1
|
Gu G, Zhang J, Zhou Y, Li W, Peng C, Bi C, Yang S, Li Y, Tao E. Aluminum ion catalyzed proton transfer: Mechanism on promoting highly stable passivation of Cr by soil organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178760. [PMID: 39919659 DOI: 10.1016/j.scitotenv.2025.178760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
Although biochar can passivate chromium (Cr3+) in soil, the low stability is still a challenge to be overcome since the passivation mechanism is dominated by weak interactions (complexation, electrostatic attraction, etc.). In this study, a highly stable passivation of Cr3+ was achieved in soil based on the strategy that the low-energy sp hybridisation orbitals of aluminum (Al3+) induced a decrease in the HOMO energy level, leading to the enrichment of off-domain electrons in carbon-based conjugated systems. It can promote the proton transfer and the ion exchange, facilitating the strong chemical binding of organic matter to Cr3+. It suggested that the introduction of Al3+ significantly enhanced the passivation efficiency, maintaining a growth over 42 days of aging. To achieving a high stable passivation, the key is promoting a higher proportion of organic matter-bound Cr3+ contributing by the introduction of Al3+. DFT calculations further validated thermodynamically that, only Al3+ had the catalytic effect on both proton transfer and Cr3+ passivation compared with K+, Na+, Ca2+, Mg2+, Fe3+, Zr4+. These findings can provide important insights for developing a new generation of passivators which can efficiently stabilize heavy metal.
Collapse
Affiliation(s)
- Gaoyuan Gu
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Jianing Zhang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Yan Zhou
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Wenhui Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology,Dalian 116024, Liaoning, China
| | - Changlong Bi
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai 264005, Shandong, China.
| | - E Tao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
2
|
Kumar R, Thakur AK, Kali G, Pitchaiah KC, Arya RK, Kulabhi A. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives. Drug Deliv Transl Res 2023; 13:946-965. [PMID: 36575354 DOI: 10.1007/s13346-022-01283-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/29/2022]
Abstract
The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | | - Raj Kumar Arya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Anurag Kulabhi
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
3
|
Cañellas F, Verma V, Kujawski J, Geertman R, Tajber L, Padrela L. Controlling the Polymorphism of Indomethacin with Poloxamer 407 in a Gas Antisolvent Crystallization Process. ACS OMEGA 2022; 7:43945-43957. [PMID: 36506150 PMCID: PMC9730483 DOI: 10.1021/acsomega.2c05259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The polymorphic control of active pharmaceutical ingredients (APIs) is a major challenge in the manufacture of medicines. Crystallization methods that use supercritical carbon dioxide as an antisolvent can create unique solid forms of APIs, with a particular tendency to generate metastable polymorphic forms. In this work, the effects of processing conditions within a gas antisolvent (GAS) crystallization method, such as pressure, stirring rate, and temperature, as well as the type of solvent used and the presence of an additive, on the polymorphism of indomethacin were studied. Consistent formation of the X-ray powder diffraction-pure α polymorphic form of indomethacin by GAS was only achieved when a polymer, poloxamer 407, was used as an additive. Using the GAS method in combination with poloxamer 407 as a molecular additive enabled full control over the polymorphic form of indomethacin, regardless of the processing conditions employed, such as pressure, temperature, stirring rate, and type of solvent. A detailed molecular modeling study provided insight into the role of poloxamer 407 in the polymorphic outcome of indomethacin and concluded that it favored the formation of the α polymorph.
