1
|
Volkova T, Simonova O, Perlovich G. Modulation of Distribution and Diffusion through the Lipophilic Membrane with Cyclodextrins Exemplified by a Model Pyridinecarboxamide Derivative. Pharmaceutics 2023; 15:pharmaceutics15051531. [PMID: 37242773 DOI: 10.3390/pharmaceutics15051531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The main aims of the study were to disclose the influence of the structure on the solubility, distribution and permeability of the parent substances, iproniazid (IPN), isoniazid (INZ) and isonicotinamide (iNCT), at 310.2 K and to evaluate how the presence of cyclodextrins (2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and methylated β-cyclodextrin (M-β-CD)) affects the distribution behavior and diffusion properties of a model pyridinecarboxamide derivative, iproniazid (IPN). The following order of decreasing the distribution and permeability coefficients was estimated: IPN > INZ > iNAM. A slight reduction of the distribution coefficients in the 1-octanol/buffer pH 7.4 and n-hexane/buffer pH 7.4 systems (more pronounced in the first system) was revealed. The extremely weak IPN/cyclodextrins complexes were estimated from the distribution experiments: KC(IPN/HP-β-CD) > KC(IPN/M-β-CD). The permeability coefficients of IPN through the lipophilic membrane-the PermeaPad barrier-were also measured with and without cyclodextrins in buffer solution. Permeability of iproniazid was increased in the presence of M-β-CD and reduced by HP-β-CD.
Collapse
Affiliation(s)
- Tatyana Volkova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - Olga Simonova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - German Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| |
Collapse
|
2
|
Development and Characterization of Cyclodextrin-Based Nanogels as a New Ibuprofen Cutaneous Delivery System. Pharmaceutics 2022; 14:pharmaceutics14122567. [PMID: 36559061 PMCID: PMC9788478 DOI: 10.3390/pharmaceutics14122567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Nanogels combine the properties of hydrogels and nanocarrier systems, resulting in very effective drug delivery systems, including for cutaneous applications. Cyclodextrins (CDs) have been utilised to enhance the nanogels' loading ability towards poorly soluble drugs and promote/sustain drug release. However, formation of CD-based nanogels requires the use of specially modified CDs, or of crosslinking agents. The aim of this work was to develop a CD-based nanogel to improve the cutaneous delivery of ibuprofen by using the soluble β-cyclodextrin/epichlorohydrin polymer (EPIβCD) without adding any potentially toxic crosslinker. The use of EPIβCD enabled increasing ibuprofen loading due to its complexing/solubilizing power towards the poorly soluble drug and prolonging drug release over time due to the nanogel formation. DLS analysis proved that EPIβCD allowed the formation of nanostructures ranging from 60 up to 400 nm, depending on the gelling agent type and the gel preparation method. EPIβCD replacement with monomeric HPβCD did not lead in any case to nanogel formation. Permeation experiments using skin-simulating artificial membranes proved that the EPIβCD-based nanogel enhanced ibuprofen solubility and release, increasing its permeation rate up to 3.5 times, compared to a reference formulation without CD and to some commercial gel formulations, and also assured a sustained release. Moreover, EPIβCD replacement with HPβCD led to a marked increase in drug solubility and initial release rate, but did not provide a prolonged release due to the lack of a nano-matrix structure controlling drug diffusion.
Collapse
|
3
|
Nasr AM, Moftah F, Abourehab MAS, Gad S. Design, Formulation, and Characterization of Valsartan Nanoethosomes for Improving Their Bioavailability. Pharmaceutics 2022; 14:2268. [PMID: 36365087 PMCID: PMC9696396 DOI: 10.3390/pharmaceutics14112268] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/06/2023] Open
Abstract
The objective of this study was to formulate and evaluate valsartan (VLT) ethosomes to prepare an optimized formula of VLT-entrapped ethosomes that could be incorporated into a sustained release transdermal gel dosage form. The formulation of the prepared ethosomal gel was investigated and subjected to in vitro drug release studies, ex vivo test, and in vivo studies to assess the effectiveness of ethosomal formulation in enhancing the bioavailability of VLT as a poorly soluble drug and in controlling its release from the transdermal gel dosage form. The acquired results are as follows: Dependent responses were particle size, polydispersity index, zeta potential, and entrapment efficiency. The optimized VLT-ETHs had a nanometric diameter (45.8 ± 0.5 nm), a negative surface charge (-51.4 ± 6.3 mV), and a high drug encapsulation (94.24 ± 0.2). The prepared VLT ethosomal gel (VLT-ethogel) showed a high peak plasma concentration and enhanced bioavailability in rats compared with the oral solution of valsartan presented in the higher AUC (0-∞). The AUC (0-∞) with oral treatment was 7.0 ± 2.94 (μg.h/mL), but the AUC (0-∞) with topical application of the VAL nanoethosomal gel was 137.2 ± 49.88 (μg.h/mL), providing the sustained release pattern of VLT from the tested ethosomal gel.
