1
|
Hameed H, Faheem S, Younas K, Jamshaid M, Ereej N, Hameed A, Munir R, Khokhar R. A comprehensive review on lipid-based nanoparticles via nose to brain targeting as a novel approach. J Microencapsul 2024:1-34. [PMID: 39286884 DOI: 10.1080/02652048.2024.2404414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The central nervous system (CNS) has been a chief concern for millions of people worldwide, and many therapeutic medications are unable to penetrate the blood-brain barrier. Advancements in nanotechnology have enabled safe, effective, and precise delivery of medications towards specific brain regions by utilising a nose-to-brain targeting route. This method reduces adverse effects, increases medication bioavailability, and facilitates mucociliary clearance while promoting accumulation of drug in the targeted brain region. Recent developments in lipid-based nanoparticles, for instance solid lipid nanoparticles (SLNs), liposomes, nanoemulsions, and nano-structured lipid carriers have been explored. SLNs are currently the most promising drug carrier system because of their capability of transporting drugs across the blood-brain barrier at the intended brain site. This approach offers higher efficacy, controlled drug delivery, target specificity, longer circulation time, and a reduction in toxicity through a biomimetic mechanism.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, Orsay, France
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Khokhar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Darwish AB, Mohsen AM, ElShebiney S, Elgohary R, Younis MM. Development of chitosan lipid nanoparticles to alleviate the pharmacological activity of piperine in the management of cognitive deficit in diabetic rats. Sci Rep 2024; 14:8247. [PMID: 38589438 PMCID: PMC11002014 DOI: 10.1038/s41598-024-58601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Shaimaa ElShebiney
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mostafa Mohamed Younis
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
3
|
Garcia-Fossa F, de Jesus MB. Cationic solid lipid nanoparticles (SLN) complexed with plasmid DNA enhance prostate cancer cells (PC-3) migration. Nanotoxicology 2024; 18:36-54. [PMID: 38300021 DOI: 10.1080/17435390.2024.2307616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Nanotechnology applications in biomedicine have increased in recent decades, primarily as therapeutic agents, drugs, and gene delivery systems. Among the nanoparticles used in medicine, we highlight cationic solid lipid nanoparticles (SLN). Given their nontoxic properties, much research has focused on the beneficial effects of SLN for drug or gene delivery system. However, little attention has been paid to the adverse impacts of SLN on the cellular environment, particularly their influence on intracellular signaling pathways. In this work, we investigate the effects triggered by cationic SLN on human prostate non-tumor cells (PNT1A) and tumor cells (PC-3). Our results demonstrate that cationic SLN enhances the migration of PC-3 prostate cancer cells but not PNT1A non-tumor prostate cells, an unexpected and unprecedented development. Furthermore, we observed that the enhanced cell migration velocity is a concentration-dependent and nanoparticle-dependent effect, and not related to any individual nanoparticle component. Moreover, cationic SLN increased vimentin expression (p < 0.05) but SLN did not affect Smad2 nuclear translocation. Meanwhile, EMT-related (epithelial-to-mesenchymal transition) proteins, such as ZEB1, underwent nuclear translocation when treated with cationic SLN, thereby affecting PC-3 cell motility through ZEB1 and vimentin modulation. From a therapeutic perspective, cationic SLN could potentially worsen a patient's condition if these results were reproduced in vivo. Understanding the in vitro molecular mechanisms triggered by nanomaterials and their implications for cell function is crucial for defining their safe and effective use.
Collapse
Affiliation(s)
- Fernanda Garcia-Fossa
- Nano-cell Interactions Laboratory, Department of Biochemistry & Tissue Biology, Biology Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo Bispo de Jesus
- Nano-cell Interactions Laboratory, Department of Biochemistry & Tissue Biology, Biology Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
4
|
Khanam A, Singh G, Narwal S, Chopra B, Dhingra AK. A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer. Curr Drug Deliv 2024; 21:1161-1179. [PMID: 37888818 DOI: 10.2174/0115672018180695230925113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Prostate cancer continues to be a serious danger to men's health, despite advances in the field of cancer nanotechnology. Although different types of cancer have been studied using nanomaterials and theranostic systems derived from nanomaterials, they have not yet reached their full potential for prostate cancer due to issues with in vivo biologic compatibility, immune reaction responses, accurate targetability, as well as a therapeutic outcome related to the nano-structured mechanism. METHOD The ultimate motive of this article is to understand the theranostic nanotechnology-based scheme for treating prostate cancer. The categorization of diverse nanomaterials in accordance with biofunctionalization tactics and biomolecule sources has been emphasized in this review so that they might potentially be used in clinical contexts and future advances. These opportunities can enhance the direct visualization of prostate tumors, early identification of prostate cancer-associated biomarkers at extremely low detection limits, and finally, the therapy for prostate cancer. RESULT In December 2022, a thorough examination of the scientific literature was carried out utilizing the Web of Science, PubMed, and Medline databases. The goal was to analyze novel applications of nanotechnology in the treatment of prostate cancer, together with their structural layouts and functionalities. CONCLUSION The various treatments and the reported revolutionary nanotechnology-based systems appear to be precise, safe, and generally successful; as a result, this might open up a new avenue for the detection and eradication of prostate cancer.
