1
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
2
|
Liu X, Zhao L, Wu B, Chen F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int J Pharm 2023; 634:122704. [PMID: 36758883 DOI: 10.1016/j.ijpharm.2023.122704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| | - Limin Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
3
|
Progress in systemic co-delivery of microRNAs and chemotherapeutics for cancer treatment by using lipid-based nanoparticles. Ther Deliv 2020; 11:591-603. [PMID: 32933403 DOI: 10.4155/tde-2020-0052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) hold the potential to boost therapeutic efficacy and/or reverse drug resistance associated with traditional cancer chemotherapy. Both miRNA mimics and inhibitors have been explored in cancer therapy. Systemic co-delivery of chemotherapeutics and miRNA therapeutics represents an attractive treatment approach, but safe and efficient delivery systems are greatly needed. The regulatory approval of Onpattro® paved the way for lipid-based nanoparticles to deliver RNA therapeutics in different settings, including in combination with chemotherapeutics to treat cancer. In this Special Report, we discuss the significance of systemic co-delivery of chemotherapeutics and miRNA therapeutics for cancer therapy and highlight the representative examples of this strategy using lipid-based nanoparticles. We also present outstanding roadblocks to clinical translation and provide the latest perspectives.
Collapse
|
4
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
5
|
Razi MA, Wakabayashi R, Goto M, Kamiya N. Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2610-2618. [PMID: 30673276 DOI: 10.1021/acs.langmuir.8b02809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer continues to pose health problems for people all over the world. Nanoparticles (NPs) have emerged as a promising platform for effective cancer chemotherapy. NPs formed by the assembly of proteins and chitosan (CH) through noncovalent interactions are attracting a great deal of interest. However, the poor water solubility of CH and low stability of this kind of NP limit its practical application. Herein, the formation of reduced bovine serum albumin (rBSA) and glycol chitosan (GC) nanoparticles (rBG-NPs) stabilized by hydrophobic interactions and disulfide bonds was demonstrated for paclitaxel (PTX) delivery. The effects of the rBSA:GC mass ratio and pH on the particle size, polydispersity index (PDI), number of particles, and surface charge were evaluated. The formation mechanism and stability of the NPs were determined by compositional analysis and dynamic light scattering. Hydrophobic and electrostatic interactions were the driving forces for the formation of the rBG-NPs, and the NPs were stable under physiological conditions. PTX was successfully encapsulated into rBG-NPs with a high encapsulation efficiency (∼90%). PTX-loaded rBG-NPs had a particle size of ∼400 nm with a low PDI (0.2) and positive charge. rBG-NPs could be internalized by HeLa cells, possibly via endocytosis. An in vitro cytotoxicity study revealed that PTX-loaded rBG-NPs had anticancer activity that was lower than that of a Taxol-like formulation at 24 h but had similar activity at 48 h, possibly because of the slow release of PTX into the cells. Our study suggests that rBG-NPs could be used as a potential nanocarrier for hydrophobic drugs.
Collapse
Affiliation(s)
- Muhamad Alif Razi
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
- Division of Biotechnology, Center for Future Chemistry , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
- Division of Biotechnology, Center for Future Chemistry , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
6
|
Zhang L, Yang X, Lv Y, Xin X, Qin C, Han X, Yang L, He W, Yin L. Cytosolic co-delivery of miRNA-34a and docetaxel with core-shell nanocarriers via caveolae-mediated pathway for the treatment of metastatic breast cancer. Sci Rep 2017; 7:46186. [PMID: 28383524 PMCID: PMC5382875 DOI: 10.1038/srep46186] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/10/2017] [Indexed: 01/19/2023] Open
Abstract
Co-delivery of microRNAs and chemotherapeutic drugs into tumor cells is an attractive strategy for synergetic breast cancer therapy due to their complementary mechanisms. In this work, a core-shell nanocarrier coated by cationic albumin was developed to simultaneously deliver miRNA-34a and docetaxel (DTX) into breast cancer cells for improved therapeutic effect. The co-delivery nanocarriers showed a spherical morphology with an average particle size of 183.9 nm, and they efficiently protected miRNA-34a from degradation by RNase and serum. Importantly, the nanocarriers entered the cytosol via a caveolae-mediated pathway without entrapment in endosomes/lysosomes, thus improving the utilization of the cargo. In vitro, the co-delivery nanocarriers suppressed the expression of anti-apoptosis gene Bcl-2 at both transcription and protein levels, inhibited tumor cell migration and efficiently induced cell apoptosis and cytotoxicity. In vivo, the co-delivery nanocarriers prolonged the blood circulation of DTX, enhanced tumor accumulation of the cargo and significantly inhibited tumor growth and metastasis in 4T1-tumor bearing mice models. Taken together, the present nanocarrier co-loading with DTX and miRNA-34a is a new nanoplatform for the combination of insoluble drugs and gene/protein drugs and provides a promising strategy for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Xin Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yaqi Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Xiaofei Xin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Lei Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
