1
|
Sonam Dongsar T, Tsering Dongsar T, Gupta G, Alsayari A, Wahab S, Kesharwani P. PLGA nanomedical consignation: A novel approach for the management of prostate cancer. Int J Pharm 2024; 652:123808. [PMID: 38224758 DOI: 10.1016/j.ijpharm.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The malignancy of the prostate is a complicated ailment which impacts millions of male populations around the globe. Despite the multitude of endeavour accomplished within this domain, modalities that are involved in the ameliorative management of predisposed infirmity are still relent upon non-specific and invasive procedures, thus imposing a detrimental mark on the living standard of the individual. Also, the orchestrated therapeutic interventions are still incompetent in substantiating a robust and unabridged therapeutic end point owing to their inadequate solubility, low bioavailability, limited cell assimilation, and swift deterioration, thereby muffling the clinical application of these existing treatment modalities. Nanotechnology has been employed in an array of modalities for the medical management of malignancies. Among the assortment of available nano-scaffolds, nanocarriers composed of a bio-decomposable and hybrid polymeric material like PLGA hold an opportunity to advance as standard chemotherapeutic modalities. PLGA-based nanocarriers have the prospect to address the drawbacks associated with conventional cancer interventions, owing to their versatility, durability, nontoxic nature, and their ability to facilitate prolonged drug release. This review intends to describe the plethora of evidence-based studies performed to validate the applicability of PLGA nanosystem in the amelioration of prostate malignancies, in conjunction with PLGA focused nano-scaffold in the clinical management of prostate carcinoma. This review seeks to explore numerous evidence-based studies confirming the applicability of PLGA nanosystems in ameliorating prostate malignancies. It also delves into the role of PLGA-focused nano-scaffolds in the clinical management of prostate carcinoma, aiming to provide a comprehensive perspective on these advancements.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
De Stefani C, Lodovichi J, Albonetti L, Salvatici MC, Quintela JC, Bilia AR, Bergonzi MC. Solubility and Permeability Enhancement of Oleanolic Acid by Solid Dispersion in Poloxamers and γ-CD. Molecules 2022; 27:molecules27093042. [PMID: 35566392 PMCID: PMC9101807 DOI: 10.3390/molecules27093042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid widely found in the Oleaceae family, and it represents 3.5% of the dry weight of olive leaves. OA has many pharmacological activities, such as hepatoprotection, anti-inflammatory, anti-oxidant, anti-diabetic, anti-tumor, and anti-microbic activities. Its therapeutic application is limited by its poor water solubility, bioavailability, and permeability. In this study, solid dispersions (SDs) were developed to overcome these OA limitations. Solubility studies were conducted to evaluate different hydrophilic polymers, drug-to-polymer ratios, and preparation methods. Poloxamer 188, Poloxamer 407, and γ-CD exhibited the highest increases in terms of OA solubility, regardless of the method of preparation. Binary systems were characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRPD), and Fourier transform infrared spectroscopy (FTIR). In addition, pure compounds and SDs were analyzed using scanning electron microscopy (SEM) in order to observe both the morphology and the particle surface. In vitro dissolution studies were performed for P407, P188, and γ-CD SDs. Preparation using the solvent evaporation method (SEM) produced the highest increase in the dissolution profiles of all three polymers with respect to the OA solution. Finally, the effect of SDs on OA permeability was evaluated with an in vitro parallel artificial membrane permeability assay (PAMPA). The formulation improved passive permeation across the simulated barrier due to OA increased solubility. The dissolution and PAMPA results indicate that the amorphization of OA by SD preparation could be a useful method to enhance its oral absorption, and it is also applicable on an industrial scale.