Collapse
Affiliation(s)
- Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Fayrouz Moftah
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish 45511, Egypt
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Jiang D, Jiang Y, Wang K, Wang Z, Pei Y, Wu J, He C, Mo X, Wang H. Binary ethosomes-based transdermal patches assisted by metal microneedles significantly improve the bioavailability of carvedilol. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bimodal Release Two-In-One Clonazepam Matrix Lozenge Tablets for Managing Anxiety-Related Disorders: Formulation, Optimization and In Vivo Evaluation. Sci Pharm 2022. [DOI: 10.3390/scipharm90030043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clonazepam (CLZ), an antipsychotic drug reported for its efficiency in managing anxiety-related disorders, is being marketed only as conventional tablets. Some patients have abstention to swallow the conventional tablets; therefore, the proposed study was aimed at developing a buccal lozenge tablet by direct compression of two types of optimized granules. Conazepam’s water solubility was first enhanced by a solid dispersion technique for a fast and better dissolution of type 1 granules, while the impact of gelling polymers was investigated on controlled-release type 2 granules. The optimized formulae met the acceptable pharmacopeial limits for tablets’ evaluation. A differential scanning calorimetry study revealed the compatibility between the drug and used excipients. All formulae gave a burst release of CLZ in the first hour of investigation, followed by a sustained release over 24 h. The formula that showed the highest prolonged in vitro release (99.0 + 0.1%), following the Higuchi diffusion model (R2 = 0.99), was then selected for further study. The formula succeeded in controlling the induced stress in a rat model with a significant impact on the behavioral tests throughout the experiment. The results were further confirmed by a pharmacokinetic study that showed a significant increase in Cmax, Tmax, and AUC (1.5, 2, and 3.9 folds), respectively, compared to oral suspension. The newly proposed delivery system has proven a better efficacy with a reduced dosing frequency.
Collapse
|
6
|
Asghar A, Aamir MN, Sheikh FA, Ahmad N, Alotaibi NF, Bukhari SNA. Preparation, Characterization of Pregabalin and Withania coagulans Extract-Loaded Topical Gel and Their Comparative Effect on Burn Injury. Gels 2022; 8:gels8070402. [PMID: 35877487 PMCID: PMC9318109 DOI: 10.3390/gels8070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
The current study depicts the comparative effects of nanogel using Withania coagulans extract, pregabalin alone, and a co-combination gel. The gels prepared were then analyzed for conductivity, viscosity, spread ability, globule size, zeta potential, polydispersity index, and TEM. The globule size of the co-combination gel, determined by zeta sizer, was found to be (329 ± 0.573 nm). FTIR analysis confirms the successful development of gel, without any interaction. Drug distribution at the molecular level was confirmed by XRD. DSC revealed no bigger thermal changes. TEM images revealed spherical molecules with sizes of 200 nm for the co-combination gel. In vivo studies were carried out by infliction of third degree burn wounds on rat skin, and they confirmed that pregabalin and Withania coagulans heals the wound more effectively, with a wound contraction rate of 89.95%, compared to remaining groups. Anti-inflammatory activity (IL-6 and TNF-α), determined by the ELISA technique, shows that the co-combination gel group reduces the maximum inflammation with TNF-α value (132.2 pg/mL), compared to the control (140.22 pg/mL). Similarly, the IL-6 value was found to be (78 pg/mL) for the co-combination gel and (81 pg/mL) in the case of the control. Histopathologically, the co-combination gel heals wounds more quickly, compared to individual gel. These outcomes depict that a co-combination gel using plant extracts and drugs can be successfully used to treat burn injury.
Collapse
Affiliation(s)
- Anam Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: or
| | | | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
7
|
Abdulla NA, Balata GF, El-ghamry HA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharm J 2022; 29:1466-1485. [PMID: 35002385 PMCID: PMC8720818 DOI: 10.1016/j.jsps.2021.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Limited solubility and hepatic first-pass metabolism are the main causes of low bioavailability of anti-schizophrenic drug, Clozapine (CZP). The objective of the study was to develop and validate nanoemulsion (NE) based in-situ gel of CZP for intranasal administration as an approach for bioavailability enhancement. Solubility of CZP was initially investigated in different oils, surfactants and co-surfactants, then pseudoternary phase diagrams were constructed to select the optimized ratio of oil, surfactant and co-surfactant. Clear and transparent NE formulations were characterized in terms of droplet size, viscosity, solubilization capacity, transmission electron microscopy, in-vitro drug release and compatibility studies. Selected NEs were incorporated into different in-situ gel bases using combination of two thermosensitive polymers; Pluronic® F-127 (PF127) and F-68 (PF68). NE-based gels (NG) were investigated for gelation temperature, viscosity, gel strength, spreadability and stability. Moreover, selected NGs were evaluated for ex-vivo permeation, mucoadhesive strength and nasal ciliotoxicity. Peppermint oil, tween 80 and transcutol P were chosen for NE preparation owing to their maximum CZP solubilization. Clear NE points extrapolated from tween 80:transcutol P (1:1) phase diagram and passed dispersibility and stability tests, demonstrated globule size of 67.99 to 354.96 nm and zeta potential of −12.4 to −3.11 mV with enhanced in-vitro CZP release (>90% in some formulations). After incorporation of the selected N3 and N9 formulations of oil:Smix of 1:7 and 2:7, respectively to a mixture of PF127 and PF68 (20:2% w/w), the resultant NG formulations exhibited optimum gelation temperature and viscosity with enhanced CZP permeation and retention through sheep nasal mucosa. Ciliotoxicity examinations of the optimum NGs displayed no inflammation or damage of the lining epithelium and the underlying cells of the nasal mucosa. In conclusion, NE-based gels may be a promising dosage form of CZP for schizophrenia treatment.
