1
|
Moorthy T, Hathim B M, NagaMahesh C H M, Anburaj G, Ahmed SSSJ, Gopinath V, Munuswamy-Ramanujam G, Rao SK, Kamath MS. Controlled release of kaempferol from porous scaffolds augments in-vitro osteogenesis in human osteoblasts. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
3
|
Lavanya S, Kamath S M, Krishna Rao S, Rajapriya P, Patil S, Sundaresan S. Sustained delivery of andrographolide from 3D porous scaffolds imparting anticancer activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Vincristine-doxorubicin co-loaded artificial low-density lipoproteins towards solid tumours. Eur J Med Chem 2021; 226:113802. [PMID: 34543934 DOI: 10.1016/j.ejmech.2021.113802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022]
Abstract
To construct an artificial low-density lipoprotein (aLDL) that highly mimics low-density lipoprotein (LDL) in vivo, and deliver vincristine (VCR) - doxorubicin (DOX) simultaneously, the 100 nm and 35 nm DOX-VCR-aLDLs (DV-aLDLs) were constructed, then the physicochemical characteristics were evaluated. Through in vitro inverse gravity diffusion experiment, the tumour cake and sphere model experiment, draw a conclusion that the diffusion of 35 nm DV-aLDLs was stronger than 100 nm DV-aLDLs, and the tumour retention of 35 nm DV-aLDLs was better than the DV-solution. In addition, the three-dimension (3D) in vivo distribution imaging of aLDLs was performed on HepG-2 tumour-bearing nude mice, followed by the biodistribution and therapeutic efficacy on these xenograft models. Taking advantage of better diffusion capacity in tumour tissue, as well as the synergistic effect of VCR and DOX, the 35 nm DV-aLDL had the strongest efficacy and the lowest toxicity. High entrapment efficiency and stability, both active and passive targeting, making aLDL a potential carrier for tumour-targeted therapy at the same time.
Collapse
|
5
|
Gupta N, Kamath S M, Rao SK, D J, Patil S, Gupta N, Arunachalam KD. Kaempferol loaded albumin nanoparticles and dexamethasone encapsulation into electrospun polycaprolactone fibrous mat – Concurrent release for cartilage regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
A novel preparative method for nanoparticle albumin-bound paclitaxel with high drug loading and its evaluation both in vitro and in vivo. PLoS One 2021; 16:e0250670. [PMID: 33909691 PMCID: PMC8081182 DOI: 10.1371/journal.pone.0250670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
We developed a novel preparative method for nanoparticle albumin-bound (nab) paclitaxel with high drug loading, which was based on improved paclitaxel solubility in polyethylene glycol (PEG) and self-assembly of paclitaxel in PEG with albumin powders into nanoparticles. That is, paclitaxel and PEG were firstly dissolved in ethanol, which was subsequently evaporated under vacuum. The obtained liquid was then mixed with human serum albumin powders. Thereafter, the mixtures were added into phosphate-buffered saline and nab paclitaxel suspensions emerged after ultrasound. Nab paclitaxel was finally acquired after dialysis and freeze drying. The drug loading of about 15% (W/V) were realized in self-made nab paclitaxel, which was increased by approximately 50% compared to 10% (W/V) in Abraxane. Now this new preparative method has been authorized to obtain patent from China and Japan. The similar characteristics of self-made nab paclitaxel compared to Abraxane were observed in morphology, encapsulation efficiency, in vitro release, X-ray diffraction analysis, differential scanning calorimetry analysis, and circular dichroism spectra analysis. Consistent concentration-time curves in rats, biodistributions in mice, anti-tumor activities in mice, and histological transmutation in mice were also found between Abraxane and self-made nanoparticles. In a word, our novel preparative method for nab paclitaxel can significantly improve drug loading, obviously decrease product cost, and is considered to have potent practical value.