Collapse
Affiliation(s)
- Arshi Khanam
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Gurvirender Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Smita Narwal
- Global Research Institute of Pharmacy, Radaur, Yamunanagar-135133, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Ashwani K Dhingra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
5
|
He K, Wang T, Chen J, Huang X, Wang Z, Yang Z, Wang K, Zhao W, Jiang J, Zhao L. A Pegylated Liposome Loaded with Raddeanin A for Prostate Cancer Therapy. Int J Nanomedicine 2023; 18:4007-4021. [PMID: 37496689 PMCID: PMC10368069 DOI: 10.2147/ijn.s420803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Raddeanin A (RA), a potent triterpenoid extracted from Anemone raddeana Regel, has a moderate therapeutic effect on prostate cancer (PCa), correlating with serious biological toxicity. Therefore, a RA-loaded PEGylated liposome drug delivery system was devised in this study. Methods Hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-Polyethyleneglycol-2000 (sodium salt) (DSPE-PEG2k), cholesterol (CHO), and RA were utilised to prepare a RA-loaded liposome (LRA) drug delivery system via the thin film hydration technique., The drug loading content was confirmed by high performance liquid chromatography. Dynamic light scattering was employed to evaluate the drug's particle size and stability. Methyl tetrazolium, colony formation, and Western blot (WB) were used in vitro to elucidate the inhibitory effect and mechanism of LRA on prostate cancer cells. Finally, xenograft model was used to confirm the tumor-inhibiting efficacy, clarify the mechanism, and determine the biosafety in mice. Results LRA has stable physicochemical properties and a diameter of 173.5 15.3 nm. LRA inhibited the growth of prostate cancer cells in a dose- and time-dependent manner. LRA can substantially reduce the expression of AR and HMGB1, induce apoptosis, regulate the expression of cell cycle-related proteins in vitro and in vivo. The results of the biosafety tests demonstrated that LRA effectively reduced the adverse effects of RA. Conclusion As a drug delivery system, LRA could effectively and safely inhibit the progression of prostate cancer.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Junyu Chen
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Weixin Zhao
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
6
|
Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. Int J Mol Sci 2023; 24:6199. [PMID: 37047172 PMCID: PMC10094605 DOI: 10.3390/ijms24076199] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advancements in drug delivery technologies paved a way for improving cancer therapeutics. Nanotechnology emerged as a potential tool in the field of drug delivery, overcoming the challenges of conventional drug delivery systems. In the field of nanotechnology, solid lipid nanoparticles (SLNs) play a vital role with a wide range of diverse applications, namely drug delivery, clinical medicine, and cancer therapeutics. SLNs establish a significant role owing to their ability to encapsulate hydrophilic and hydrophobic compounds, biocompatibility, ease of surface modification, scale-up feasibility, and possibilities of both active and passive targeting to various organs. In cancer therapy, SLNs have emerged as imminent nanocarriers for overcoming physiological barriers and multidrug resistance pathways. However, there is a need for special attention to be paid to further improving the conceptual understanding of the biological responses of SLNs in cancer therapeutics. Hence, further research exploration needs to be focused on the determination of the structure and strength of SLNs at the cellular level, both in vitro and in vivo, to develop potential therapeutics with reduced side effects. The present review addresses the various modalities of SLN development, SLN mechanisms in cancer therapeutics, and the scale-up potential and regulatory considerations of SLN technology. The review extensively focuses on the applications of SLNs in cancer treatment.
Collapse
Affiliation(s)
- Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Janani Mahendran
- Department of Pharmaceutics, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore 641002, TN, India
| | - Hariprasad Ranganathan
- Department of Pharmaceutical Analysis, PSG College of Pharmacy, Coimbatore 641004, TN, India
| | - Arjunan Karuppaiah
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore 641032, TN, India
| | - Habibur Rahman
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, TN, India
| |
Collapse
|
7
|
Harish V, Tewari D, Mohd S, Govindaiah P, Babu MR, Kumar R, Gulati M, Gowthamarajan K, Madhunapantula SV, Chellappan DK, Gupta G, Dua K, Dallavalasa S, Singh SK. Quality by Design Based Formulation of Xanthohumol Loaded Solid Lipid Nanoparticles with Improved Bioavailability and Anticancer Effect against PC-3 Cells. Pharmaceutics 2022; 14:2403. [PMID: 36365221 PMCID: PMC9699314 DOI: 10.3390/pharmaceutics14112403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Many natural products with greater therapeutic efficacy are limited to target several chronic diseases such as cancer, diabetes, and neurodegenerative diseases. Among the natural products from hops, i.e., Xanthohumol (XH), is a prenylated chalcone. The present research work focuses on the enhancement of the poor oral bioavailability and weak pharmacokinetic profile of XH. We exemplified the development of a Xanthohumol-loaded solid lipid nanoparticles (XH-SLNs) cargo system to overcome the limitations associated with its bioavailability. The XH-SLNs were prepared by a high-shear homogenization/ultrasonication method and graphical, numerical optimization was performed by using Box-Behnken Design. Optimized XH-SLNs showed PS (108.60 nm), PDI (0.22), ZP (-12.70 mV), %EE (80.20%) and an amorphous nature that was confirmed by DSC and PXRD. FE-SEM and HRTEM revealed the spherical morphology of XH-SLNs. The results of release studies were found to be 9.40% in 12 h for naive XH, whereas only 28.42% of XH was released from XH-SLNs. The slow release of drugs may be due to immobilization of XH in the lipid matrix. In vivo pharmacokinetic study was performed for the developed XH-SLNs to verify the enhancement in the bioavailability of XH than naive XH. The enhancement in the bioavailability of the XH was confirmed from an increase in Cmax (1.07-folds), AUC0-t (4.70-folds), t1/2 (6.47-folds) and MRT (6.13-folds) after loading into SLNs. The relative bioavailability of XH loaded in SLNs and naive XH was found to be 4791% and 20.80%, respectively. The cytotoxicity study of naive XH, XH-SLNs were performed using PC-3 cell lines by taking camptothecin as positive control. The results of cytotoxicity study revealed that XH-SLNs showed good cell inhibition in a sustained pattern. This work successfully demonstrated formulation of XH-SLNs with sustained release profile and improved oral bioavailability of XH with good anticancer properties against PC-3 cells.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Sharfuddin Mohd
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Pilli Govindaiah
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Malakapogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
8
|
Ma M, He W, Zhao K, Xue L, Xia S, Zhang B. Targeting aldehyde dehydrogenase for prostate cancer therapies. Front Oncol 2022; 12:1006340. [PMID: 36300093 PMCID: PMC9589344 DOI: 10.3389/fonc.2022.1006340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men in the United States. About 10 – 20% of PCa progress to castration-resistant PCa (CRPC), which is accompanied by metastasis and therapeutic resistance. Aldehyde dehydrogenase (ALDH) is famous as a marker of cancer stem-like cells in different cancer types, including PCa. Generally, ALDHs catalyze aldehyde oxidation into less toxic carboxylic acids and give cancers a survival advantage by reducing oxidative stress caused by aldehyde accumulation. In PCa, the expression of ALDHs is associated with a higher tumor stage and more lymph node metastasis. Functionally, increased ALDH activity makes PCa cells gain more capabilities in self-renewal and metastasis and reduces the sensitivity to castration and radiotherapy. Therefore, it is promising to target ALDH or ALDHhigh cells to eradicate PCa. However, challenges remain in moving the ALDH inhibitors to PCa therapy, potentially due to the toxicity of pan-ALDH inhibitors, the redundancy of ALDH isoforms, and the lack of explicit understanding of the metabolic signaling transduction details. For targeting PCa stem-like cells (PCSCs), different regulators have been revealed in ALDHhigh cells to control cell proliferation and tumorigenicity. ALDH rewires essential signaling transduction in PCa cells. It has been shown that ALDHs produce retinoic acid (RA), bind with androgen, and modulate diverse signaling. This review summarizes and discusses the pathways directly modulated by ALDHs, the crucial regulators that control the activities of ALDHhigh PCSCs, and the recent progress of ALDH targeted therapies in PCa. These efforts will provide insight into improving ALDH-targeted treatment.