Collapse
Affiliation(s)
- Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Corresponding author.
| | - Gehan F. Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hanaa A. El-ghamry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Fernández-Romero AM, Maestrelli F, García-Gil S, Talero E, Mura P, Rabasco AM, González-Rodríguez ML. Preparation, Characterization and Evaluation of the Anti-Inflammatory Activity of Epichlorohydrin-β-Cyclodextrin/Curcumin Binary Systems Embedded in a Pluronic ®/Hyaluronate Hydrogel. Int J Mol Sci 2021; 22:13566. [PMID: 34948364 PMCID: PMC8709285 DOI: 10.3390/ijms222413566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Curcumin (Cur) is an anti-inflammatory polyphenol that can be complexed with polymeric cyclodextrin (CD) to improve solubility and bioavailability. The aim of the present work was to prepare a CurCD hydrogel to treat inflammatory skin conditions. Epichlorohydrin-β-CD (EpiβCD) was used as polymeric CD. To characterize the binary system, solid-state and in-solution studies were performed. Afterwards, an experimental design was performed to optimize the hydrogel system. Finally, the CurEpiβCD hydrogel system was tested for anti-inflammatory activity using a HaCat psoriasis cell model. Co-grinded Cur/EpiβCD binary system showed a strong interaction and Curcumin solubility was much improved. Its combination with Pluronic® F-127/hyaluronate hydrogel demonstrated an improvement in release rate and Curcumin permeation. After testing its anti-inflammatory activity, the system showed a significant reduction in IL-6 levels. Hydrogel-containing CurEpiβCD complex is a great alternative to treat topical inflammatory diseases.
Collapse
Affiliation(s)
- Ana-María Fernández-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| | - Francesca Maestrelli
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (P.M.)
| | - Sara García-Gil
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (S.G.-G.); (E.T.)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (S.G.-G.); (E.T.)
| | - Paola Mura
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (P.M.)
| | - Antonio M. Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| |
Collapse
|
9
|
Loftsson T. 1,4-Benzodiazepines: Chemical stability and cyclodextrin solubilization. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Mura P, Maestrelli F, Cirri M, Nerli G, Di Cesare Mannelli L, Ghelardini C, Mennini N. Improvement of Butamben Anesthetic Efficacy by the Development of Deformable Liposomes Bearing the Drug as Cyclodextrin Complex. Pharmaceutics 2021; 13:pharmaceutics13060872. [PMID: 34204807 PMCID: PMC8231615 DOI: 10.3390/pharmaceutics13060872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
This work was aimed at enhancing butamben (BTB) anesthetic efficacy by the "drug-in cyclodextrin (CD)-in deformable liposomes" strategy. In the study, phase-solubility studies with natural (α-, β-, γ-) and derivative (hydroxypropyl-α-and β-, sulfobutylether-β, methyl-β) CDs evidenced the highest BTB affinity for βCD and its derivatives and indicated methyl-βCD (RAMEB) as the best carrier. Drug-RAMEB complexes were prepared by different techniques and were characterized for solid-state and dissolution properties. The best BTB-RAMEB product was chosen for entrapment in the aqueous core of deformable liposomes containing stearylamine, either alone or with sodium cholate, as edge activators. Double-loaded (DL) liposomes, bearing the lipophilic drug (0.5% w/v) in the bilayer and its hydrophilic RAMEB complex (0.5% w/v) in the aqueous core, were compared to single-loaded (SL) liposomes bearing 1% w/v plain drug in the bilayer. All vesicles showed homogeneous dimensions (i.e., below 300 nm), high deformability, and excellent entrapment efficiency. DL-liposomes were more effective than SL ones in limiting drug leakage (<5% vs. >10% after a 3 months storage at 4 °C). In vivo experiments in rabbits proved that all liposomal formulations significantly (p < 0.05) increased the intensity and duration of drug anesthetic action compared to its hydroalcoholic solution; however, DL liposomes were significantly (p < 0.05) more effective than SL ones in prolonging BTB anesthetic effect, owing to the presence of the drug-RAMEB complex in the vesicle core, acting as a reservoir. DL liposomes containing both edge activators were found to have the best performance.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Marzia Cirri
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Giulia Nerli
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Natascia Mennini
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (P.M.); (F.M.); (M.C.); (G.N.)
- Correspondence: ; Tel.: +39-055-4573710
| |
Collapse
|
11
|
Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J Nanobiotechnology 2021; 19:100. [PMID: 33836744 PMCID: PMC8035747 DOI: 10.1186/s12951-021-00833-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. Results The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of − 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. Conclusions Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00833-4.
