1
|
Cytarabine and dexamethasone-PAMAM dendrimer di-conjugate sensitizes human acute myeloid leukemia cells to apoptotic cell death. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
3
|
Chałubiński M, Szulc A, Gorzelak-Pabiś P, Wojdan K, Appelhan D, Bryszewska M, Broncel M. The effect of maltose modified fourth generation poly(propylene imine) (PPI G4) dendrimers on the barrier functions and inflammatory activation of human vascular endothelium – Possible consequences for the medical application. Vascul Pharmacol 2022; 143:106972. [DOI: 10.1016/j.vph.2022.106972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
4
|
Baroud M, Lepeltier E, Thepot S, El-Makhour Y, Duval O. The evolution of nucleosidic analogues: self-assembly of prodrugs into nanoparticles for cancer drug delivery. NANOSCALE ADVANCES 2021; 3:2157-2179. [PMID: 36133769 PMCID: PMC9418958 DOI: 10.1039/d0na01084g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/20/2021] [Indexed: 05/12/2023]
Abstract
Nucleoside and nucleotide analogs are essential tools in our limited arsenal in the fight against cancer. However, these structures face severe drawbacks such as rapid plasma degradation or hydrophilicity, limiting their clinical application. Here, different aspects of nucleoside and nucleotide analogs have been exposed, while providing their shortcomings. Aiming to improve their fate in the body and combating their drawbacks, two different approaches have been discussed, the prodrug and nanocarrier technologies. Finally, a novel approach called "PUFAylation" based on both the prodrug and nanocarrier technologies has been introduced, promising to be the supreme method to create a novel nucleoside or nucleotide analog based formulation, with enhanced efficacy and highly reduced toxicity.
Collapse
Affiliation(s)
- Milad Baroud
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
| | - Sylvain Thepot
- University Hospital of Angers, Hematology 49933 Angers France
- Université d'Angers, Inserm, CRCINA 49000 Angers France
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL) France
| | - Yolla El-Makhour
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University Nabatieh Lebanon
| | - Olivier Duval
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
- University Hospital of Angers, Hematology 49933 Angers France
| |
Collapse
|
5
|
Pooresmaeil M, Namazi H. Advances in development of the dendrimers having natural saccharides in their structure for efficient and controlled drug delivery applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110356] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Bryszewska M, Borowiec M, Franiak-Pietryga I. Anti-Tumour Activity of Glycodendrimer Nanoparticles in a Subcutaneous MEC-1 Xenograft Model of Human Chronic Lymphocytic Leukemia. Anticancer Agents Med Chem 2021; 20:325-334. [PMID: 31738155 DOI: 10.2174/1871520619666191019093558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic Lymphocytic Leukaemia (CLL) is an indolent disorder, which mainly affects older adults. Since the advent of chemoimmunotherapy, great progress has been made in its treatment. However, some patients develop a more aggressive form of the disease and are included in the group of high-risk CLL patients with a dismal prognosis and a need for new therapies. OBJECTIVE Maltotriose-modified poly(propylene imine) dendrimers were presented as potential agents in targeted therapy for CLL in the murine xenograft model. METHODS Tumour, brain and internal organs resected from NOD scid gamma mice were subjected to gross and histopathological evaluation. RESULTS The results of ex vivo tissue examination indicated that open-shell glycodendrimers prevented/inhibited the spread of CLL into the brain and internal organs and its transformation into a more aggressive form. CONCLUSION The results of the study have a potentially important impact on the design of future personalized therapies as well as clinical trials.