Collapse
Affiliation(s)
| | | | | | | | - Siyuan Xia
- *Correspondence: Siyuan Xia, ; Baotong Zhang,
| | | |
Collapse
|
9
|
Mechanisms of solid lipid nanoparticles-triggered signaling pathways in eukaryotic cells. Colloids Surf B Biointerfaces 2022; 220:112863. [DOI: 10.1016/j.colsurfb.2022.112863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
10
|
Malik Z, Parveen R, Abass S, Irfan Dar M, Husain SA, Ahmad S. Receptor-Mediated Targeting in Breast Cancer through Solid Lipid Nanoparticles and Its Mechanism. Curr Drug Metab 2022; 23:800-817. [PMID: 35430962 DOI: 10.2174/1389200223666220416213639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticles have gained prominence in many areas and domains worldwide, such as metallic NP, carbon dots, quantum dots, polymeric NP, nano-suspension, nanocrystals, solid lipid nanoparticles (SLN), etc. and have been applied in the field of medicine as nanomedicine with promising results. Rise in cancer mortality rate has been an issue for a long time with female breast cancer as one of the most detected cancers. No permanent treatment has been developed till date could combat breast cancer with minimum side effects that are not long-lasting as there is no proper technique through which the anticancer drugs can recognize benign or malignant or normal cells that causes systematic toxicity. Advancement in technology has led to the discovery of many biological pathways and mechanisms. Tumor cells or cancer cells overexpress some high-affinity receptors that can be targeted to deliver the anticancer drugs at specific site using these pathways and mechanisms. Solid lipid nanoparticles (SLN) are among some of the excellent drug delivery systems, especially stealth SLN (sSLN). SLN, when conjugated with a ligand (called as sSLN), has affinity and specificity towards a specific receptor, and can deliver the drug in breast cancer cells overexpressing the receptors. Using this technique, various investigations have reported better anti-breast cancer activity than simple SLN (non-conjugated to ligand or no receptor targeting). This review includes the investigations and data on receptor-mediated targeting in breast cancer from 2010 to 2021 by searching different databases. Overall, information on SLN in different cancers is reviewed. In vivo investigations, pharmacokinetics, biodistribution, and stability are discussed to describe the efficacy of sSLN. Investigations included in this review demonstrate that sSLN delivers the drug by overcoming the biological barriers and shows enhanced and better activity than non-conjugated SLN which also verifies that a lesser concentration of drug can show anti-breast cancer activity. The efficacy of medicines could be increased with lower cancer deaths through stealth-SLN. Due to the low cost of synthesis, biocompatibility and easy to formulate, more study is needed in vitro and in vivo so that this novel technique could be utilized in the treatment of human breast cancer.
Collapse
Affiliation(s)
- Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sageer Abass
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Irfan Dar
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.,Proteomics and Bioinformatics Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
11
|
Gonçalves A, Estevinho BN, Rocha F. Microencapsulation of retinoic acid by atomization into biopolymeric matrices: Binary and ternary blends of alginic acid sodium, xanthan gum and modified chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Sarkar A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.798928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since its invention, atomic force microscopy (AFM) has come forth as a powerful member of the “scanning probe microscopy” (SPM) family and an unparallel platform for high-resolution imaging and characterization for inorganic and organic samples, especially biomolecules, biosensors, proteins, DNA, and live cells. AFM characterizes any sample by measuring interaction force between the AFM cantilever tip (the probe) and the sample surface, and it is advantageous over other SPM and electron micron microscopy techniques as it can visualize and characterize samples in liquid, ambient air, and vacuum. Therefore, it permits visualization of three-dimensional surface profiles of biological specimens in the near-physiological environment without sacrificing their native structures and functions and without using laborious sample preparation protocols such as freeze-drying, staining, metal coating, staining, or labeling. Biosensors are devices comprising a biological or biologically extracted material (assimilated in a physicochemical transducer) that are utilized to yield electronic signal proportional to the specific analyte concentration. These devices utilize particular biochemical reactions moderated by isolated tissues, enzymes, organelles, and immune system for detecting chemical compounds via thermal, optical, or electrical signals. Other than performing high-resolution imaging and nanomechanical characterization (e.g., determining Young’s modulus, adhesion, and deformation) of biosensors, AFM cantilever (with a ligand functionalized tip) can be transformed into a biosensor (microcantilever-based biosensors) to probe interactions with a particular receptors of choice on live cells at a single-molecule level (using AFM-based single-molecule force spectroscopy techniques) and determine interaction forces and binding kinetics of ligand receptor interactions. Targeted drug delivery systems or vehicles composed of nanoparticles are crucial in novel therapeutics. These systems leverage the idea of targeted delivery of the drug to the desired locations to reduce side effects. AFM is becoming an extremely useful tool in figuring out the topographical and nanomechanical properties of these nanoparticles and other drug delivery carriers. AFM also helps determine binding probabilities and interaction forces of these drug delivery carriers with the targeted receptors and choose the better agent for drug delivery vehicle by introducing competitive binding. In this review, we summarize contributions made by us and other researchers so far that showcase AFM as biosensors, to characterize other sensors, to improve drug delivery approaches, and to discuss future possibilities.
