1
|
Baran E, Birczyński A, Milanowski B, Klaja J, Nowak P, Dorożyński P, Kulinowski P. 3D Printed Drug Delivery Systems in Action-Magnetic Resonance Imaging and Relaxometry for Monitoring Mass Transport Phenomena. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39056539 DOI: 10.1021/acsami.4c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The hypothesis of the study was that (1) 3D printed drug delivery systems (DDS) could be characterized in situ during drug release using NMR/MRI techniques in terms of mass transport phenomena description (interfacial phenomena), particularly for systems dealing with two mobile phases (e.g., water and low molecular weight liquid polymer); (2) consequently, it could be possible to deduce how these interfacial mass transport phenomena influence functional properties of 3D printed DDS. Matrix drug delivery systems, prepared using masked stereolithography (MSLA), containing poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight polyethylene glycol (PEG) with ropinirole hydrochloride (RH) were studied as example formulations. The PEGDA to PEG (mobile phase) concentration ratio influenced drug release. It was reflected in spatiotemporal changes in parametric T2 relaxation time (T2) and amplitude (A) images obtained using magnetic resonance imaging (MRI) and T1-T2 relaxation time correlations obtained using low-field time-domain nuclear magnetic resonance (LF TD NMR) relaxometry during incubation in water. For most of the tested formulations, two signal components related to PEG and water were assessed in the hydrated matrices by MRI relaxometry (parametric T2/A images). The PEG component faded out due to outward PEG diffusion and was gradually replaced by the water component. Both components spatially and temporally changed their parameters, reflecting evolving water-polymer interactions. The study shows that dynamic phenomena related to bidirectional mass transport can be quantified in situ using NMR and MRI techniques to gain insight into drug release mechanisms from 3D printed DDS systems.
Collapse
Affiliation(s)
- Ewelina Baran
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| | - Artur Birczyński
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Rokietnicka 3, Poznań 60-806, Poland
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, Zba̧szyń 64-360, Poland
| | - Jolanta Klaja
- Oil and Gas Institute - National Research Institute, ul. Lubicz 25 A, Kraków 31-503, Poland
| | - Piotr Nowak
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, al. Mickiewicza 30, Kraków 30-059 , Poland
| | - Przemysław Dorożyński
- Chair of Inorganic Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, Kraków 30-688, Poland
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| |
Collapse
|
2
|
Baran E, Birczyński A, Dorożyński P, Kulinowski P. Spatially resolved polymer mobilization revisited - Three-dimensional, UltraShort Echo Time (3D UTE) magnetic resonance imaging of sodium alginate matrix tablets. J Colloid Interface Sci 2023; 649:626-634. [PMID: 37364462 DOI: 10.1016/j.jcis.2023.06.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
HYPOTHESIS Three-dimensional 1H UltraShort Echo Time magnetic resonance imaging (1H 3D UTE MRI) of the matrix tablet made of hydrophilic polymer hydrated in heavy water (D2O) will allow investigation of the hydration-induced spatiotemporal evolution of the material originally included in the matrix tablet during manufacturing (i.e., polymer chains and bound water). EXPERIMENTS The oblong-shaped sodium alginate matrix tablets were used to verify the hypothesis. The matrix was measured before and during hydration in D2O for up to 2 h using the 1H 3D UTE MRI. Five echo times (first at 20 μs) were used, resulting in five three-dimensional images (one image for each echo time). In chosen cross-sections, two parametric images, i.e., amplitude and T2* relaxation time maps, were calculated using "pixel-by-pixel" mono-exponential fitting. FINDINGS The regions of the alginate matrix with T2* shorter than 600 μs were analyzed before (air-dry matrix) and during hydration (parametric, spatiotemporal analysis). During the study, only hydrogen nuclei (protons) pre-existing in the air-dry sample (polymer and bound water) were monitored because the hydration medium (D2O) was not visible. As a result, it was found that morphological changes in regions having T2* shorter than 300 μs were the effect of fast initial water ingress into the core of the matrix and subsequent polymer mobilization (early hydration providing additional 5% w/w hydration medium content relating to air-dry matrix). In particular, evolving layers in T2* maps were detected, and a fracture network was formed shortly after the matrix immersion in D2O. The current study presented a coherent picture of polymer mobilization accompanied by local polymer density decrease. We concluded, that the T2* mapping using 3D UTE MRI can effectively be applied as a polymer mobilization marker.