Collapse
Affiliation(s)
- Barbara Ziemba
- GeneaMed LTD, Lodz, Poland.,Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | | | | | - Wojciech Kuncman
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | - Marian Danilewicz
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- GeneaMed LTD, Lodz, Poland.,Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California, San Diego, CA, United States
| |
Collapse
|
7
|
Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Appelhans D, Bryszewska M, Borowiec M. Neurotoxicity of poly(propylene imine) glycodendrimers. Drug Chem Toxicol 2020; 45:1484-1492. [DOI: 10.1080/01480545.2020.1843472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
- GeneaMed LTD, Lodz, Poland
- University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
- GeneaMed LTD, Lodz, Poland
| | | | | | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Spectroscopic, electrochemical and calorimetric studies on the interactions of poly(propyleneimine) G4 dendrimer with 5-fluorouracil in aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Gorzkiewicz M, Appelhans D, Boye S, Lederer A, Voit B, Klajnert-Maculewicz B. Effect of the Structure of Therapeutic Adenosine Analogues on Stability and Surface Electrostatic Potential of their Complexes with Poly(propyleneimine) Dendrimers. Macromol Rapid Commun 2019; 40:e1900181. [PMID: 31136015 DOI: 10.1002/marc.201900181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Indexed: 01/10/2023]
Abstract
Poly(propyleneimine) glycodendrimers are proposed as nanocarriers for triphosphate forms of anticancer adenosine analogues to improve the efficiency of chemotherapy and to overcome drug resistance mechanisms. This approach has proven successful for fludarabine administration-an autonomous way of cellular entry of a nucleotide-dendrimer noncovalent complex enables an increase in the intracellular accumulation and cytotoxic activity of the active metabolite of the drug. However, the attempt to apply an analogous strategy for clofarabine results in the inhibition of drug activity. To better understand this phenomenon, characterization and comparison of drug-dendrimer complexes were needed to indicate the differences in their surface properties and the strengths of fludarabine-dendrimer and clofarabine-dendrimer interactions. Here, zeta potential measurements, ultrafiltration, and asymmetric flow field-flow fractionation are applied to determine the surface electrostatic potential and stability of nucleotide-dendrimer formulations. This approach significantly extends the authors' research on the complexation potential of perfectly branched macromolecules, ultimately explaining previously observed differences and their consequences.
Collapse
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Barbara Klajnert-Maculewicz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany.,Department of General Biophysics Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
11
|
Gorzkiewicz M, Deriu MA, Studzian M, Janaszewska A, Grasso G, Pułaski Ł, Appelhans D, Danani A, Klajnert-Maculewicz B. Fludarabine-Specific Molecular Interactions with Maltose-Modified Poly(propyleneimine) Dendrimer Enable Effective Cell Entry of the Active Drug Form: Comparison with Clofarabine. Biomacromolecules 2019; 20:1429-1442. [PMID: 30707833 DOI: 10.1021/acs.biomac.9b00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fludarabine is an anticancer antimetabolite essential for modern chemotherapy, but its efficacy is limited due to the complex pharmacokinetics. We demonstrated the potential use of maltose-modified poly(propyleneimine) dendrimer as drug delivery agent to improve the efficiency of therapy with fludarabine. In this study, we elaborated a novel synthesis technique for radioactively labeled fludarabine triphosphate to prove for the first time the direct ability of nucleotide-glycodendrimer complex to enter and kill leukemic cells, without the involvement of membrane nucleoside transporters and intracellular kinases. This will potentially allow to bypass the most common drug resistance mechanisms observed in the clinical setting. Further, we applied surface plasmon resonance and molecular modeling to elucidate the properties of the drug-dendrimer complexes. We showed that clofarabine, a more toxic nucleoside analogue drug, is characterized by significantly different molecular interactions with poly(propyleneimine) dendrimers than fludarabine, leading to different cellular outcomes (decreased rather than increased treatment efficiency). The most probable mechanistic explanation of uniquely dendrimer-enhanced fludarabine toxicity points to a crucial role of both an alternative cellular uptake pathway and the avoidance of intracellular phosphorylation of nucleoside drug form.