Collapse
|
13
|
Fathi F, Ebrahimi SN, Pereira DM, Estevinho BN, Rocha F. Preliminary studies of microencapsulation and anticancer activity of polyphenols extract from
Punica granatum
peels. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050‐313 Porto Portugal
| | - Berta N. Estevinho
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| | - Fernando Rocha
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| |
Collapse
|
14
|
Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon 2021; 7:e07994. [PMID: 34632135 PMCID: PMC8488847 DOI: 10.1016/j.heliyon.2021.e07994] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Advancements in both material science and bionanotechnology are transforming the health care sector. To this end, nanoparticles are increasingly used to improve diagnosis, monitoring, and therapy. Huge research is being carried out to improve the design, efficiency, and performance of these nanoparticles. Nanoparticles are also considered as a major area of research and development to meet the essential requirements for use in nanomedicine where safety, compatibility, biodegradability, biodistribution, stability, and effectiveness are requirements towards the desired application. In this regard, lipids have been used in pharmaceuticals and medical formulations for a long time. The present work focuses on the use of lipid nanostructures to combat brain tumors. In addition, this review summarizes the literature pertaining to solid lipid nanoparticles (SLN) and nanostructured lipid carriers (LNC), methods of preparation and characterization, developments achieved to overcome blood brain barrier (BBB), and modifications used to increase their effectiveness.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman 11931, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Fedaa Al-Adaileh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Suma Al-Taher
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Areej M. Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
15
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Asfour MH, Salama AAA, Mohsen AM. Fabrication of All-Trans Retinoic Acid loaded Chitosan/Tripolyphosphate Lipid Hybrid Nanoparticles as a Novel Oral Delivery Approach for Management of Diabetic Nephropathy in Rats. J Pharm Sci 2021; 110:3208-3220. [PMID: 34015278 DOI: 10.1016/j.xphs.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
The present study aims to formulate all-trans retinoic acid (ATRA) loaded chitosan/tripolyphosphate lipid hybrid nanoparticles (CTLHNs) for enhancing its solubility and oral delivery. This is to improve ATRA therapeutic effect on diabetic nephropathy (DN). CTLHNs were prepared by o/w homogenization, employing stearic acid, to form lipid nanoparticles coated with chitosan that is stabilized against acidic pH via sodium tripolyphosphate crosslinking. Chitosan coated (F7) and naked lipid nanoparticles (F6) were also prepared for comparison with CTLHNs. In vitro characterization for the prepared formulations was performed comprising entrapment efficiency, particle size, zeta potential, transmission electron microscopy, FT-IR spectroscopy and x-ray diffraction. Stability of chitosan coat in GI fluid revealed that CTLHNs were more stable than F7. In vitro release indicated an enhanced release of ATRA from the developed formulations. In vitro mucoadhesion study proved a notable mucoadhesive property for CTLHNs. In DN rat model, serum levels of creatinine and urea were elevated, over expression of tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) were observed. In addition, adenosine monophosphate activated protein kinase (AMPK) and liver kinase B1 (LKB1) expressions were decreased in DN rats. Treatment with free ATRA and the selected formulations led to a significant amelioration of DN by reducing of creatinine, urea, TNF-α, ICAM-1, GM-CSF, VEGF levels as well as elevating AMPK and LKB1 levels. The order of activity was: CTLHNs > F7 > F6 > free ATRA, as proved by histopathological examination.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt
| |
Collapse
|
17
|
Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid Nanoparticles as Carriers for Bioactive Delivery. Front Chem 2021; 9:580118. [PMID: 33981670 PMCID: PMC8107723 DOI: 10.3389/fchem.2021.580118] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/06/2021] [Indexed: 01/05/2023] Open
Abstract
Nanotechnology has made a great impact on the pharmaceutical, biotechnology, food, and cosmetics industries. More than 40% of the approved drugs are lipophilic and have poor solubility. This is the major rate-limiting step that influences the release profile and bioavailability of drugs. Several approaches have been reported to administer lipophilic drugs with improved solubility and bioavailability. Nanotechnology plays a crucial role in the targeted delivery of poorly soluble drugs. Nanotechnology-based drug delivery systems can be classified as solid lipid nanoparticulate drug delivery systems, emulsion-based nanodrug delivery systems, vesicular drug delivery systems, etc. Nanotechnology presents a new frontier in research and development to conquer the limitations coupled with the conventional drug delivery systems through the formation of specific functionalized particles. This review presents a bird's eye view on various aspects of lipid nanoparticles as carriers of bioactive molecules that is, synthesis, characterization, advantage, disadvantage, toxicity, and application in the medical field. Update on recent development in terms of patents and clinical trials of solid lipid nanoparticles (SLNs) and nanostructure lipid carriers (NLCs) have also been discussed in this article.