Collapse
|
12
|
Patel RJ, Parikh RH. Intranasal delivery of topiramate nanoemulsion: Pharmacodynamic, pharmacokinetic and brain uptake studies. Int J Pharm 2020; 585:119486. [DOI: 10.1016/j.ijpharm.2020.119486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
|
13
|
Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm 2020; 579:119181. [PMID: 32112928 DOI: 10.1016/j.ijpharm.2020.119181] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Complexation with cyclodextrins (CDs) has been widely and successfully used in pharmaceutical field, mainly for enhancing solubility, stability and bioavailability of a variety of drugs. However, some important drawbacks, including rapid removal from the bloodstream after in vivo administration, or possible replacement, in biological media, of the entrapped drug moieties by other molecules with higher affinity for the CD cavity, can limit the CDs effectiveness as drug carriers. This review is focused on combined strategies simultaneously exploiting CD complexation, and loading of the complexed drug into various colloidal carriers (liposomes, niosomes, polymeric nanoparticles, lipid nanoparticles, nanoemulsions, micelles) which have been investigated as a possible means for circumventing the problems associated with both such carriers, when used separately, and join their relative benefits in a unique delivery system. Several examples of applications have been reported, to illustrate the possible advantages achievable by such a dual strategy, depending on the CD-nanocarrier combination, and mainly resulting in enhanced performance of the delivery system and improved biopharmaceutical properties and therapeutic efficacy of drugs. The major problems and/or drawbacks found in the development of such systems, as well as the (rare) case of failures in achieving the expected improvements have also been highlighted.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, Florence University, via Schiff 6, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
14
|
Neupane R, Boddu SH, Renukuntla J, Babu RJ, Tiwari AK. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020; 12:E152. [PMID: 32070011 PMCID: PMC7076422 DOI: 10.3390/pharmaceutics12020152] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
: The transdermal route of drugs has received increased attention in recent years due to numerous advantages over the oral and injectable routes, such as avoidance of the hepatic metabolism, protection of drugs from the gastrointestinal tract, sustained drug delivery, and good patient compliance. The assessment of ex vivo permeation during the pharmaceutical development process helps in understanding the product quality and performance of a transdermal delivery system. Generally, excised human skin relevant to the application site or animal skin is recommended for ex vivo permeation studies. However, the limited availability of the human skin and ethical issues surrounding the use of animal skin rendered these models less attractive in the permeation study. In the last three decades, enormous efforts have been put into developing artificial membranes and 3D cultured human skin models as surrogates to the human skin. This manuscript provides an insight on the European Medicines Agency (EMA) guidelines for permeation studies and the parameters affected when using Franz diffusion cells in the permeation study. The need and possibilities for skin alternatives, such as artificially cultured human skin models, parallel artificial membrane permeability assays (PAMPA), and artificial membranes for penetration and permeation studies, are comprehensively discussed.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (R.N.); (A.K.T.)
| | - Sai H.S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, UAE;
| | - Jwala Renukuntla
- Department of Pharmaceutical Sciences, School of Pharmacy, High Point University, High Point, NC 27240, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (R.N.); (A.K.T.)
| |
Collapse
|
15
|
Ha ES, Lee SK, Choi DH, Jeong SH, Hwang SJ, Kim MS. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00454-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 2019; 564:59-76. [DOI: 10.1016/j.ijpharm.2019.03.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/14/2023]
|
17
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
18
|
Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res 2018; 79:201-217. [PMID: 30188584 DOI: 10.1002/ddr.21452] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023]
Abstract
Cyclodextrins (CDs) have been widely investigated as a unique pharmaceutical excipient for past few decades and is still explored for new applications. They are highly versatile oligosaccharides which possess multifunctional characteristics, and are mainly used to improve the physicochemical stability, solubility, dissolution rate, and bioavailability of drugs. Stability constant, factors affecting complexation, techniques to enhance complexation efficiency, the preparation methods for molecular inclusion complexes and release of guest molecules are discussed in brief. In addition, different CD derivatives and their pharmacokinetics are elaborated. Further, the significance of CD complex in aqueous solubility, dissolution and bioavailability, stability, and taste masking is explained. The recent advancement of CDs in developing various drug delivery systems is enlightened. Indeed, the potential of CDs by means of inclusion complex formation have widen the applicability of these materials in various drug delivery systems including ocular, osmotic, mucoadhesive, transdermal, nasal, and targeted delivery systems. Feasibility studies have been performed on the benefit of these cyclic oligomers as nanocarriers, a strategy that can modify the drugs with improved physicochemical properties. Studies also demonstrated the feasibility of CDs to self-assemble in the form of stable nanoaggregates, which may extend the scope of CDs in drug delivery to the continually expanding list of new drug entities.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
19
|
Ibrahim TM, Abdallah MH, El-Megrab NA, El-Nahas HM. Transdermal ethosomal gel nanocarriers; a promising strategy for enhancement of anti-hypertensive effect of carvedilol. J Liposome Res 2018; 29:215-228. [PMID: 30272506 DOI: 10.1080/08982104.2018.1529793] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The current study was conducted to develop vesicular ethosomal gel (ethogel) systems for upgrading the transdermal delivery of anti-hypertensive carvedilol. Ethosomes composed of Phospholipon 100 H, cholesterol, ethanol, and Transcutol P at different ratios, were prepared by thin-film hydration method with sonication. Carvedilol-loaded ethosomes were characterized by microscopic examinations followed by other in-vitro assessments. Selected ethosomal formulation (E10) was incorporated into different concentrations of gelling agents to prepare the ethogel formulations. Ethogels were subjected to physicochemical characterization, compatibility, and in-vitro drug release studies. Ex-vivo skin permeation and retention studies were performed followed by in-vivo studies in induced hypertensive rats. The smooth ethosomes demonstrated vesicular size of 201.55-398.55 nm, entrapment efficiency of 30.00-90.66% and loading capacity of 7.64-43.04% with zeta potential range of -30.30 to -44.90 mV. The homogeneous ethogels exhibited appropriate results of pH and drug content measurements. Spreadability was observed as a function of viscosity as the latter increased, the former decreased. The ethogel formulation (G2) manifested satisfactory physical appearance, spreadability, viscosity, and in-vitro release. In comparison to pure carvedilol gel, tested formulations (E10 and G2) developed high ex-vivo permeation, steady-state flux and drug retention through skin layers. The in-vivo study of G2 formulation revealed a significant gradual decline (p < 0.01) in the mean arterial pressure of rats at the second hour of experiment (146.11 mmHg) with continuous significant decrease (p < 0.001) after 6 h (98.88 mmHg). In conclusion, ethogels as promising lipid carriers proved their potential to enhance skin permeation with extended anti-hypertensive action of carvedilol.