Collapse
|
7
|
Lyu J, Wang L, Bai X, Du X, Wei J, Wang J, Lin Y, Chen Z, Liu Z, Wu J, Zhong Z. Treatment of Rheumatoid Arthritis by Serum Albumin Nanoparticles Coated with Mannose to Target Neutrophils. ACS APPLIED MATERIALS & INTERFACES 2021; 13:266-276. [PMID: 33379867 DOI: 10.1021/acsami.0c19468] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA) is an angiogenic and chronic inflammatory disease. One of the most extensively used first-line drugs against RA is methotrexate (MTX), but it shows poor solubility, short in vivo circulation, and off-target binding, leading to strong toxicity. To overcome these shortcomings, the present study loaded MTX into nanoparticles of human serum albumin modified with mannose (MTX-M-NPs) to target the drug to neutrophils. MTX-M-NPs were prepared, and their uptake by neutrophils was studied using laser confocal microscopy and flow cytometry. A chick chorioallantoic membrane assay was used to assess their ability to inhibit angiogenesis. The pharmacokinetics and tissue distribution of MTX-M-NPs were investigated using fluorescence microscopy and high-performance liquid chromatography. Their pharmacodynamics was evaluated in a rat model with arthritis induced by collagen. Neutrophils took up MTX-M-NPs significantly better than the same nanoparticles (NPs) without mannose. MTX-M-NPs markedly suppressed angiogenesis in chick embryos, and the MTX circulation was significantly longer when it was delivered as MTX-M-NPs than as a free drug. MTX-M-NPs accumulated mainly in arthritic joints. The retention of NPs was promoted by mannose-derived coating in arthritic joints. Serum levels of inflammatory cytokines, joint swelling, and bone erosion were significantly decreased by MTX-M-NPs. In conclusion, these NPs can prolong the in vivo circulation of MTX and target it to the sites of inflammation in RA, reducing drug toxicity. MTX-M-NPs allow the drug to exert its intrinsic anti-inflammatory, antiangiogenic, and analgesic properties, making it a useful drug delivery system in RA.
Collapse
Affiliation(s)
- Jiayao Lyu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Pharmacy, Ziyang Psychiatric Hospital, Ziyang 641300, Sichuan, China
| | - Lujun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaosheng Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingjie Du
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhenyu Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
8
|
Lin Y, Li C, Li J, Deng R, Huang J, Zhang Q, Lyu J, Hao N, Zhong Z. NEP 1-40-modified human serum albumin nanoparticles enhance the therapeutic effect of methylprednisolone against spinal cord injury. J Nanobiotechnology 2019; 17:12. [PMID: 30670038 PMCID: PMC6341626 DOI: 10.1186/s12951-019-0449-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/09/2019] [Indexed: 01/16/2023] Open
Abstract
Background Frequent injection of high-dose methylprednisolone (MP) is used to treat spinal cord injury (SCI), but free MP is associated with various side effects and its water solubility is low, limiting potential dosing regimes and administration routes. Albumin-based nanoparticles, which can encapsulate therapeutic drugs and release cargo in a controlled pattern, show high biocompatibility and low toxicity. The Nogo protein, expressed on the surface of oligodendrocytes, can inhibit axonal growth by binding with the axonal Nogo receptor (NgR). Peptide NEP1-40, an NgR antagonist, can bind specifically to Nogo, significantly improving functional recovery and axon growth in the corticospinal tract. Therefore, we hypothesized that delivering MP within nanoparticles decorated with NEP1-40 could avoid the disadvantages of free MP and enhance its therapeutic efficacy against SCI. Results We used human serum albumin to prepare MP-loaded NPs (MP-NPs), to whose surface we conjugated NEP1-40 to form NEP1-40-MP-NPs. Transmission electron microscopy indicated successful formation of nanoparticles. NEP1-40-MP-NPs were taken up significantly better than MP-NPs by the Nogo-positive cell line RSC-96 and were associated with significantly higher Basso–Beattie–Bresnahan locomotor scores in rats recovering from SCI. Micro-computed tomography assay showed that NEP1-40-MP-NPs mitigated SCI-associated loss of bone mineral density and accelerated spinal cord repair. Conclusions NEP1-40-MP-NPs can enhance the therapeutic effects of MP against SCI. This novel platform may also be useful for delivering other types of drugs. ![]() Electronic supplementary material The online version of this article (10.1186/s12951-019-0449-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jian Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ruolan Deng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Juan Huang