Collapse
Affiliation(s)
- Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Bhupesh Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Institute of Phytomedicine and Phytochemistry, Amity University Uttar Pradesh, Noida, India
| | | |
Collapse
|
18
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
19
|
Borges GSM, Prazeres PHDM, Souza ÂMD, Yoshida MI, Vilela JMC, Silva ATME, Oliveira MS, Gomes DA, Andrade MS, Souza-Fagundes EMD, Ferreira LAM. Nanostructured lipid carriers as a novel tool to deliver sclareol: physicochemical characterisation and evaluation in human cancer cell lines. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000418497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Panda PK, Saraf S, Tiwari A, Verma A, Raikwar S, Jain A, Jain SK. Novel Strategies for Targeting Prostate Cancer. Curr Drug Deliv 2020; 16:712-727. [PMID: 31433757 DOI: 10.2174/1567201816666190821143805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PCa) is a worldwide issue, with a rapid increase in its occurrence and mortality. Over the years, various strategies have been implemented to overcome the hurdles that exist in the treatment of PCa. Consistently, there is a change in opinion about the methodologies in clinical trial that have engrossed towards the treatment of PCa. Currently, there is a need to resolve these newly recognized challenges by developing newer rational targeting systems. The ongoing clinical protocol for the therapy using different targeting systems is undertaken followed by local targeting to cancer site. A number of new drug targeting systems like liposomes, nanoemulsions, magnetic nanoparticles (MNPs), solid lipid nanoparticles, drug-peptide conjugate systems, drug-antibody conjugate systems, epigenetic and gene therapy approaches, and therapeutic aptamers are being developed to suit this protocol. Recent advancements in the treatment of PCa with various nanocarriers have been reported with respect to newly identified biological barriers and intended to solve the contexts. This review encompasses the input of nanotechnology in particular targeting of PCa which might escape the lifethreatening side effects and potentially contribute to bring fruitful clinical outcomes.
Collapse
Affiliation(s)
- Pritish Kumar Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Sarjana Raikwar
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Ankit Jain
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura (U.P.), 281 406, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| |
Collapse
|
21
|
Li C, Han X. Co-delivery of Dacarbazine and All-Trans Retinoic Acid (ATRA) Using Lipid Nanoformulations for Synergistic Antitumor Efficacy Against Malignant Melanoma. NANOSCALE RESEARCH LETTERS 2020; 15:113. [PMID: 32430641 PMCID: PMC7237551 DOI: 10.1186/s11671-020-3293-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Malignant melanoma is a highly aggressive skin cancer responsible for 80% of mortality, and the overall median survival in patients with metastatic melanoma is only 6-9 months. Combination treatment through the simultaneous administration of dual drugs in a single nanocarrier has been demonstrated to be elegant and effective in combatting cancer. Herein, we employ a combination therapy based on dacarbazine (DBZ), FDA approved drug for melanoma and all-trans retinoic acid (ATRA), promising anticancer agents loaded on lipid nanoformulations (RD-LNF) as a new treatment strategy for malignant melanoma. We have successfully encapsulated both the drugs in lipid nanoformulations and showed a controlled release of payload over time. We demonstrated that the simultaneous delivery of DBZ and ATRA could effectively reduce cell proliferation in a concentration-dependent manner. The combinational nanoparticles significantly reduced the colony formation ability of B16F10 melanoma cells. Flow cytometer analysis showed that RD-LNF induced a greater proportion of apoptosis cells with significant inhibition of cell cycle progression and cell migration. These results suggest the promising potential of RD-LNF in the treatment of malignant melanoma with high efficacy.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
22
|
Resende D, Costa Lima SA, Reis S. Nanoencapsulation approaches for oral delivery of vitamin A. Colloids Surf B Biointerfaces 2020; 193:111121. [PMID: 32464354 DOI: 10.1016/j.colsurfb.2020.111121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023]
Abstract
Vitamin A is essential to human health. Encapsulation in lipid nanoparticles was used to overcome vitamin A poor water solubility in beverages. This work aimed to develop and characterize lipid nanoparticles, containing vitamin A, for food fortification, assuring its stability and oral bioaccessibility. Lipid nanoparticles optimized for the oral administration of vitamin A using the hot homogenization method. The nanoparticles subjected to conditions used in food processing suffered no changes in their size or vitamin content. In vitro assays simulating gastrointestinal digestion suggested that the nanoparticles are not altered in the stomach, and the biocompatibility of the formulations showed no toxicity in fibroblasts. With the developed nanoparticles 80% of the added vitamin reached the intestine in the digestibility assay, demonstrating suitability as a nanotechnology application in the food research for the food industry.
Collapse
Affiliation(s)
- Daniela Resende
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
23
|
Ridha AA, Kashanian S, Azandaryani AH, Rafipour R, Mahdavian E. New Folate-Modified Human Serum Albumin Conjugated to Cationic Lipid Carriers for Dual Targeting of Mitoxantrone against Breast Cancer. Curr Pharm Biotechnol 2020; 21:305-315. [DOI: 10.2174/1389201020666191114113022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
Aim:In the present work, folic acid-modified human serum albumin conjugated to cationic solid lipid nanoparticles were synthesized as nanocarriers of mitoxantrone for the treatment of breast cancer.Background:Dual-targeted drug delivery is a new drug dosing strategy that is frequently used to enhance the therapeutic efficacy of anticancer drugs.Objective:Dual targeting of the cancer cells was achieved by dual tagging of human serum albumin and folic acid on the surface of the lipid nanoparticles.Methods:The targeted drug-loaded nanocomplexes were synthesized and characterized using transmission electron microscopy along with photon-correlation and Fourier-transform infrared spectroscopic techniques. The anti-cancer activity of the nanocomplexes was screened against an in-vitro model of MCF-7 and MDA-MB-231 breast cancer cell lines to examine drug efficacy.Results:The entrapment efficiency and drug loading values for mitoxantrone were calculated to be 97 and 8.84%, respectively. The data from the drug release studies for the system indicated the release profile did not significantly change within a pH range of 5.5-7.4. The hemolysis ratio of the hybrid carrier was less than 5% even at the upper doses of 3 mg/mL, demonstrating its safety for intravenous injection with limited hemolysis and a long blood circulation time.Conclusion:The cell cytotoxicity results confirmed that the drug hybrid nanocomplex was more toxic to breast cancer cells compared with the free drug. Furthermore, the weakly cationic and small size particles prevented opsonin binding of nanocomplexes, improving blood circulation time and cancer tissue uptake.