Collapse
Affiliation(s)
- Ewelina Baran
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland.
| | - Artur Birczyński
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland.
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland.
| | - Piotr Kulinowski
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland.
| |
Collapse
|
3
|
Bogdan C, Hales D, Cornilă A, Casian T, Iovanov R, Tomuță I, Iurian S. Texture analysis – a versatile tool for pharmaceutical evaluation of solid oral dosage forms. Int J Pharm 2023; 638:122916. [PMID: 37019322 DOI: 10.1016/j.ijpharm.2023.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In the past few decades, texture analysis (TA) has gained importance as a valuable method for the characterization of solid oral dosage forms. As a result, an increasing number of scientific publications describe the textural methods that evaluate the extremely diverse category of solid pharmaceutical products. Within the current work, the use of texture analysis in the characterization of solid oral dosage forms is summarised with a focus on the evaluation of intermediate and finished oral pharmaceutical products. Several texture methods are reviewed regarding the applications in mechanical characterization, and mucoadhesion testing, but also in estimating the disintegration time and in vivo specific features of oral dosage forms. As there are no pharmacopoeial standards for pharmaceutical products tested through texture analysis, and there are important differences between reported results due to different experimental conditions, the choice of testing protocol and parameters is challenging. Thereby, this work aims to guide the research scientists and quality assurance professionals involved in different stages of drug development into the selection of optimal texture methodologies depending on the product characteristics and quality control needs.
Collapse
Affiliation(s)
- Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Low-field time-domain NMR relaxometry for studying polymer hydration and mobilization in sodium alginate matrix tablets. Carbohydr Polym 2023; 299:120215. [PMID: 36876817 DOI: 10.1016/j.carbpol.2022.120215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Sodium alginate is used in various industries, including food, pharmaceutical, and agriculture. Matrix systems, e.g., tablets, and granules, are macro samples with incorporated active substances. During hydration, they are neither equilibrated nor homogenous. Phenomena occurring during hydration of such systems are complex, determine their functional properties and hence require multimodal analysis. Still, there's a lack of comprehensive view. The study aimed to obtain unique characteristics of the sodium alginate matrix during hydration, particularly considering polymer mobilization phenomena using low-field time-domain NMR relaxometry in H2O and D2O. An increase in total signal during 4 h of hydration in D2O of ca. 30 μV resulted from polymer/water mobilization. Modes in T1-T2 maps and changes in their amplitudes reflected physicochemical state of the polymer/water system: e.g. air-dry polymer mode (T1/T2 ~ 600) and two mobilized polymer/water modes (at T1/T2 ~ 40 and T1/T2 ~ 20). The study describes the approach to evaluating the hydration of the sodium alginate matrix in terms of the temporal evolution of proton pools: those existing in the matrix before hydration and those entering the matrix from the bulk water. It provides data complementary to spatially resolved methods like MRI and microCT.
Collapse
|
5
|
Baran E, Górska A, Birczyński A, Hudy W, Kulinowski W, Jamróz W, Węglarz WP, Kulinowski P. In Vitro Wound Dressing Stack Model as a First Step to Evaluate the Behavior of Dressing Materials in Wound Bed-An Assessment of Mass Transport Phenomena in Hydrogel Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7702. [PMID: 34947294 PMCID: PMC8706781 DOI: 10.3390/ma14247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022]
Abstract
Wound dressings when applied are in contact with wound exudates in vivo or with acceptor fluid when testing drug release from wound dressing in vitro. Therefore, the assessment of bidirectional mass transport phenomena in dressing after application on the substrate is important but has never been addressed in this context. For this reason, an in vitro wound dressing stack model was developed and implemented in the 3D printed holder. The stack was imaged using magnetic resonance imaging, i.e., relaxometric imaging was performed by means of T2 relaxation time and signal amplitude 1D profiles across the wound stack. As a substrate, fetal bovine serum or propylene glycol were used to simulate in vivo or in vitro cases. Multi-exponential analysis of the spatially resolved magnetic resonance signal enabled to distinguish components originating from water and propylene glycol in various environments. The spatiotemporal evolution of these components was assessed. The components were related to mass transport (water, propylene glycol) in the dressing/substrate system and subsequent changes of physicochemical properties of the dressing and adjacent substrate. Sharp changes in spatial profiles were detected and identified as moving fronts. It can be concluded that: (1) An attempt to assess mass transport phenomena was carried out revealing the spatial structure of the wound dressing in terms of moving fronts and corresponding layers; (2) Moving fronts, layers and their temporal evolution originated from bidirectional mass transport between wound dressing and substrate. The setup can be further applied to dressings containing drugs.