Collapse
Affiliation(s)
- Chiara De Stefani
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Jessika Lodovichi
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Laura Albonetti
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Maria Cristina Salvatici
- National Research Council (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM)—Electron Microscopy Centre (Ce.M.E.), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy;
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
- Correspondence: ; Tel.: +39-055-457-3678
| |
Collapse
|
3
|
Overview of chitosan-based nanosystems for prostate cancer therapy. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Ferreira RG, Narvaez LEM, Espíndola KMM, Rosario ACRS, Lima WGN, Monteiro MC. Can Nimesulide Nanoparticles Be a Therapeutic Strategy for the Inhibition of the KRAS/PTEN Signaling Pathway in Pancreatic Cancer? Front Oncol 2021; 11:594917. [PMID: 34354940 PMCID: PMC8329661 DOI: 10.3389/fonc.2021.594917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is an aggressive, devastating disease due to its invasiveness, rapid progression, and resistance to surgical, pharmacological, chemotherapy, and radiotherapy treatments. The disease develops from PanINs lesions that progress through different stages. KRAS mutations are frequently observed in these lesions, accompanied by inactivation of PTEN, hyperactivation of the PI3K/AKT pathway, and chronic inflammation with overexpression of COX-2. Nimesulide is a selective COX-2 inhibitor that has shown anticancer effects in neoplastic pancreatic cells. This drug works by increasing the levels of PTEN expression and inhibiting proliferation and apoptosis. However, there is a need to improve nimesulide through its encapsulation by solid lipid nanoparticles to overcome problems related to the hepatotoxicity and bioavailability of the drug.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Luis Eduardo Mosquera Narvaez
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Kaio Murilo Monteiro Espíndola
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Amanda Caroline R. S. Rosario
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Wenddy Graziela N. Lima
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Marta Chagas Monteiro
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
- *Correspondence: Marta Chagas Monteiro,
| |
Collapse
|
5
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
6
|
Formulation of Nanomicelles to Improve the Solubility and the Oral Absorption of Silymarin. Molecules 2019; 24:molecules24091688. [PMID: 31052197 PMCID: PMC6540123 DOI: 10.3390/molecules24091688] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/13/2023] Open
Abstract
Two novel nanomicellar formulations were developed to improve the poor aqueous solubility and the oral absorption of silymarin. Polymeric nanomicelles made of Soluplus and mixed nanomicelles combining Soluplus with d-α-tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS) were prepared using the thin film method. Physicochemical parameters were investigated, in particular the average diameter, the homogeneity (expressed as polydispersity index), the zeta potential, the morphology, the encapsulation efficiency, the drug loading, the critical micellar concentration and the cloud point. The sizes of ~60 nm, the narrow size distribution (polydispersity index ≤0.1) and the encapsulation efficiency >92% indicated the high affinity between silymarin and the core of the nanomicelles. Solubility studies demonstrated that the solubility of silymarin increased by ~6-fold when loaded into nanomicelles. Furthermore, the physical and chemical parameters of SLM-loaded formulations stored at room temperature and in refrigerated conditions (4 °C) were monitored over three months. In vitro stability and release studies in media miming the physiological conditions were also performed. In addition, both formulations did not alter the antioxidant properties of silymarin as evidenced by the 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) assay. The potential of the nanomicelles to increase the intestinal absorption of silymarin was firstly investigated by the parallel artificial membrane permeability assay. Subsequently, transport studies employing Caco-2 cell line demonstrated that mixed nanomicelles statistically enhanced the permeability of silymarin compared to polymeric nanomicelles and unformulated extract. Finally, the uptake studies indicated that both nanomicellar formulations entered into Caco-2 cells via energy-dependent mechanisms.
Collapse
|
7
|
Zhang J, Wang L, You X, Xian T, Wu J, Pang J. Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Curr Top Med Chem 2019; 19:57-73. [PMID: 30686255 DOI: 10.2174/1568026619666190125145836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/27/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Traditional prostate cancer therapy and especially chemotherapy has faced many challenges. Low accumulation levels, rapid clearance or drug resistance at the tumor site have been central to why the effect of chemotherapy drugs has declined. Applications of nanotechnology to biomedicine have enabled the development of nanoparticle therapeutic carriers suited for the delivery of chemotherapeutics in cancer therapy. This review describes the current nature of nanoparticle therapeutic carriers for prostate cancer. It describes typical nanocarriers commonly used for the delivery of chemotherapy or for imaging examination. Targeting strategies and related influencing factors are investigated to find ways of enhancing treatment effects of nanoparticles. The overall purpose of this review is to further understanding and to offer recommendations on the design and development of therapeutic nanoparticles for prostate cancer.