- Luzhou TCM Hospital, Luzhou, 646000, China
| | | | - Jiayao Lyu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Na Hao
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China. .,Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (Sichuan University), Chengdu, 610000, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Ma S, Li M, Liu N, Li Y, Li Z, Yang Y, Yu F, Hu X, Liu C, Mei X. Vincristine liposomes with smaller particle size have stronger diffusion ability in tumor and improve tumor accumulation of vincristine significantly. Oncotarget 2017; 8:87276-87291. [PMID: 29152080 PMCID: PMC5675632 DOI: 10.18632/oncotarget.20162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023] Open
Abstract
The passive targeting is the premise of active targeting that could make nanocarrier detained in tumor tissue. The particle size is the most important factor that influences the diffusion and distribution of nanoparticle both in vivo and in vitro. In order to investigate the relationship between particle size and diffusion ability, two kinds of liposome loaded with Vincristine (VCR-Lip) were prepared. The diffusion behavior of VCR-Lip with different particle size and free VCR was compared through diffusion stability study. The diffusion ability from 12-well culture plate to Millipore transwell of each formulation reflected on HepG-2 cytotoxicity results. Different cell placement methods and drug adding positions were used to study the VCR-Lip diffusion behaviors, which influenced the apoptosis of HepG-2 cell. The different cell uptake of Nile red–Lip and free Nile red was compared when changed the adding way of fluorescent fluorescein. To study the penetration ability in HepG-2 tumor spheroids, we constructed 30 nm and 100 nm Cy5.5-Lip to compare with free Cy5.5. Then the anti-tumor effect, tissue distribution of free VCR injection, 30 nm and 100 nm VCR-Lip were further investigated on the HepG-2 tumor bearing nude mice. The results of these study showed that the diffusion ability of free drug and fluorescent fluorescein was remarkable stronger than which encapsulated in liposomes. Moreover, diffusion ability of smaller liposome was stronger than larger one. In this way, 30 nm liposome had not only faster and stronger tumor distribution than 100 nm liposome, but also higher tumor drug accumulation than free drug as well. Our study provided a new thinking to improve the targeting efficiency of nano drug delivery system, no matter passive or active targeting.
Collapse
Affiliation(s)
- Siyu Ma
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Mingyuan Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Nan Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Ying Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Zhiping Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Yang Yang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Fanglin Yu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Xiaoqin Hu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Cheng Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Xingguo Mei
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| |
Collapse
|
10
|
Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017; 246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
A major challenge in the field of nanomedicine is to transform laboratory innovations into commercially successful clinical products. In this campaign, a variety of nanoenabled approaches have been designed and investigated for their role in biomedical applications. The advantages associated with the unique structure of albumin imparts it with the ability to interact with variety of molecules, while the functional groups present on their surface provide base for large number of modifications making it as an ideal nanocarrier system. So far, a variety of albumin based nanoenabled approaches have been intensively exploited for effective diagnosis and personalized medicine, among them some have successfully completed their journey from lab bench to marketed products. This review focuses on the recent most promising advancement in the field of albumin based nanoenabled approaches for various biomedical applications and their potential use in cancer diagnosis and therapy.
Collapse
|
11
|
Liu YX, Liu KF, Li CX, Wang LY, Liu J, He J, Lei J, Liu X. Self-assembled nanoparticles based on a carboxymethylcellulose–ursolic acid conjugate for anticancer combination therapy. RSC Adv 2017. [DOI: 10.1039/c7ra05913b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new self-assembled nanoparticle platform based on a carboxymethylcellulose (CMC)–ursolic acid (UA) conjugate is presented for the first time.