Collapse
Affiliation(s)
- Ewelina Baran
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (A.B.); (W.H.); (W.K.)
| | - Anna Górska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Artur Birczyński
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (A.B.); (W.H.); (W.K.)
| | - Wiktor Hudy
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (A.B.); (W.H.); (W.K.)
| | - Wojciech Kulinowski
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (A.B.); (W.H.); (W.K.)
| | - Witold Jamróz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Piotr Kulinowski
- Institute of Technology, The Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (A.B.); (W.H.); (W.K.)
| |
Collapse
|
6
|
Hydration Patterns in Sodium Alginate Polymeric Matrix Tablets-The Result of Drug Substance Incorporation. MATERIALS 2021; 14:ma14216531. [PMID: 34772056 PMCID: PMC8585188 DOI: 10.3390/ma14216531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
The purpose was to show, using destructive/nondestructive methods, that the interplay between water, tablet structure, and composition determine the unique spatiotemporal hydration pattern of polymer-based matrices. The tablets containing a 1:1 w/w mixture of sodium alginate with salicylic acid (ALG/SA) or sodium salicylate (ALG/SNA) were studied using Karl Fischer titration, differential scanning calorimetry, X-ray microtomography, and magnetic resonance imaging. As the principal results, matrix specific features were detected, e.g., "locking" of the internal part of the matrix (ALG/SA); existence of lamellar region associated with detection of free/freezing water (ALG/SA); existence of water penetrating the matrix forming specific region preceding infiltration layer (ALG/SNA); switch in the onset temperature of endothermic water peak associated with an increase in the fraction of non-freezing water weight per dry matrix weight in the infiltration layer (ALG/SNA). The existence of complicated spatiotemporal hydration patterns influenced by matrix composition and molecular properties of constituents has been demonstrated.
Collapse
|
7
|
Krupa A, Tabor Z, Tarasiuk J, Strach B, Pociecha K, Wyska E, Wroński S, Łyszczarz E, Jachowicz R. The impact of polymers on 3D microstructure and controlled release of sildenafil citrate from hydrophilic matrices. Eur J Pharm Sci 2018; 119:234-243. [DOI: 10.1016/j.ejps.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
8
|
Sager M, Schneider F, Jedamzik P, Wiedmann M, Schremmer E, Koziolek M, Weitschies W. Effect of Coadministered Water on the In Vivo Performance of Oral Formulations Containing N-Acetylcysteine: An In Vitro Approach Using the Dynamic Open Flow-Through Test Apparatus. Mol Pharm 2017; 14:4272-4280. [DOI: 10.1021/acs.molpharmaceut.7b00763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maximilian Sager
- Department
of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Felix Schneider
- Department
of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Philipp Jedamzik
- Department
of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | | | | | - Mirko Koziolek
- Department
of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Werner Weitschies
- Department
of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| |
Collapse
|
9
|
Hamed R, AlJanabi R, Sunoqrot S, Abbas A. The effect of pH, buffer capacity and ionic strength on quetiapine fumarate release from matrix tablets prepared using two different polymeric blends. Drug Dev Ind Pharm 2017; 43:1330-1342. [DOI: 10.1080/03639045.2017.1318897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Reem AlJanabi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | | |
Collapse
|
10
|
Gavan A, Porfire A, Marina C, Tomuta I. Original research paper. Formulation and pharmaceutical development of quetiapine fumarate sustained release matrix tablets using a QbD approach. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2017; 67:53-70. [PMID: 28231048 DOI: 10.1515/acph-2017-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2016] [Indexed: 11/15/2022]
Abstract
The main objective of the present study was to apply QbD methodology in the development of once-a-day sustained release quetiapine tablets. The quality target product profile (QTPP) was defined after the pharmaceutical properties and kinetic release of the innovator product, Seroquel XR 200 mg. For the D-optimal experimental design, the level and ratio of matrix forming agents and the type of extragranular diluent were chosen as independent inputs, which represented critical formulation factors. The critical quality attributes (CQAs) studied were the cumulative percentages of quetiapine released after certain time intervals. After the analysis of the experimental design, optimal formulas and the design space were defined. Optimal formulas demonstrated zero-order release kinetics and a dissolution profile similar to the innovator product, with f2 values of 74.53 and 83.74. It was concluded that the QbD approach allowed fast development of sustained release tablets with similar dissolution behavior as the innovator product.