Collapse
Affiliation(s)
- Junfu Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinru You
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Tuzeng Xian
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
8
|
He L, Liu J, Li S, Feng X, Wang C, Zhuang X, Ding J, Chen X. Polymer Nanoplatforms at Work in Prostate Cancer Therapy. ADVANCED THERAPEUTICS 2019; 2. [DOI: 10.1002/adtp.201800122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 12/13/2022]
Abstract
AbstractProstate cancer (PCa) is the most common male urogenital malignancy worldwide. Surgery, endocrine therapy, radiotherapy, and chemotherapy are the main clinical management options for PCa. However, these three therapies each have limitations. For example, surgery is not suitable for the advanced PCa patients with extensive metastases, and radiotherapy causes serious side effects. Primary endocrine therapy promotes the progression of hormone‐sensitive PCa into the castration‐resistant prostate cancer. Therefore, considering these drawbacks, chemotherapy has become an effective and extensive treatment for PCa. Among the modern therapeutic strategies against advanced PCa, polymer‐nanocarrier‐incorporated formulations have gradually emerged due to their well‐controlled release profiles and improved tumor targeting abilities. The drug delivery systems based on polymer nanoplatforms passively target tumors via the enhanced permeability and retention effect. Simultaneously, stimuli‐responsive polymer nanoplatforms unload cargoes in response to certain stimuli in the tumor area. Furthermore, the active targeting ligand‐conjugated polymer nanoformulations against PCa‐specific markers have also achieved great success in PCa therapies. Herein, the advanced polymer nanoplatforms for PCa therapy are reviewed, while the future development of polymer nanoplatforms for PCa therapy is also predicted.
Collapse
Affiliation(s)
- Liang He
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Jianhua Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Shengxian Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Chunxi Wang
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
9
|
Campos JR, Fernandes AR, Sousa R, Fangueiro JF, Boonme P, Garcia ML, Silva AM, Naveros BC, Souto EB. Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line. Pharm Dev Technol 2019; 24:616-622. [PMID: 30477410 DOI: 10.1080/10837450.2018.1549075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this work is development of a nontoxic, long-term stable solid lipid nanoparticles (SLN) formulation for the loading of Nimesulide (NiM) by a 22 factorial design. The optimized formulation was composed of 10 wt% of glyceryl behenate and 2.5 wt% of poloxamer 188. Immediately after production, Z-Ave of NiM-SLN was 166.1 ± 0.114 nm, with a polydispersity index (PI) of 0.171 ± 0051 and zeta potential nearly neutral (-3.10 ± 0.166 mV). A slight increase of Z-Ave was recorded for NiM-SLN stored at 25 °C for a period of 15 days, whereas at 4 °C particles kept size within similar range. Long-term stability was monitored using TurbiscanLab®, showing a high stability of the nanoparticles with variations in the backscattering profiles below 10%. The release profile of NiM-SLN followed a sustained pattern with ca. 30% of drug released up to 24 h. Empty-SLN and NiM-SLN were nontoxic after exposing Caco-2 cells to the highest concentration (100 μg/mL) up to 48 hours (cell viability higher than 80%). NiM-SLN were lyophilized using different cryoprotectants, producing particles of 463.1 ± 36.63 nm (PI 0.491 ± 0.027) with 5% trehalose. Solid character of NiM-SLN was confirmed by DSC, recording a recrystallization index of 83% for NiM-SLN and of 74% for lyophilized SLN.
Collapse
Affiliation(s)
- Joana R Campos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Ana R Fernandes
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Raquel Sousa
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Joana F Fangueiro
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Prapaporn Boonme
- b Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Songkhla , Thailand.,c Nanotec-PSU Center of Excellence on Drug Delivery System , Songkhla , Thailand
| | - Maria Luisa Garcia
- d Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,e Institute of Nanoscience and Nanotechnology , University of Barcelona , Barcelona , Spain
| | - Amelia M Silva
- f Department of Biology and Environment , University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados , Vila Real , Portugal.,g Centre for Research and Technology of Agro-Environmental and Biological Sciences , CITAB, UTAD, Quinta de Prados , Vila Real , Portugal
| | - Beatriz C Naveros
- h Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Granada , Granada , Spain
| | - Eliana B Souto
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal.,i CEB - Centre of Biological Engineering , University of Minho, Campus de Gualtar , Braga , Portugal
| |
Collapse
|
10
|
Li H, Wang J, Cong J, Wei C, Li J, Liu H, Li S, Yang M. Biomimetic synthesis of proline-derivative templated mesoporous silica for increasing the brain distribution of diazepam and improving the pharmacodynamics of nimesulide. Drug Deliv 2017; 24:1086-1098. [PMID: 28762846 PMCID: PMC8241142 DOI: 10.1080/10717544.2017.1359863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Herein a new kind of proline-derivative templated mesoporous silica with curved channels (CMS) was biomimetically synthesized and applied as carrier to improve the drug dissolution and bioavailability of hydrophobic diazepam (DZP) and nimesulide (NMS). Drugs can be incorporated into CMS with high efficiency; during this process, they successfully transformed to amorphous phase. As a result, the dissolution rate of DZP and NMS was significantly improved. Biodistribution study confirmed that CMS converted DZP distribution in mice with the tendency of lung targeting and brain targeting. At 45 min postadministration, the concentrations of DZP in plasma, lung and brain were 8.57-fold, 124.94-fold and 19.55-fold higher from 1:3 DZP/CMS sample than that of pure DZP sample, respectively. At 90 min postadministration, the content of DZP in brain was 62.31-fold higher for 1:3 DZP/CMS sample than that of pure DZP. Besides, the anti-inflammatory and analgesic effects of 1:3 NMS/CMS were systematic evaluated using mouse ankle swelling test (MAST), mouse ear swelling test (MEST) and mouse writhing test (MWT). The results indicated that after incorporating into CMS, the therapeutic effects of NMS were obviously improved, and the inhibition rates of 1:3 NMS/CMS in all pharmacodynamics tests varied from 102.2% to 904.3%.