Collapse
Affiliation(s)
- Tarek M Ibrahim
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Zagazig University , Zagazig , Egypt
| | - Marwa H Abdallah
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Zagazig University , Zagazig , Egypt.,b Department of Pharmaceutics College of Pharmacy, Hail University , Hail , Kingdom of Saudi Arabia
| | - Nagia A El-Megrab
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Zagazig University , Zagazig , Egypt
| | - Hanan M El-Nahas
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Zagazig University , Zagazig , Egypt
| |
Collapse
|
20
|
|
21
|
El-Enin HA, AL-Shanbari AH. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharm J 2018; 26:790-800. [PMID: 30202219 PMCID: PMC6128721 DOI: 10.1016/j.jsps.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/02/2018] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Development of a new dosage-form of antiepileptic-drugs appropriated for children. METHODS Clonazepam (Cl) was formulated as cubosomal-gel (cub-gel) to be used as a patch reservoir through transdermal-route. Cubosomes prepared using glycerol-mono-oleate(GMO)/Pluronic-F127(PF127) mixture. An actual-statistical design was used to investigate the effect of different stabilizing agents (Ethanol and PVA) and surfactant concentration on cubosomes' particle size and entrapping-efficiency. The selected formulae were evaluated by testing particle-morphology, in vitro drug release and stability. Cub-gel was prepared using selected cubosome formulae. The optimal cub-gel subjected to in vitro dissolution, ex-vivo permeation and skin deposition studies followed by studying its pharmacological effect. RESULTS Using PVA or Et as stabilizers with PF127 significantly decreases the average cubosomes'PS (352 ± 2.8 and 264 ± 2.16 nm) and increases EE (58.97 ± 4.57% and 54.21 ± 3.89%). Cubosomes increase the initial release rate of Cl to ensure rapid therapeutic effect (37.39% and 46.04% in the first hour) followed by a prolonged release till 4 h. Cub-gel containing PVA showed significantly higher Cl-transdermal permeation when compared to Cl-suspension. Moreover, increases the retention-time (89.57% at 48 h) and skin-deposition up to 6-times. It also reduces the epileptic seizures and alters the behavioral parameters induced by pilocarpine. CONCLUSIONS Cubosomal-gel could be considered an innovative dosage-form for Cl through the transdermal route.
Collapse
Key Words
- Antiepileptic
- CNS, Central Nervous System
- Cl, Clonazepam
- Clonazepam
- Cubogels
- Cubosomes
- Cubs, cubosomes
- EE, entrapping efficiency
- Epilepsy
- Et, ethanol
- GMO, glycerol-mono-oleate
- I.P, Intraperitoneal injections
- PBS, phosphate buffer saline
- PCS, peripheral cholinergic signs
- PDI, polydispersity index
- PF127, Poloxamer 407
- PS, particle size
- PVA, polyvinyl alcohol
- SMS, stereotyped movements signs
- TDDS, Transdermal Drug Delivery System
Collapse
Affiliation(s)
- Hadel Abo El-Enin
- Pharmaceutics Department, National Organization of Drug Control and Research (NODCAR), Giza, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
22
|
Li Y, Wang D, Lu S, Zeng L, Wang Y, Song W, Liu J. Pramipexole nanocrystals for transdermal permeation: Characterization and its enhancement micro-mechanism. Eur J Pharm Sci 2018; 124:80-88. [PMID: 30076954 DOI: 10.1016/j.ejps.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/27/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to improve transdermal delivery of pramipexole via nanocrystals and investigate the enhancement micro-mechanism. Pramipexole nanocrystals were prepared using wet media milling method and incorporated into carbomer gel. In vitro permeation studies through rabbit ear skin indicated that the cumulative permeation amount of pramipexole from nanocrystals in 24 h was 2.75 times more than that from coarse suspension. Investigations of selective follicular closing technique indicated that approximately 33.88% of the total permeation from nanocrystals was contributed to the follicular pathway, which was confirmed by scanning electron microscopy images. In vitro permeation and in vivo pharmacokinetic studies indicated that pramipexole from nanocrystal gel showed a higher permeation profile than that from coarse suspension gel. Overall, nanocrystals could improve transdermal delivery of pramipexole through transepidermal and transfollicular pathways by the nanosized particles.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Danqing Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shan Lu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Lijuan Zeng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenting Song