Collapse
Affiliation(s)
- Alexandru Gavan
- University of Medicine and Pharmacy „Iuliu Hatieganu” Faculty of Pharmacy Department of Pharmaceutical Technology and Biopharmaceutics , Cluj-Napoca , Romania
| | - Alina Porfire
- University of Medicine and Pharmacy „Iuliu Hatieganu” Faculty of Pharmacy Department of Pharmaceutical Technology and Biopharmaceutics , Cluj-Napoca , Romania
| | - Cristina Marina
- University of Medicine and Pharmacy „Iuliu Hatieganu” Faculty of Pharmacy Department of Pharmaceutical Technology and Biopharmaceutics , Cluj-Napoca , Romania
| | - Ioan Tomuta
- University of Medicine and Pharmacy „Iuliu Hatieganu” Faculty of Pharmacy Department of Pharmaceutical Technology and Biopharmaceutics , Cluj-Napoca , Romania
| |
Collapse
|
11
|
Hamed R, Al Baraghthi T, Sunoqrot S. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release. Pharm Dev Technol 2016; 23:838-848. [PMID: 27808590 DOI: 10.1080/10837450.2016.1257022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug release from hydroxypropyl methylcellulose (HPMC) hydrophilic matrix tablets is controlled by drug diffusion through the gel layer of the matrix-forming polymer upon hydration, matrix erosion or combination of diffusion and erosion mechanisms. In this study, the relationship between viscoelastic properties of the gel layer of swollen intact matrix tablets and drug release was investigated. Two sets of quetiapine fumarate (QF) matrix tablets were prepared using the high viscosity grade HPMC K4M at low (70 mg/tablet) and high (170 mg/tablet) polymer concentrations. Viscoelastic studies using a controlled stress rheometer were performed on swollen matrices following hydration in the dissolution medium for predetermined time intervals. The gel layer of swollen tablets exhibited predominantly elastic behavior. Results from the in vitro release study showed that drug release was strongly influenced by the viscoelastic properties of the gel layer of K4M tablets, which was further corroborated by results from water uptake studies conducted on intact tablets. The results provide evidence that the viscoelastic properties of the gel layer can be exploited to guide the selection of an appropriate matrix-forming polymer, to better understand the rate of drug release from matrix tablets in vitro and to develop hydrophilic controlled-release formulations.
Collapse
Affiliation(s)
- Rania Hamed
- a Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman , Jordan
| | - Tamadur Al Baraghthi
- a Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman , Jordan
| | - Suhair Sunoqrot
- a Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman , Jordan
| |
Collapse
|
12
|
Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets. Ther Deliv 2016; 7:553-72. [DOI: 10.4155/tde-2016-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.
Collapse
|
13
|
Kulinowski P, Hudy W, Mendyk A, Juszczyk E, Węglarz WP, Jachowicz R, Dorożyński P. The Relationship Between the Evolution of an Internal Structure and Drug Dissolution from Controlled-Release Matrix Tablets. AAPS PharmSciTech 2016; 17:735-42. [PMID: 26335419 DOI: 10.1208/s12249-015-0402-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.
Collapse
|
14
|
Multimodal approach to characterization of hydrophilic matrices manufactured by wet and dry granulation or direct compression methods. Int J Pharm 2016; 499:263-270. [DOI: 10.1016/j.ijpharm.2015.12.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/27/2015] [Indexed: 11/24/2022]
|