Collapse
Affiliation(s)
- Heran Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianxin Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jialiang Cong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chen Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Mozolewski P, Jakóbkiewicz-Banecka J, Węgrzyn G, Banecki B, Gabig-Cimińska M. Non-steroidal anti-inflammatory drugs are safe with respect to the transcriptome of human dermal fibroblasts. Eur J Pharmacol 2017; 818:206-210. [PMID: 29074415 DOI: 10.1016/j.ejphar.2017.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) provide important benefits to millions of patients, but are associated with a number of serious adverse events. These adverse drug reactions are an important clinical issue and a serious public health risk. While most unfortunate responses in human to NSAIDs are mild and may disappear after decreasing the dose or withdrawal of the drug, some of them can produce serious outcomes. Currently, little is known regarding the effects of NSAIDs on global RNA expression in normal, non-transformed cells. Therefore, in this report, the effect of NSAIDs, COX-nonspecific and COX-2-specific inhibitors, indomethacin and nimesulide respectively, commonly used medications worldwide for the reduction of pain, fever, inflammation and stiffness, on transcriptomic signature of human dermal fibroblasts was investigated. A total of 3803 differentially expressed genes with a fold change greater than or equal to 1.3 and below than or equal to 0.7 for whole genome transcripts, with a P value of < 0.05 were identified in response to all applied conditions. We found that although the total number of deregulated genes was relatively high at such criteria, changes in fibroblast transcriptome profile after treatment at selected experimental conditions were however smallish, as the selected drugs slightly modulate transcriptome with only a few genes with expression altered a bit more than twice. Nevertheless, transcriptomic data has its own limitations and it cannot reflect all post-transcriptional changes, which in turn may cause same risks, especially for a long time of medication.
Collapse
Affiliation(s)
- Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland.
| |
Collapse
|
12
|
Göke K, Lorenz T, Repanas A, Schneider F, Steiner D, Baumann K, Bunjes H, Dietzel A, Finke JH, Glasmacher B, Kwade A. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur J Pharm Biopharm 2017; 126:40-56. [PMID: 28532676 DOI: 10.1016/j.ejpb.2017.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
Low aqueous solubility of active pharmaceutical ingredients presents a serious challenge in the development process of new drug products. This article provides an overview on some of the current approaches for the formulation of poorly water-soluble drugs with a special focus on strategies pursued at the Center of Pharmaceutical Engineering of the TU Braunschweig. These comprise formulation in lipid-based colloidal drug delivery systems and experimental as well as computational approaches towards the efficient identification of the most suitable carrier systems. For less lipophilic substances the preparation of drug nanoparticles by milling and precipitation is investigated for instance by means of microsystem-based manufacturing techniques and with special regard to the preparation of individualized dosage forms. Another option to overcome issues with poor drug solubility is the incorporation into nanospun fibers.
Collapse
Affiliation(s)
- Katrin Göke
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Thomas Lorenz
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Alexandros Repanas
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Frederic Schneider
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Denise Steiner
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Knut Baumann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Jan H Finke
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Birgit Glasmacher
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Arno Kwade
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
13
|
Badri W, Miladi K, Nazari QA, Greige-Gerges H, Fessi H, Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int J Pharm 2016; 515:757-773. [DOI: 10.1016/j.ijpharm.2016.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
|
14
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|