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int J Pharm 2018; 536:345-352. [DOI: 10.1016/j.ijpharm.2017.11.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 11/19/2017] [Indexed: 11/22/2022]
|
24
|
Development and characterization of fast dissolving tablets of oxaprozin based on hybrid systems of the drug with cyclodextrins and nanoclays. Int J Pharm 2017; 531:640-649. [PMID: 28522425 DOI: 10.1016/j.ijpharm.2017.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 01/26/2023]
Abstract
Previous studies highlighted an increase of the randomly-methylated-ß-cyclodextrin (RAMEB) solubilizing power towards oxaprozin when used in combination with L-arginine (ARG) or sepiolite nanoclay (SV). Therefore, the aim of this work was to investigate the possibility of maximising the RAMEB solubilizing efficacy by a joined approach based on the entrapment in SV of the drug-RAMEB-ARG complex. The quaternary nanocomposite was prepared by different techniques and characterized for solid state and dissolution properties, compared to ternary drug combinations with RAMEB-ARG, RAMEB-SV or ARG-SV. The dissolution rank order was drug-RAMEB-ARG-SV>>drug-RAMEB-ARG≈drug-RAMEB-SV>>drug-ARG-SV. The new hybrid nanocomposite enabled an increase from 60 up to 90% of oxaprozin dissolution parameters compared to the ternary systems with RAMEB-ARG and RAMEB-SV. Moreover, the lowest solubilizing efficacy of ternary systems with ARG-SV evidenced the specific synergic effect of both ARG and SV with RAMEB in enhancing oxaprozin dissolution properties. The superior performance of the quaternary nanocomposite was maintained after incorporation in a tablet formulation. In vivo studies on rats proved that the developed fast-dissolving tablet formulation, containing oxaprozin as cofused system with RAMEB, ARG and SV was more effective than the marketed tablet in terms of faster and more intense pain relieving effect in the treatment of adjuvant-induced arthritis.
Collapse
|
25
|
Akhtar N, Verma A, Pathak K. Investigating the penetrating potential of nanocomposite β-cycloethosomes: development using central composite design, in vitro and ex vivo characterization. J Liposome Res 2016; 28:35-48. [DOI: 10.1080/08982104.2016.1254241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Moradabad, India, and
| | - Kamla Pathak
- Department of Pharmaceutics, Pharmacy College Saifai, Etawah, Uttar Pradesh, India
| |
Collapse
|
26
|
Mennini N, Cirri M, Maestrelli F, Mura P. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: Effect of cyclodextrin complexation. Int J Pharm 2016; 515:684-691. [PMID: 27825863 DOI: 10.1016/j.ijpharm.2016.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022]
Abstract
The combined strategy of drug-cyclodextrin (CD) complexation and complex loading into nanocarriers (deformable liposomes or nanostructured lipid carriers (NLC)), was exploited to develop effective topical formulations for oxaprozin transdermal administration. Oxaprozin was loaded as ternary complex with randomly-methylated-ßCD and arginine, selected as the best system in improving drug solubility. The colloidal dispersions, characterized for particle size, zeta-potential and entrapment efficiency, were investigated for drug permeation properties in comparison with a plain drug aqueous suspension, a ternary complex aqueous solution and a plain drug liposomal or NLC dispersion. Experiments with artificial membranes showed that the joined use of CD and both liposomes or NLC enabled a marked increase of the drug permeability (16 and 8 times, respectively) and was significantly more effective (P<0.05) than the drug as ternary complex (3.2 times increase), and the corresponding liposomal or NLC dispersion of plain drug (5.6 and 4.3 times increase, respectively). Experiments with excised human skin confirmed the significantly (P<0.05) better performance of deformable liposomes than NLC in promoting drug permeation; moreover, they evidenced a more marked permeability increase compared to the plain drug (24 and 12 fold, respectively), attributed to a possible enhancer effect of the nanocarriers components and/or of the randomly-methylated-ßCD.
Collapse
Affiliation(s)
- N Mennini
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy
| | - M Cirri
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy
| | - F Maestrelli
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy
| | - P Mura
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy.