Collapse
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland
| | - Marco A Deriu
- SUPSI-DTI IDSIA-Dalle Molle Institute for Artificial Intelligence , CH-6928 Manno , Switzerland
| | - Maciej Studzian
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland.,Department of Molecular Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland
| | - Gianvito Grasso
- SUPSI-DTI IDSIA-Dalle Molle Institute for Artificial Intelligence , CH-6928 Manno , Switzerland
| | - Łukasz Pułaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland.,Laboratory of Transcriptional Regulation , Institute of Medical Biology PAS , 106 Lodowa Street , 93-232 Lodz , Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden , Hohe Straße 6 , 01069 Dresden , Germany
| | - Andrea Danani
- SUPSI-DTI IDSIA-Dalle Molle Institute for Artificial Intelligence , CH-6928 Manno , Switzerland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland.,Leibniz Institute of Polymer Research Dresden , Hohe Straße 6 , 01069 Dresden , Germany
| |
Collapse
|
12
|
Briot T, Roger E, Thépot S, Lagarce F. Advances in treatment formulations for acute myeloid leukemia. Drug Discov Today 2018; 23:1936-1949. [DOI: 10.1016/j.drudis.2018.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 10/24/2022]
|
13
|
Gorzkiewicz M, Buczkowski A, Appelhans D, Voit B, Pułaski Ł, Pałecz B, Klajnert-Maculewicz B. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH- and salt-dependent manner - model studies for adenosine analogue drug delivery. Int J Pharm 2018; 544:83-90. [PMID: 29653214 DOI: 10.1016/j.ijpharm.2018.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
Abstract
Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues.
Collapse
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Adam Buczkowski
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, 165 Pomorska St., 90-236 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Łukasz Pułaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa St., 93-232 Lodz, Poland
| | - Bartłomiej Pałecz
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, 165 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
14
|
Gorzkiewicz M, Sztandera K, Jatczak-Pawlik I, Zinke R, Appelhans D, Klajnert-Maculewicz B, Pulaski Ł. Terminal Sugar Moiety Determines Immunomodulatory Properties of Poly(propyleneimine) Glycodendrimers. Biomacromolecules 2018; 19:1562-1572. [DOI: 10.1021/acs.biomac.8b00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Izabela Jatczak-Pawlik
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Robin Zinke
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Łukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa Street, 93-232 Lodz, Poland
| |
Collapse
|
15
|
Gorzkiewicz M, Jatczak-Pawlik I, Studzian M, Pułaski Ł, Appelhans D, Voit B, Klajnert-Maculewicz B. Glycodendrimer Nanocarriers for Direct Delivery of Fludarabine Triphosphate to Leukemic Cells: Improved Pharmacokinetics and Pharmacodynamics of Fludarabine. Biomacromolecules 2018; 19:531-543. [PMID: 29323872 DOI: 10.1021/acs.biomac.7b01650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fludarabine, a nucleoside analogue antimetabolite, has complicated pharmacokinetics requiring facilitated transmembrane transport and intracellular conversion to triphosphate nucleotide form (Ara-FATP), causing it to be susceptible to emergence of drug resistance. We are testing a promising strategy to improve its clinical efficacy by direct delivery of Ara-FATP utilizing a biocompatible glycodendrimer nanocarrier system. Here, we present results of a proof-of-concept experiment in several in vitro-cultured leukemic cell lines (CCRF, THP-1, U937) using noncovalent complexes of maltose-modified poly(propyleneimine) dendrimer and fludarabine triphosphate. We show that Ara-FATP has limited cytotoxic activity toward investigated cells relative to free nucleoside (Ara-FA), but complexation with the glycodendrimer (which does not otherwise influence cellular metabolism) drastically increases its toxicity. Moreover, we show that transport via hENT1 is a limiting step in Ara-FA toxicity, while complexation with dendrimer allows Ara-FATP to kill cells even in the presence of a hENT1 inhibitor. Thus, the use of glycodendrimers for drug delivery would allow us to circumvent naturally occurring drug resistance due to decreased transporter activity. Finally, we demonstrate that complex formation does not change the advantageous multifactorial intracellular pharmacodynamics of Ara-FATP, preserving its high capability to inhibit DNA and RNA synthesis and induce apoptosis via the intrinsic pathway. In comparison to other nucleoside analogue drugs, fludarabine is hereby demonstrated to be an optimal candidate for maltose glycodendrimer-mediated drug delivery in antileukemic therapy.