Collapse
Affiliation(s)
- Yan-xue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Ke-feng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Chun-xiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Lu-ying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
- College of Chemistry and Environmental Engineering
| | - Xingyong Liu
- College of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong 643000
- PR China
| |
Collapse
|
12
|
Preparation and Optimization of 10-Hydroxycamptothecin Nanocolloidal Particles Using Antisolvent Method Combined with High Pressure Homogenization. J CHEM-NY 2017. [DOI: 10.1155/2017/5752090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to prepare 10-hydroxycamptothecin nanocolloidal particles (HCPTNPs) to increase the solubility of drugs, reduce the toxicity, improve the stability of the drug, and so forth. HCPTNPs was prepared by antisolvent precipitation (AP) method combined with high pressure homogenization (HPH), followed by lyophilization. The main parameters during antisolvent process including volume ratio of dimethyl sulfoxide (DMSO) and H2O and dripping speed were optimized and their effects on mean particle size (MPS) and yield of HCPT primary particles were investigated. In the high pressure homogeneous procedure, types of surfactants, amount of surfactants, and homogenization pressure (HP) were optimized and their influences on MPS, zeta potential (ZP), and morphology were analyzed. The optimum conditions of HCPTNPs were as follows: 0.2 mg/mL HCPT aqueous suspension, 1% of ASS, 1000 bar of HP, and 20 passes. Finally, the HCPTNPs via lyophilization using glucose as lyoprotectant under optimum conditions had an MPS of 179.6 nm and a ZP of 28.79 ± 1.97 mV. The short-term stability of HCPTNPs indicated that the MPS changed in a small range.
Collapse
|
13
|
Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 2016; 10:11-21. [PMID: 28096662 PMCID: PMC5207451 DOI: 10.2147/nsa.s117018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of chemical morphology characterization and in vitro release studies indicated the potential use of these NPs as drug carriers in biological systems requiring a fast release of SA.
Collapse
Affiliation(s)
- ES Bronze-Uhle
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - BC Costa
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - VF Ximenes
- Department of Chemistry, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - PN Lisboa-Filho
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| |
Collapse
|
14
|
Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, Shahreza S, Sori M, Hamblin MR. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 2016; 13:1609-1623. [PMID: 27216915 PMCID: PMC5063715 DOI: 10.1080/17425247.2016.1193149] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION One of the biggest impacts that the nanotechnology has made on medicine and biology, has been in the area of drug delivery systems (DDSs). Many drugs suffer from serious problems concerning insolubility, instability in biological environments, poor uptake into cells and tissues, sub-optimal selectivity for targets and unwanted side effects. Nanocarriers can be designed as DDSs to overcome many of these drawbacks. One of the most versatile building blocks to prepare these nanocarriers is the ubiquitous, readily available and inexpensive protein, serum albumin. Areas covered: This review covers the use of different types of albumin (human, bovine, rat, and chicken egg) to prepare nanoparticle and microparticle-based structures to bind drugs. Various methods have been used to modify the albumin structure. A range of targeting ligands can be attached to the albumin that can be recognized by specific cell receptors that are expressed on target cells or tissues. Expert opinion: The particular advantages of albumin used in DDSs include ready availability, ease of chemical modification, good biocompatibility, and low immunogenicity. The regulatory approvals that have been received for several albumin-based therapeutic agents suggest that this approach will continue to be successfully explored.
Collapse
Affiliation(s)
- Mahdi Karimi
- a Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Sajad Bahrami
- a Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
- b Nanomedicine Research Association (NRA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Soodeh Baghaee Ravari
- c Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Parham Sahandi Zangabad
- d Department of Materials Science and Engineering , Sharif University of Technology , Tehran , Iran
| | - Hamed Mirshekari
- e Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG) , Iran University of Medical Sciences , Tehran , Iran
| | - Mahnaz Bozorgomid
- f Department of Applied Chemistry , Islamic Azad University, Central Tehran Branch , Tehran , Iran
| | - Somayeh Shahreza
- g Department of Microbiology, School of Biology , University College of Sciences, University of Tehran , Tehran , Iran
| | - Masume Sori
- a Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Michael R Hamblin
- h Wellman Center for Photomedicine , Massachusetts General Hospital , Boston , MA , USA
- i Department of Dermatology , Harvard Medical School , Boston , MA , USA
- j Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
15
|
Sidhaye AA, Bhuran KC, Zambare S, Abubaker M, Nirmalan N, Singh KK. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine (Lond) 2016; 11:2809-2828. [PMID: 27759489 DOI: 10.2217/nnm-2016-0235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM The intra-erythrocytic development of the malarial parasite is dependent on active uptake of nutrients, including human serum albumin (HSA), into parasitized red blood cells (pRBCs). We have designed HSA-based nanoparticles as a potential drug-delivery option for antimalarials. METHODS Artemether-loaded nanoparticles (AANs) were designed and antimalarial activity evaluated in vitro/in vivo using Plasmodium falciparum/Plasmodium berghei species, respectively. RESULTS Selective internalization of AAN into Plasmodium-infected RBCs in preference to healthy erythrocytes was observed using confocal imaging. In vitro studies showed 50% dose reduction for AAN as compared with drug-only controls to achieve IC50 levels of inhibition. The nanoparticles exhibited twofold higher peak drug concentrations in RBCs with antimalarial activity at 50% of therapeutic doses in P. bergei infected mice. CONCLUSION Novel HSA-based nanoparticles offer safe and effective approach for selective targeting of antimalarial drugs.