| |
Collapse
|
27
|
Polymeric mucoadhesive tablets for topical or systemic buccal delivery of clonazepam: Effect of cyclodextrin complexation. Carbohydr Polym 2016; 152:755-763. [DOI: 10.1016/j.carbpol.2016.07.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 11/23/2022]
|
28
|
Xu JJ, An M, Yang R, Cao J, Ye LH, Peng LQ. Trace amounts of poly-β-cyclodextrin wrapped carbon nanotubes for the microextraction of flavonoids in honey samples by capillary electrophoresis with light-emitting diode induced fluorescence detection. Electrophoresis 2016; 37:1891-901. [DOI: 10.1002/elps.201600016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/08/2016] [Accepted: 03/24/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Jing-Jing Xu
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou P. R. China
| | - Mingrui An
- Department of Surgery; University of Michigan Medical Center; Ann Arbor MI USA
| | - Rui Yang
- Department of Surgery; University of Michigan Medical Center; Ann Arbor MI USA
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou P. R. China
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine; Hangzhou Red Cross Hospital; Hangzhou P. R. China
| | - Li-Qing Peng
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou P. R. China
| |
Collapse
|
29
|
Ita K. Progress in the use of microemulsions for transdermal and dermal drug delivery. Pharm Dev Technol 2016; 22:467-475. [PMID: 26931453 DOI: 10.3109/10837450.2016.1148722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA, USA
| |
Collapse
|
30
|
Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release 2015; 223:137-156. [PMID: 26739547 DOI: 10.1016/j.jconrel.2015.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/12/2023]
Abstract
Psychiatric illnesses are a leading cause of disability and morbidity globally. However, the preferred orally dosed pharmacological treatment options available for depression, anxiety and schizophrenia are often limited by factors such as low drug aqueous solubility, food effects, high hepatic first-pass metabolism effects and short half-lives. Furthermore, the discovery and development of more effective psychotropic agents has stalled in recent times, with the majority of new drugs reaching the market offering similar efficacy, but suffering from the same oral delivery concerns. As such, the application of nanomedicine formulation approaches to currently available drugs is a viable option for optimizing oral drug delivery and maximizing treatment efficacy. This review focuses on the various delivery challenges encountered by psychotropic drugs, and the ability of nanomedicine formulation strategies to overcome these. Specifically, we critically review proof of concept in vitro and in vivo studies of nanoemulsions/microemulsions, solid lipid nanoparticles, dendrimers, polymeric micelles, nanoparticles of biodegradable polymers and nanosuspensions, and provide new insight into the various mechanisms for improved drug performance. The advantages and limitations of current oral nanomedicine approaches for psychotropic drugs are discussed, which will provide guidance for future research directions and assist in fostering the translation of such delivery systems to the clinical setting. Accordingly, emphasis has been placed on correlating the in vitro/in vivo performance of these nanomedicine approaches with their potential clinical outcomes and benefits for patients.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
31
|
Huang B, Dong WJ, Yang GY, Wang W, Ji CH, Zhou FN. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3867-76. [PMID: 26229447 PMCID: PMC4517524 DOI: 10.2147/dddt.s75702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett–Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm2 cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm2 cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm2. It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.
Collapse
Affiliation(s)
- Bin Huang
- Department of Ultrasound, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Wei-Jiang Dong
- Department of Ultrasonography, Tongxiang Chinese Medicine Hospital, Jiaxing, People's Republic of China
| | - Gao-Yi Yang
- Department of Ultrasound, Hangzhou Red Cross Hospital, Hangzhou, People's Republic of China
| | - Wei Wang
- Department of Ultrasound, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Cong-Hua Ji
- Department of Ultrasound, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fei-Ni Zhou
- Department of Medical Records and Statistics, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
32
|
Tsai MJ, Huang YB, Fang JW, Fu YS, Wu PC. Preparation and Characterization of Naringenin-Loaded Elastic Liposomes for Topical Application. PLoS One 2015; 10:e0131026. [PMID: 26158639 PMCID: PMC4497736 DOI: 10.1371/journal.pone.0131026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Excessive production of radical oxygen species in skin is a contributor to a variety of skin pathologies. Naringenin is a potent antioxidant. The purpose of the present study was to develop elastic liposomes for naringenin topical application. Naringenin-loaded elastic liposomes containing different amounts of Tween 80 and cholesterol were prepared. The physicochemical properties including vesicle size, surface charge, encapsulation efficiency, and permeability capacity were determined to evaluate the effect of components. The stability of formulation and skin irritation caused by drug-loaded elastic liposomes were also evaluated for assessment of the clinical utility of elastic liposomes. Saturated aqueous solution of naringenin and naringenin dissolved in 10% Tween 80 solution (5 mg/mL) were used as the control group. The result showed that in using elastic liposomes as carrier, the deposition amounts in the skin of naringenin were significantly increased about 7.3~11.8-fold and 1.2~1.9-fold respectively, when compared with the saturated aqueous solution and Tween 80 solution-treated groups. The level of drug was more than 98.89±3.90% after 3 months of storage at 4℃. In a skin irritation test, the result showed experimental formulation exhibit considerably less irritating than the positive control (paraformaldehyde-treated) group, suggesting its potential therapeutic application.