Collapse
Affiliation(s)
- Abbas A. Ridha
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Abbas H. Azandaryani
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Elahe Mahdavian
- Department of Chemistry and Physics, Louisiana State University in Shreveport, Shreveport, LA 71115, United States
| |
Collapse
|
24
|
Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020; 12:pharmaceutics12030288. [PMID: 32210127 PMCID: PMC7151211 DOI: 10.3390/pharmaceutics12030288] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.
Collapse
|
25
|
Effect of Oxaliplatin-Loaded Poly (d,l-Lactide- co-Glycolic Acid) (PLGA) Nanoparticles Combined with Retinoic Acid and Cholesterol on Apoptosis, Drug Resistance, and Metastasis Factors of Colorectal Cancer. Pharmaceutics 2020; 12:pharmaceutics12020193. [PMID: 32102251 PMCID: PMC7076533 DOI: 10.3390/pharmaceutics12020193] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis signaling pathways, drug resistance, and metastasis are important targets to develop new cancer treatments. We developed cholesterol-coated Poly(d,l-Lactide-co-Glycolic Acid) (PLGA) nanoparticles for effective encapsulation and delivery of retinoic acid and oxaliplatin to analyze their antitumor activity in colorectal cancer. The cell viability and proliferation of tumoral cells lines (CT-26 and SW-480) decreased when compared to control in vitro after treatment with the nanoparticles. In addition, apoptosis of CT-26 cells increased. Importantly, cytoprotection of nontumor cells was detected. Expression of pro-apoptotic proteins was upregulated, while anti-apoptotic proteins were downregulated either in vitro or in vivo. In addition, drug resistance and metastasis factors were downregulated in vivo. Human colorectal tumors that highly expressed BCL-2 and Ki-67 had a greater tendency towards death within 60 months. Our results show that loading oxaliplatin combined with retinoic acid and cholesterol in a nanoparticle formulation enables determination of optimal antitumor activity and subsequent treatment efficacy.
Collapse
|
26
|
Gonçalves A, Estevinho BN, Rocha F. Formulation approaches for improved retinoids delivery in the treatment of several pathologies. Eur J Pharm Biopharm 2019; 143:80-90. [PMID: 31446044 DOI: 10.1016/j.ejpb.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023]
Abstract
Retinoid acid (RA) and other retinoids are extensively used as therapeutic agents in the treatment of several types of cancer and skin disorders. However, the efficiency of these medical agents is compromised due to the unsatisfactory concentration of retinoids in the target cells/tissues. Furthermore, severe side-effects are related to retinoids administration. Incorporation of retinoids into carrier-based delivery systems using encapsulation technology has been proposed in order to overcome the limitations of using free retinoids in the treatment of several pathologies. The present work starts exploring the competences and the difficulties of using retinoids in health care. The metabolism and the main considerations about the mechanism of action of retinoids are also discussed. The final sections are focused on the most recent studies about RA controlled delivery systems to be used in the medical field.
Collapse
Affiliation(s)
- Antónia Gonçalves
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
27
|
Bayón-Cordero L, Alkorta I, Arana L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E474. [PMID: 30909401 PMCID: PMC6474076 DOI: 10.3390/nano9030474] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022]
Abstract
Drug delivery systems have opened new avenues to improve the therapeutic effects of already-efficient molecules. Particularly, Solid Lipid Nanoparticles (SLNs) have emerged as promising nanocarriers in cancer therapy. SLNs offer remarkable advantages such as low toxicity, high bioavailability of drugs, versatility of incorporation of hydrophilic and lipophilic drugs, and feasibility of large-scale production. Their molecular structure is crucial to obtain high quality SLN preparations and it is determined by the relationship between the composition and preparation method. Additionally, SLNs allow overcoming several physiological barriers that hinder drug delivery to tumors and are also able to escape multidrug resistance mechanisms, characteristic of cancer cells. Focusing on cell delivery, SLNs can improve drug delivery to target cells by different mechanisms, such as passive mechanisms that take advantage of the tumor microenvironment, active mechanisms by surface modification of SLNs, and codelivery mechanisms. SLNs can incorporate many different drugs and have proven to be effective in different types of tumors (i.e., breast, lung, colon, liver, and brain), corroborating their potential. Finally, it has to be taken into account that there are still some challenges to face in the application of SLNs in anticancer treatments but their possibilities seem to be high.
Collapse
Affiliation(s)
- Laura Bayón-Cordero
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Itziar Alkorta
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Lide Arana
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| |
Collapse
|
28
|
Gonçalves A, Estevinho BN, Rocha F. Characterization of biopolymer-based systems obtained by spray-drying for retinoic acid controlled delivery. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133:285-308. [DOI: 10.1016/j.ejpb.2018.10.017] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
|
30
|
Smith JR, Olusanya TOB, Lamprou DA. Characterization of drug delivery vehicles using atomic force microscopy: current status. Expert Opin Drug Deliv 2018; 15:1211-1221. [PMID: 30417712 DOI: 10.1080/17425247.2018.1546693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The field of nanomedicine, utilizing nano-sized vehicles (nanoparticles and nanofibers) for targeted local drug delivery, has a promising future. This is dependent on the ability to analyze the chemical and physical properties of these drug carriers at the nanoscale and hence atomic force microscopy (AFM), a high-resolution imaging and local force-measurement technique, is ideally suited. AREAS COVERED Following a brief introduction to the technique, the review describes how AFM has been used in selected publications from 2015 to 2018 to characterize nanoparticles and nanofibers as drug delivery vehicles. These sections are ordered into areas of increasing AFM complexity: imaging/particle sizing, surface roughness/quantitative analysis of images, and analysis of force curves (to extract nanoindentation and adhesion data). EXPERT OPINION AFM imaging/sizing is used extensively for the characterization of nanoparticle and nanofiber drug delivery vehicles, with surface roughness and nanomechanical/adhesion data acquisition being less common. The field is progressing into combining AFM with other techniques, notably SEM, ToF-SIMS, Raman, Confocal, and UV. Current limitations include a 50 nm resolution limit of nanoparticles imaged within live cells and AFM tip-induced activation of cytoskeleton proteins. Following drug release real-time with AFM-spectroscopic techniques and studying drug interactions on cell receptors appear to be on the horizon.