Collapse
Affiliation(s)
- Aditi A Sidhaye
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Kanchan C Bhuran
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Sneha Zambare
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Munna Abubaker
- School of Environment & Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | - Niroshini Nirmalan
- School of Environment & Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | - Kamalinder K Singh
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India.,School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
16
|
Yang X, Liu Y, Zhao Y, Han M, Guo Y, Kuang H, Wang X. A stabilizer-free and organic solvent-free method to prepare 10-hydroxycamptothecin nanocrystals: in vitro and in vivo evaluation. Int J Nanomedicine 2016; 11:2979-94. [PMID: 27382284 PMCID: PMC4922823 DOI: 10.2147/ijn.s102726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
10-Hydroxycamptothecin (10-HCPT) is a promising anticancer drug with a wide spectrum of antitumor activities. Due to its poor solubility, the carboxylate form that shows high water solubility but minimal anticancer activity and pharmacokinetic defects is used in the marketed 10-HCPT injections, resulting in its limited clinical application. To develop a simple, safe, and highly effective drug delivery system, a modified acid–base microprecipitation combined with a high-pressure homogenization technique was adopted to prepare 10-HCPT nanocrystals. Neither organic solvents nor stabilizers were employed throughout the preparation process. The in vitro and in vivo performances of the resulting10-HCPT nanocrystals were investigated systematically. The nanocrystals were spherical with a small size of ~130 nm, and the actual drug-loading content was as high as 75%. The nanocrystals displayed a sustained release pattern and were proven to have a higher cell uptake and antiproliferative activity than the 10-HCPT injections. The 10-HCPT nanocrystals also showed enhanced drug accumulation in tumors and better anticancer efficacy in 4T1-bearing mice. In summary, the 10-HCPT nanocrystals prepared in this study seem to be a promising delivery system for a new form of 10-HCPT dosages.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yingying Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing; School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, People's Republic of China
| | - Yanna Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Meihua Han
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yifei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Haixue Kuang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, People's Republic of China
| | - Xiangtao Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
17
|
Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0250-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Li M, Li Z, Yang Y, Wang Z, Yang Z, Li B, Xie X, Song J, Zhang H, Li Y, Gao G, Yang J, Mei X, Gong W. Thermo-Sensitive Liposome co-Loaded of Vincristine and Doxorubicin Based on Their Similar Physicochemical Properties had Synergism on Tumor Treatment. Pharm Res 2016; 33:1881-98. [DOI: 10.1007/s11095-016-1924-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/07/2016] [Indexed: 12/28/2022]
|
19
|
Li Z, Hao L, Yuan P, Hu W, Zhang L. Encapsulation of honokiol-loaded nanoparticles in lecithin microbubbles for targeted tumor therapy. RSC Adv 2016. [DOI: 10.1039/c6ra10047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to develop a new drug delivery system that combines honokiol-loaded albumin nanoparticles (HKNs) with perfluorocarbon-filled microbubbles (MBs) to improve the target delivery of honokiol (HK).
Collapse
Affiliation(s)
- Zhen Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Pei Yuan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital
- Chongqing 400030
- P. R. China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|