Collapse
Affiliation(s)
| | | | | | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS , 106 Lodowa Street, 93-232 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | | |
Collapse
|
16
|
Gorzkiewicz M, Klajnert-Maculewicz B. Dendrimers as nanocarriers for nucleoside analogues. Eur J Pharm Biopharm 2017; 114:43-56. [DOI: 10.1016/j.ejpb.2016.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
17
|
Studzian M, Szulc A, Janaszewska A, Appelhans D, Pułaski Ł, Klajnert-Maculewicz B. Mechanisms of Internalization of Maltose-Modified Poly(propyleneimine) Glycodendrimers into Leukemic Cell Lines. Biomacromolecules 2017; 18:1509-1520. [DOI: 10.1021/acs.biomac.7b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Łukasz Pułaski
- Laboratory
of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | | |
Collapse
|
18
|
Gardikis K, Signorelli M, Ferrario C, Schiraldi A, Fortina MG, Hatziantoniou S, Demetzos C, Fessas D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced Drug Delivery Nano Systems: A calorimetric approach. Int J Pharm 2016; 516:178-184. [PMID: 27845212 DOI: 10.1016/j.ijpharm.2016.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
The release of the anticancer drug doxorubicin (DOX) incorporated in a new drug carrier, namely a chimeric nanosystem formed by liposomes and dendrimers, was studied following the influence of the drug on the growth kinetics of the Lactobacillus helveticus bacterium, that would mimic the intestinal microflora. The bacterial growth was followed at 37°C by means of Isothermal Titration Calorimetry (ITC) and the method was assessed to monitor the overall effect of the delivered drug obtaining simple objective parameters to define the encapsulation effectiveness of the system, discriminating dose effects even in cases of very low release. Traditional microbiological investigations and in vitro release tests were also performed in parallel for validation. The achieved results suggest that L. helveticus is an excellent candidate as biosensor to assess the sealing effectiveness of these DOX drug carriers through ITC investigations. This approach can be extended for quantitative comparison of drug delivery systems with the same drug inserted in other supramolecular bodies for quantitative comparison. The peculiar results for the DOX drug carrier system investigated, indicate also that, the use of hydrophilic dendrimers in this case, produce a high sealing effect that seems promising in terms of the intestinal flora protection.
Collapse
Affiliation(s)
- Konstantinos Gardikis
- Department of Pharmaceutical Technology, University of Athens, School of Pharmacy, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Marco Signorelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Chiara Ferrario
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Alberto Schiraldi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Maria Grazia Fortina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Sophia Hatziantoniou
- Department of Pharmaceutical Technology, University of Athens, School of Pharmacy, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, University of Athens, School of Pharmacy, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Dimitrios Fessas
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
19
|
Szulc A, Pulaski L, Appelhans D, Voit B, Klajnert-Maculewicz B. Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance. Int J Pharm 2016; 513:572-583. [DOI: 10.1016/j.ijpharm.2016.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
|
20
|
Jatczak-Pawlik I, Gorzkiewicz M, Studzian M, Appelhans D, Voit B, Pulaski L, Klajnert-Maculewicz B. Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line. Pharm Res 2016; 34:136-147. [PMID: 27766462 PMCID: PMC5174147 DOI: 10.1007/s11095-016-2049-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/03/2016] [Indexed: 01/11/2023]
Abstract
Purpose Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
| | - Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maciej Studzian
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa St., 93-232, Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| |
Collapse
|