Collapse
Affiliation(s)
- Ming-Jun Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, ROC
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan, ROC
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Jhih-Wun Fang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
33
|
Cirri M, Maestrelli F, Mennini N, Mura P. Combined use of bile acids and aminoacids to improve permeation properties of acyclovir. Int J Pharm 2015; 490:351-9. [PMID: 26037934 DOI: 10.1016/j.ijpharm.2015.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
The aim of this work was to develop a topical formulation with improved permeation properties of acyclovir. Ursodeoxycholic (UDC) and dehydrocholic (DHC) acids were tested as potential enhancers, alone or in combination with different aminoacids. Equimolar binary and ternary systems of acyclovir with cholic acids and basic, hydrophilic or hydrophobic aminoacids were prepared by co-grinding in a high vibrational micromill. Differential scanning calorimetry (DSC) was used to characterize the solid state of these systems, while their permeation properties were evaluated in vitro through a lipophilic artificial membrane. UDC was more than 2 times more effective than DHC in improving drug AUC and permeation rate. As for the ternary systems drug-UDC-aminoacid, only the combined use of l-lysine with UDC acid produced an evident synergistic effect in enhancing drug permeation properties, enabling an almost 3 and 8 times AUC increase compared to the binary UDC system or the pure drug, respectively. The best systems were selected for the development of topical cream formulations, adequately characterized and tested for in vitro drug permeation properties and stability on storage. The better performance revealed by acyclovir-UDC-l-lysine was mainly attributed to the formation of a more permeable activated system induced by the multicomponent co-grinding process.
Collapse
Affiliation(s)
- M Cirri
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy.
| | - F Maestrelli
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy
| | - N Mennini
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy
| | - P Mura
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy
| |
Collapse
|
34
|
Che J, Wu Z, Shao W, Guo P, Lin Y, Pan W, Zeng W, Zhang G, Wu C, Xu Y. Synergetic skin targeting effect of hydroxypropyl-β-cyclodextrin combined with microemulsion for ketoconazole. Eur J Pharm Biopharm 2015; 93:136-48. [PMID: 25845772 DOI: 10.1016/j.ejpb.2015.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 12/27/2022]
Abstract
The objective was to develop a ternary skin targeting system for ketoconazole (KET) using a combined strategy of microemulsion (ME) and cyclodextrin (HP-β-CD), i.e., KET-CD-ME, which exploits both virtues of cyclodextrin complex and ME to obtain the synergetic effect. KET-CD-ME was formulated using Labrafil M 1944 CS as oil phase, Solutol HS 15 as surfactant, Transcutol P as cosurfactant, and HP-β-CD solution as aqueous phase. The formulation of KET-CD-ME was optimized and the optimal formulation was characterized in terms of particle size, size distribution, pH value, and viscosity. Long term stability experiment showed that HP-β-CD could increase the physical stability of ternary system and KET chemical stability. Percutaneous permeation of KET from KET-CD-ME in vitro through rat skin was investigated in comparison with KET microemulsion (KET-ME), KET HP-β-CD inclusion solution (KET-CD), KET aqueous suspension, and commercial KET cream; the results showed that the combination of ME with HP-β-CD exhibited significantly synergistic effect on KET deposition within the skin (29.38 ± 1.79 μg/cm(2)) and a slightly synergistic effect on KET penetration through the skin (11.3 μg/cm(2)/h). The enhancement of the combination on skin deposition was further visualized by confocal laser scanning microscope (CLSM). In vitro sensitivity against Candida parapsilosis test indicated that KET-CD-ME enhanced KET antifungal activity mainly owing to the solubilization of HP-β-CD on KET in the ternary system. Moreover, the interactions between HP-β-CD and KET in the ternary system were elucidated through microScale thermophoresis (MST) and 2D (1)H NMR spectroscopy. The profiles from MST confirmed the host-guest interactions of HP-β-CD with KET in the ternary system and a deep insight into the interactions between KET and HP-β-CD were obtained by means of 2D (1)H NMR spectroscopy. The results indicate that the ternary system of ME combination with HP-β-CD may be a promising approach for skin targeting delivery of KET.
Collapse
Affiliation(s)
- Junxiu Che
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zushuai Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiyan Shao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanyuan Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhui Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weidong Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoguang Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Development, characterization, and in vitro biological performance of fluconazole-loaded microemulsions for the topical treatment of cutaneous leishmaniasis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:396894. [PMID: 25650054 PMCID: PMC4306376 DOI: 10.1155/2015/396894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 02/04/2023]
Abstract
Cutaneous leishmaniasis (CL) is a resistant form of leishmaniasis that is caused by a parasite belonging to the genus Leishmania. FLU-loaded microemulsions (MEs) were developed by phase diagram for topical administration of fluconazole (FLU) as prominent alternative to combat CL. Three MEs called F1, F2, and F3 (F1—60% 50 M phosphate buffer at pH 7.4 (PB) as aqueous phase, 10% cholesterol (CHO) as oil phase, and 30% soy phosphatidylcholine/oil polyoxyl-60 hydrogenated castor oil/sodium oleate (3/8/6) (S) as surfactant; F2—50% PB, 10% CHO, and 40% S; F3—40% PB, 10% CHO, and 50 % S) were characterized by droplet size analysis, zeta potential analysis, X-ray diffraction, continuous flow, texture profile analysis, and in vitro bioadhesion. MEs presented pseudoplastic flow and thixotropy was dependent on surfactant concentration. Droplet size was not affected by FLU. FLU-loaded MEs improved the FLU safety profile that was evaluated using red cell haemolysis and in vitro cytotoxicity assays with J-774 mouse macrophages. FLU-unloaded MEs did not exhibit leishmanicidal activity that was performed using MTT colourimetric assays; however, FLU-loaded MEs exhibited activity. Therefore, these MEs have potential to modulate FLU action, being a promising platform for drug delivery systems to treat CL.
Collapse
|