Collapse
Affiliation(s)
- James R Smith
- a School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - Temidayo O B Olusanya
- b Department of Pharmaceutics, Faculty of Applied Sciences , University of Sunderland , Sunderland , UK
| | | |
Collapse
|
31
|
Novel chitosan-based solid-lipid nanoparticles to enhance the bio-residence of the miraculous phytochemical “Apocynin”. Eur J Pharm Sci 2018; 124:304-318. [DOI: 10.1016/j.ejps.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
|
32
|
Tian JY, Guo FJ, Zheng GY, Ahmad A. Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis 2018; 39:307-317. [PMID: 29216344 DOI: 10.1093/carcin/bgx141] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men by way of diagnosis and a leading cause of cancer-related deaths. Early detection and intervention remains key to its optimum clinical management. This review provides the most updated information on the recent methods of prostate cancer screening, imaging and treatment modalities. Wherever possible, clinical trial data has been supplemented to provide a comprehensive overview of current prostate cancer research and development. Considering the recent success of immunotherapy in prostate cancer, we discuss cell, DNA and viruses based, as well as combinatorial immunotherapeutic strategies in detail. Furthermore, the potential of nanotechnology is increasingly being realized, especially in prostate cancer research, and we provide an overview of nanotechnology-based strategies, with special emphasis on nanotheranostics and multifunctional nanoconstructs. Understanding these recent developments is critical to the design of future therapeutic strategies to counter prostate cancer.
Collapse
Affiliation(s)
- Jing-Yan Tian
- Department of Urology, Second Division of the First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Feng-Jun Guo
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guo-You Zheng
- Department of Urology, Second Division of the First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Aamir Ahmad
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
33
|
Extracts of Clove ( Syzygium aromaticum) Potentiate FMSP-Nanoparticles Induced Cell Death in MCF-7 Cells. Int J Biomater 2018; 2018:8479439. [PMID: 30210543 PMCID: PMC6126062 DOI: 10.1155/2018/8479439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Both nanoparticles and cloves (Syzygium aromaticum) possess anticancer properties, but they do not elicit a significant response on cancer cells when treated alone. In the present study, we have tested fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in combination with crude clove extracts on human breast cancer cells (MCF-7) to examine whether the combination approach enhance the cancer cell death. The MCF-7 cells were treated with different concentrations (1.25 μg/mL, 12.5 μg/mL, 50 μg/mL, 75 μg/mL, and 100 μg/mL) of FMSP-nanoparticles alone and in combination with 50 μg/mL crude clove extracts. The effects of FMSP-nanoparticles alone and combined with clove extracts were observed after 24 hrs and 48 hrs intervals. The response of FMSP-nanoparticles-treated cells was evaluated by Trypan Blue, 4',6-diamidino-2-phenylindole (DAPI), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. We have demonstrated that cancer cell viability was decreased to 55.40% when treated with FMSP-nanoparticles alone, whereas when cancer cells were treated with FMSP-nanoparticles along with crude clove extracts, the cell viability was drastically decreased to 8.50%. Both morphological and quantitative data suggest that the combination of FMSP-nanoparticles plus crude clove extracts are more effective in treating cancer cells and we suggest that the combination treatment of nanoparticles along with clove extracts hold a great promise for the cancer treatments.
Collapse
|
34
|
Rosseto HC, Toledo LDASD, Francisco LMBD, Esposito E, Lim Y, Valacchi G, Cortesi R, Bruschi ML. Nanostructured lipid systems modified with waste material of propolis for wound healing: Design, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2017; 158:441-452. [PMID: 28728086 DOI: 10.1016/j.colsurfb.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/16/2017] [Accepted: 07/08/2017] [Indexed: 11/18/2022]
Abstract
Propolis, a natural compound that can accelerate the wound healing process, is mainly used as ethanolic extract. The extractive solution may also be obtained from the propolis by-product (BP), transforming this waste material into a pharmaceutical active ingredient. Even if propolis does not show toxicity, when used as an extract over harmed skin or mucosa, the present ethanol content may be harmful to the tissue recovering, besides hindering the drug release. This study describes the development of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) as topical propolis delivery systems and the investigation of their in vitro and in vivo activities. The extracts were evaluated to guarantee their quality, and the lipid dispersions were characterized with respect to morphology (cryo-TEM), size and diffractometry (X-ray) properties. The occlusive capacity of formulations was also evaluated by an in vitro technique, which determines the occlusion factor. The drug entrapment efficiency (EE), as well as the in vitro drug release profile from the nanoparticulate systems was investigated as well. The size analysis performed through 90days was favorable to a topical administration and the polydispersity index, though not ideal in all cases due to the high content of resins and gums from the extracts, were relatively stable for the SLN. The propolis extract contributes to the occlusive potential of the formulations. The human immortalized keratinocytes presented good cell viability when tested with both extracts (propolis and BP) freely or entrapped in the systems. SLN modified with propolis material provided an acceleration of the in vivo wound healing process.