Collapse
Affiliation(s)
- Fidel
Méndez Cañellas
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, LimerickV94 T9PX, Ireland
- SSPC,
the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, LimerickV94 T9PX, Ireland
| | - Vivek Verma
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, LimerickV94 T9PX, Ireland
| | - Jacek Kujawski
- Chair
and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6 street, Poznan60-780, Poland
| | | | - Lidia Tajber
- SSPC,
the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, LimerickV94 T9PX, Ireland
- School of
Pharmacy and Pharmaceutical Sciences, Trinity
College Dublin, College Green, Dublin 2D02 PN40, Ireland
| | - Luis Padrela
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, LimerickV94 T9PX, Ireland
- SSPC,
the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, LimerickV94 T9PX, Ireland
| |
Collapse
|
4
|
Vorobei AM, Parenago OO. Using Supercritical Fluid Technologies to Prepare Micro- and Nanoparticles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421030237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Kalaivanan R, Srinivasan K. Effective Separation of N
-benzyl-2-methyl-4-nitroaniline (BNA) Polymorphs through Antisolvent Crystallization Method. CRYSTAL RESEARCH AND TECHNOLOGY 2018. [DOI: 10.1002/crat.201800052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Raju Kalaivanan
- Crystal Growth Laboratory; Department of Physics; School of Physical Sciences; Bharathiar University; Coimbatore 641 046 Tamil Nadu India
| | - Karuppannan Srinivasan
- Crystal Growth Laboratory; Department of Physics; School of Physical Sciences; Bharathiar University; Coimbatore 641 046 Tamil Nadu India
| |
Collapse
|
6
|
Lin Q, Liu G, Zhao Z, Wei D, Pang J, Jiang Y. Design of gefitinib-loaded poly (l-lactic acid) microspheres via a supercritical anti-solvent process for dry powder inhalation. Int J Pharm 2017; 532:573-580. [DOI: 10.1016/j.ijpharm.2017.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/03/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022]
|
7
|
Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv Drug Deliv Rev 2017; 117:111-146. [PMID: 28931472 DOI: 10.1016/j.addr.2017.09.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance.
Collapse
|
8
|
Liu G, Pang J, Huang Y, Xie Q, Guan G, Jiang Y. Self-Assembled Nanospheres of Folate-Decorated Zein for the Targeted Delivery of 10-Hydroxycamptothecin. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01632] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Guijin Liu
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Honz Pharmaceutical Co., Ltd., Haikou 570311, China
| | - Jiafeng Pang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunna Huang
- College
of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuling Xie
- College
of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guoqiang Guan
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Caplette J, Frigo T, Jozwiakowski M, Shea H, Mirmehrabi M, Müller P. Characterization of new crystalline forms of hydroxyprogesterone caproate. Int J Pharm 2017; 527:42-51. [PMID: 28522428 DOI: 10.1016/j.ijpharm.2017.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/06/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
Abstract
A systematic polymorph screening process was conducted on the steroid hydroxyprogesterone caproate, which had only one previously described orthorhombic crystalline form (A), in order to fully elucidate its solid state properties. Cooling, anti-solvent and evaporative techniques largely reproduced the same polymorph, but slurries in various solvents over two days produced a new triclinic form (B). Experiments at different temperatures in ethyl acetate or isopropyl alcohol confirmed this was an enantiotropic system with a transition temperature of approximately 30°C. DSC was used to confirm the transition of Form B to Form A below the melting point. Form B was the thermodynamically stable form at room temperature, and 8% less soluble in a non-aqueous solvent mixture. In viscous solvents used commercially to dissolve the oil-soluble steroid for injection, solutions near the solubility limit can remain supersaturated after exposure to cooler temperatures for months. In resolving the crystalline structure of Form A, a third conformational polymorph was detected that exists only at -133 to -143°C; this monoclinic form was designated Form C, and converts back to Form A upon warming to room temperature. These studies have increased the understanding of this drug and how the polymorphs may affect its physical stability in different dosage forms.
Collapse
Affiliation(s)
- Jeffrey Caplette
- AMAG Pharmaceuticals, Inc., 1100 Winter St, Waltham, MA, 02451, USA.
| | - Timothy Frigo
- AMAG Pharmaceuticals, Inc., 1100 Winter St, Waltham, MA, 02451, USA.
| | | | - Helene Shea
- AMAG Pharmaceuticals, Inc., 1100 Winter St, Waltham, MA, 02451, USA.
| | - Mahmoud Mirmehrabi
- Solid State Pharma Inc., 1344 Summer St, Halifax, Nova Scotia B3H 0A8, Canada.
| | - Peter Müller
- The Structure Factory, LLC., 7 Larkin Rd, Medford, MA, 02155, USA.
| |
Collapse
|
10
|
Liu G, Lin Q, Huang Y, Guan G, Jiang Y. Tailoring the particle microstructures of gefitinib by supercritical CO 2 anti-solvent process. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Choi JS, Park JS. Design of PVP/VA S-630 based tadalafil solid dispersion to enhance the dissolution rate. Eur J Pharm Sci 2017; 97:269-276. [DOI: 10.1016/j.ejps.2016.11.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
12
|
Liu G, Li S, Huang Y, Wang H, Jiang Y. Incorporation of 10-hydroxycamptothecin nanocrystals into zein microspheres. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|