7
|
Gaber M, Medhat W, Hany M, Saher N, Fang JY, Elzoghby A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. J Control Release 2017; 254:75-91. [PMID: 28365294 DOI: 10.1016/j.jconrel.2017.03.392] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/24/2022]
Abstract
Nanoparticulate drug delivery systems have been long used to deliver a vast range of drugs and bioactives owing to their ability to demonstrate novel physical, chemical, and/or biological properties. An exponential growth has spurred in research and development of these nanocarriers which led to the evolution of a great number of diverse nanosystems including liposomes, nanoemulsions, solid lipid nanoparticles (SLNs), micelles, dendrimers, polymeric nanoparticles (NPs), metallic NPs, and carbon nanotubes. Among them, lipid-based nanocarriers have made the largest progress whether commercially or under development. Despite this progress, these lipid-based nanocarriers suffer from several limitations that led to the development of many protein-coated lipid nanocarriers. To less extent, protein-based nanocarriers suffer from limitations that led to the fabrication of some lipid bilayer enveloping protein nanocarriers. This review discusses in-depth some limitations associated with the lipid-based or protein-based nanocarriers and the fruitful outcomes brought by protein-lipid hybridization. Also discussed are the various hybridization techniques utilized to formulate these protein-lipid nanohybrids and the mechanisms involved in the drug loading process.
Collapse
Affiliation(s)
- Mohamed Gaber
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Waseem Medhat
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mark Hany
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nourhan Saher
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan.
| | - Ahmed Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
8
|
Zhang L, Xiao Q, Wang Y, Zhang C, He W, Yin L. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery. Int J Pharm 2017; 523:1-14. [PMID: 28323094 DOI: 10.1016/j.ijpharm.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022]
Abstract
Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiran Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chenshuang Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
He W, Wang Y, Lv Y, Xiao Q, Ye L, Cai B, Qin C, Han X, Cai T, Yin L. Denatured protein stabilized drug nanoparticles: tunable drug state and penetration across the intestinal barrier. J Mater Chem B 2017; 5:1081-1097. [PMID: 32263886 DOI: 10.1039/c6tb02577c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosuspensions of drugs are nanosized colloidal dispersions of pure particles. In contrast to conventional nanoparticles, the particles in nanosuspensions feature 100% drug loading. Stiripentol (STP) is an effective drug for severe myoclonic epilepsy of infancy (SMEI); however, because of its low water solubility, high oral doses of STP, up to 50 mg per kg per day in two or three divided doses, must be administered to patients, compromising therapy outcomes. Here, we report STP nanosuspensions (STP-Ns) stabilized with denatured soybean protein isolate (SPI) as a stabilizer to promote the absorption of STP and thus improve therapeutic outcomes. STP-Ns with a drug loading of up to 50% (w/w) and a diameter of 150 nm were successfully prepared. Importantly, in the presence of denatured SPI as a stabilizer, the drug state in the nanosuspensions was tunable by drug loading: low drug loading resulted in the formation of amorphous drug nanoparticles while high drug loading greater than 3.22% (w/w) in formulation induced the formation of nanosuspensions with the coexistence of amorphous and crystalline drug. This new nanosuspension formulation was related to the fact that the protein-drug complex exhibited a much stronger affinity for the drug particles over the protein itself. Interestingly, via the transcytosis pathway, the STP-Ns penetrated across the intestinal barrier into the systemic circulation, with the duodenum as the predominant absorption site. The bioavailability of the STP-Ns was 4-fold as great as that of raw crystals. The discovery of this mechanism for the use of globular protein as a stabilizer for nanosuspensions provides a new route for the preparation of amorphous drug nanoparticles. This work offers a new strategy to widen the application of globular protein and nanosuspensions of insoluble active compounds in drug delivery.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
He W, Yang K, Fan L, Lv Y, Jin Z, Zhu S, Qin C, Wang Y, Yin L. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability. Int J Pharm 2015; 495:9-18. [PMID: 26325310 DOI: 10.1016/j.ijpharm.2015.08.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 12/28/2022]
Abstract
Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ke Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Fan
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 210009, PR China