Collapse
Affiliation(s)
- Hélen Cássia Rosseto
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Lucas de Alcântara Sica de Toledo
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Lizziane Maria Belloto de Francisco
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Elisabetta Esposito
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, USA
| | - Rita Cortesi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil.
| |
Collapse
|
35
|
Demirbilek M, Laçin Türkoglu N, Aktürk S, Akça C. VitD3-loaded solid lipid nanoparticles: stability, cytotoxicity and cytokine levels. J Microencapsul 2017; 34:454-462. [PMID: 28675984 DOI: 10.1080/02652048.2017.1345995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vitamin D3 (VitD3) has several beneficial effects on many metabolic pathways such as immunity system, bone development. The aim of the study, encapsulation of VitD3 with solid lipids, determine encapsulation efficiency and biocompatibility of nanoparticles. Therefore, VitD3-loaded solid lipid nanoparticles (SLNPs) were developed by optimising ratios of VitD3, stearic acid, beeswax and sodium dodecyl sulphate (SDS). Thermal stability, degradation profile, crystallinity rate, encapsulation efficiency and release profile of SLNPs were determined. Cytotoxicity of SLNPs on HaCaT, L929 and HUVEC cells were investigated. Negatively charged and VitD3-loaded nanoparticles with diameters between 30 and 60 nm were obtained. SLNPs containing up to 5.1 mg VitD3 per 10 mg powder samples were obtained. Cell proliferations were stimulated after exposure with VitD3-loaded SLNPs. Besides, inflammatory response after exposure to VitD3-loaded SLNPs was evaluated via determining IL10 and TNF-alpha levels on THP-1 cells. According to the results, no inflammatory response was observed.
Collapse
Affiliation(s)
- Murat Demirbilek
- a Advanced Technologies Application and Research Center , Hacettepe University , Ankara , Turkey
| | - Nelisa Laçin Türkoglu
- b Science and Technology Application and Research Center , Yildiz Technical University , Istanbul , Turkey
| | - Selçuk Aktürk
- c Department of Physics , Mugla Sitki Koçman University , Mugla , Turkey
| | - Cem Akça
- d Department of Metallurgical and Materials Engineering , Yildiz Technical University , Istanbul , Turkey
| |
Collapse
|
36
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
37
|
Ali H, Singh SK. Preparation and characterization of solid lipid nanoparticles of furosemide using quality by design. PARTICULATE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1080/02726351.2017.1295293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hasan Ali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
38
|
Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016; 108:235-252. [PMID: 27519829 DOI: 10.1016/j.ejpb.2016.08.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023]
Abstract
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were designed as exceptionally safe colloidal carriers for the delivery of poorly soluble drugs. SLN/NLC have the particularity of being composed of excipientsalready approved for use in medicines for human use, which offers a great advantage over any other nanoparticulate system developed from novel materials. Despite this fact, any use of excipients in new route of administration or in new dosage form requires evidence of safety. After 25 years of research on SLN and NLC, enough evidence on their preclinical safety has been published. In the present work, published data on in vitro and in vivo compatibility of SLN/NLC have been surveyed, in order to provide evidence of high biocompatibility distinguished by intended administration route. We also identified critical factors and possible weak points in SLN/NLC formulations, such as the effect of surfactants on the cell viability in vitro, which should be considered for further development.
Collapse
|
39
|
Chen Z, Tai Z, Gu F, Hu C, Zhu Q, Gao S. Aptamer-mediated delivery of docetaxel to prostate cancer through polymeric nanoparticles for enhancement of antitumor efficacy. Eur J Pharm Biopharm 2016; 107:130-41. [PMID: 27393562 DOI: 10.1016/j.ejpb.2016.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/26/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
Abstract
Treatment of aggressive prostate cancer remains a great challenge due to inadequate drug distribution into the cancerous lesions after administration. This study aimed to develop aptamer-anchored nanoparticles (apt-NPs) for systemic delivery of docetaxel (DTX) and to evaluate the tumoricidal activity against the prostate cancer in vitro and in vivo. DTX-loaded apt-NPs (DTX-apt-NPs) were prepared by a solvent diffusion technique using functional PLGA-b-PEG and sodium oleate. DTX-apt-NPs were characterized by in vitro release, antitumor activity, cellular uptake and cytotoxic mechanisms. Pharmacokinetics and tissue distribution studies were performed in rats to investigate the biofate of DTX-apt-NPs. Finally, the in vivo antitumor efficacy was examined on the LNCaP cells xenograft tumor model. The resulting DTX-apt-NPs were 93.6nm in particle size with narrow distribution and possessed a high entrapment efficiency (97.62%) and acceptable drug loading (8.91%). DTX-apt-NPs demonstrated an enhanced in vitro antitumor effect and marked cellular uptake compared with the solution formulation or conventional nanoparticles. The intracellular trafficking of DTX-apt-NPs was shown to be an active transport process involving the clathrin-dependent endocytosis. Anti-PSMA aptamer-mediated delivery was assumed mainly responsible for the enhanced antitumor efficacy. DTX-apt-NPs that can target to PSMA-overexpressed prostate cancer provide a feasible approach for systemic delivery of DTX to the cancerous prostate to achieve a fine prognosis.
Collapse
Affiliation(s)
- Zhongjian Chen
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China; Department of Pharmaceutics, Shanghai Dermatology Hospital, Shanghai 200443, PR China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Fenfen Gu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Chuling Hu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Quangang Zhu
- Pharmaceutical Research Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China.
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
40
|
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:982-994. [PMID: 27524099 DOI: 10.1016/j.msec.2016.05.119] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/24/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems.
Collapse
Affiliation(s)
| | - Michał Moritz
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
41
|
Radaic A, Barbosa L, Jaime C, Kapila Y, Pessine F, de Jesus M. How Lipid Cores Affect Lipid Nanoparticles as Drug and Gene Delivery Systems. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/bs.abl.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|