabriz Iran
| | - Hanie Khaksar Khiabani
- Research Laboratory of Polymer, Department of Organic and Biochemistry; Faculty of Chemistry, University of Tabriz; Tabriz Iran
| |
Collapse
|
24
|
Seremeta KP, Höcht C, Taira C, Cortez Tornello PR, Abraham GA, Sosnik A. Didanosine-loaded poly(epsilon-caprolactone) microparticles by a coaxial electrohydrodynamic atomization (CEHDA) technique. J Mater Chem B 2014; 3:102-111. [PMID: 32261930 DOI: 10.1039/c4tb00664j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The goal of this study was to investigate the electrohydrodynamic atomization (EHDA) technology to encapsulate the water-soluble antiretroviral didanosine (ddI) within poly(epsilon-caprolactone) (PCL) particles and stabilize it in the gastric medium where it undergoes fast degradation. A preliminary study employing a one-needle setup enabled the adjustment of the critical process parameters. Then, a configuration of two concentric needles named coaxial electrohydrodynamic atomization (CEHDA) led to the formation of ddI-loaded PCL microcapsules. Scanning electron microscopy analysis showed that the microparticles were spherical and with narrow size distribution. Attenuated total reflectance/Fourier transform infrared spectroscopy confirmed that most of the drug was efficiently encapsulated within the particles, whereas differential scanning calorimetry and X-ray powder diffraction revealed that the drug was preserved mainly in crystalline form. The loading capacity was relatively high (approximately 12% w/w), and the encapsulation efficiency was approximately 100%. In vitro release assays (PBS pH = 7.4) indicated that ddI was released almost completely within 2 h. Moreover, the delayed release was expected to isolate ddI from the biological fluids during the gastric transit. Finally, pharmacokinetics studies in rats showed that ddI-loaded particles lead to a statistically significant increase of the oral bioavailability of almost 4 times and a 2-fold prolongation of the half-life with respect to a ddI aqueous solution, supporting the use of CEHDA as a promising reproducible, scalable and cost-viable technology to encapsulate water-soluble drugs within polymeric particles.
Collapse
Affiliation(s)
- Katia P Seremeta
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Lopes D, Nunes C, Martins MCL, Sarmento B, Reis S. Eradication of Helicobacter pylori: Past, present and future. J Control Release 2014; 189:169-86. [PMID: 24969353 DOI: 10.1016/j.jconrel.2014.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is the major cause of chronic gastritis and peptic ulcers. Since the classification as a group 1 carcinogenic by International Agency for Research on Cancer, the importance of the complete H. pylori eradication has obtained a novel meaning. Hence, several studies have been made in order to deepen the knowledge in therapy strategies. However, the current therapy presents unsatisfactory eradication rates due to the lack of therapeutic compliance, antibiotic resistance, the degradation of antibiotics at gastric pH and their insufficient residence time in the stomach. Novel approaches have been made in order to overcome these limitations. The purpose of this review is to provide an overview about the current therapy and its limitations, while highlighting the possibility of using micro- and nanotechnology to develop gastric drug delivery systems, overcoming these difficulties in the future.
Collapse
Affiliation(s)
- Daniela Lopes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Cláudia Nunes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IINFACTS - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Superior de Ciências da Saúde-Norte, Gandra-PRD, Portugal
| | - Salette Reis
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|