| | - Yaqi Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhu Jin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shumin Zhu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiao Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
11
|
Zheng Z, Sun Y, Liu Z, Zhang M, Li C, Cai H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4931-42. [PMID: 26345159 PMCID: PMC4555965 DOI: 10.2147/dddt.s90147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Rheumatoid arthritis (RA), induced by the prolonged inappropriate inflammatory responses, is one of the most prevalent of all chronic inflammatory joint diseases. Curcumin (CM), a yellow hydrophobic polyphenol derived from the herb turmeric, has various pharmacological activities against many chronic diseases and acts by inhibiting cell proliferation and metastasis and downregulating various factors, including nuclear factor kappa B, interleukin-1β and TNF-α. Given the pathogenesis of RA, we hypothesized that the drug also has antiarthritic effects. The aims of the present study included the following: 1) examining the therapeutic effect of CM administered via intravenous (iv) injection on RA and 2) formulating the drug into oil–water nanoemulsions (Ns) to overcome the low oral bioavailability of CM and achieve oral delivery of the drug. Methods The effect of CM administered through iv injection on adjuvant-induced arthritis in rats was studied in terms of paw swelling, weight indices of the thymus and spleen, and pathological changes in nuclear factor kappa B expression and inflammatory cytokines. Methotrexate was used as a positive control. The CM-Ns were prepared using a high-pressure homogenizing method and characterized with respect to the particle size and morphology. The stability of the CM-Ns in simulated gastrointestinal (GI) fluids and in vitro release were also investigated. A pharmacokinetic study of the CM-Ns and suspensions in which the plasma levels were determined using an high performance liquid chromatography method and the pharmacokinetic parameters were calculated based on a statistical moment theory was also performed in rats. Results CM administered via iv injection had a therapeutic effect on RA similar to methotrexate. CM-Ns with a diameter of approximately 150 nm were successfully prepared, and the drug was well encapsulated into the Ns without degradation in simulated GI conditions. The area under the curve (AUC) and Cmax for the CM-Ns were more than threefold greater than those for the suspensions; moreover, similar decreases in the levels of TNF-α and interleukin-1β in both synovial fluid and blood serum were obtained from oral administration of CM-Ns and iv injection. Conclusion CM was an effective antiarthritic agent, and the present N formulation appeared to be a promising system that allowed RA therapy with CM to be converted from iv to oral administration.
Collapse
Affiliation(s)
- Zhaoling Zheng
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - YanHua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Jinan, People's Republic of China
| | - Ziliang Liu
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - Mingqin Zhang
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - Chunqing Li
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - Hui Cai
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Nanjing Jinling Hospital, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Xu C, He W, Lv Y, Qin C, Shen L, Yin L. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int J Pharm 2015; 493:172-81. [PMID: 26232702 DOI: 10.1016/j.ijpharm.2015.07.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/18/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022]
Abstract
A prodrug-based nanosystem obtained by formulating prodrug and nanotechnology into a system is one of the most promising strategies to enhance drug delivery for disease treatment. Herein, we report a new nanosystem based on HA-PTX conjugates (HA-PTX Ns), which penetrated across cell membranes into cytosol, thus enhancing paclitaxel (PTX) delivery. HA-PTX Ns were successfully obtained based on HA-PTX, and their average particle size was approximately 200 nm. Importantly, unlike other prodrug-based nanosystems, HA-PTX Ns obtained cellular entry without entrapment within the lysosomal-endosomal system by using pathways including clathrin-mediated endocytosis, microtubule-associated internalization, macropinocytosis and cholesterol-dependence. Due to significant accumulation in tumors, HA-PTX Ns had more than a 4-fold decrease in tumor volume on day 14 in contrast with PTX alone. In conclusion, HA-PTX Ns could enter cells, bypass the lysosomal-endosomal system and improve PTX delivery.
Collapse
Affiliation(s)
- Chaoran Xu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yaqi Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lingjia Shen
- National Engineering and Research Center for Target Drugs, Lianyungang 222047, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
13
|
Li Y, Wu Z, He W, Qin C, Yao J, Zhou J, Yin L. Globular Protein-Coated Paclitaxel Nanosuspensions: Interaction Mechanism, Direct Cytosolic Delivery, and Significant Improvement in Pharmacokinetics. Mol Pharm 2015; 12:1485-500. [DOI: 10.1021/mp5008037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongji Li
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhannan Wu
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|