1
|
Yousefiasl S, Ghovvati M, Alibakhshi A, Azizi M, Samadi P, Kumar A, Shojaeian A, Sharifi E, Zare EN, Dey AD, Chehelgerdi M, Makvandi P. Smart Mesoporous Silica Nanoparticles in Cancer: Diagnosis, Treatment, Immunogenicity, and Clinical Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408898. [PMID: 39840493 DOI: 10.1002/smll.202408898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells. The review thoroughly investigates the role of MSNs as potent drug carriers, noted for their high drug-loading capacity and controlled release, which significantly improves drug permeability and retention. Additionally, it discusses surface modification techniques that enable MSNs to target cancer cells precisely. The manuscript provides comprehensive insights into various MSN applications, including their role in cancer diagnosis, the design of advanced biosensors, and the development of both conventional and stimuli-responsive drug delivery platforms. Special focus is given to stimuli-triggered MSN systems, responsive to internal stimuli (e.g., pH, redox, enzyme) and external stimuli (e.g., temperature, magnetic field, light, ultrasound), highlighting the cutting-edge progress in MSN technology. Additionally, the review delves into the immunogenicity and biosafety aspects of MSNs, underscoring their potential for clinical translation. Besides summarizing the current state of MSN research in oncology, this review also illuminates the path for future advancements and clinical applications.
Collapse
Affiliation(s)
- Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Abbas Alibakhshi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
| | - Mehdi Azizi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Pouria Samadi
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8198314271, Iran
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824209, India
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
| | - Esmaeel Sharifi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| |
Collapse
|
2
|
Verma A, Patel P, Almalki WH, Sahebkar A, Kurmi BD, Kesharwani P. Recent Advances in Drug Delivery Approaches for Rheumatoid Arthritis. Curr Med Chem 2025; 32:396-415. [PMID: 37581524 DOI: 10.2174/0929867331666230815112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 08/16/2023]
Abstract
Morbidity, disability, and healthcare expenses associated with rheumatoid arthritis (RA) impose a considerable health and economical burden on both patients and healthcare systems. This review aimed to examine the pathophysiological aspects of RA that may help design different types of drugs and drug delivery systems. These include monoclonal antibodies, immunoglobulins, tiny chemicals, and transgenes for gene therapy. These novel nanocarrier-based therapies target the underlying biological processes involved in RA while minimizing the systemic adverse effects of drugs.
Collapse
Affiliation(s)
- Abhishek Verma
- Department of Quality Assurance, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
3
|
Gadeval A, Anup N, Pawar B, Mule S, Otavi S, Sahu R, Kumar Tekade R. Gold-thiol-beaded albumin nanoparticles for chemo-combined pulsatile plasmonic laser therapy of Rheumatoid arthritis in rat model. Int J Pharm 2024; 667:124882. [PMID: 39471886 DOI: 10.1016/j.ijpharm.2024.124882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory immune disease that causes synovial membrane inflammation and destruction of articular cartilage. Traditionally, methotrexate is a first-line drug for RA treatment. However, its therapeutic benefits are insufficient. Pulsatile Plasmonic laser therapy (PPLT) has recently emerged as a localized and new-generation intervention for RA. This investigation reports the development of nanoGold-thiol-beaded albumin nanoparticles containing Leflunomide (GTBA-NP-L; 54 nm, PDI: 0.15 and entrapment efficiency: >90 %) for treating RA in an arthritic rat model. Upon irradiation of the plasmonic laser, the nanoGold component of GTBA-NP-L showed a local thermogenic effect (1.5 W/cm2 for 5 mins: ∼45 °C). This local thermal effect enhances drug release (1.5-fold) while co-delivering heat and antiarthritic leflunomide at inflamed RA joints site. In vitro and in vivo studies demonstrated significant antiarthritic effects of GTBA-NP-L, accompanied by reduced inflammatory stress in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells and antigen-induced arthritis (AIA) rat model. GTBA-NP-L treatment significantly reduced the cell viability (49.66 ± 2.46 %), apoptosis (83.36 ± 4.30 %), cell cycle arrest (38.28 ± 2.85 %), ROS and Nitrite stress levels (178.92 ± 19.79 %), and suppressed pro-inflammatory cytokines (TNF-α: 4.81, IL-6: 3.07 and IL-1β: 4.46-fold). In the arthritic rat, GTBA-NP-L treatment reduced inflammation, paw edema (1.89-fold), pain perception (45-48 %), and impacted hematological (Hb and RBCs: 12-15 %, WBCs: 30-32 %), serological (RF: 50-54 %, CRP: 40-47 %), and radiological parameters. Conclusively, the study demonstrates that the chemo-combined Pulsatile Plasmonic laser therapy showed superior efficacy as compared to individual treatments, suggesting GTBA-NP-L as a potential therapeutic candidate for rheumatoid arthritis.
Collapse
Affiliation(s)
- Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neelima Anup
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shubham Mule
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Sahu
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
4
|
Li S, Chen Q, Zhang Y, Wang D, Hu H, Li J, Zhang C, Zhang J. Hyaluronic acid dissolving microneedle patch-assisted acupoint transdermal delivery of triptolide for effective rheumatoid arthritis treatment. Sci Rep 2024; 14:25256. [PMID: 39448702 PMCID: PMC11502756 DOI: 10.1038/s41598-024-76341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Triptolide (TP), a major active component of the herb Tripterygium wilfordii Hook F, has been shown excellent pharmacological effects on rheumatoid arthritis. However, TP is prone to causing severe organ toxicity, which limits its clinical application. In recent years, microneedle technology has provided a new option for the treatment of arthritis due to its advantages of efficient local transdermal drug delivery. In this study, we constructed a microneedle platform to deliver TP locally to the joints, thereby enhancing TP penetration and reducing systemic toxicity. Additionally, we investigated whether acupoint drug delivery can produce a synergistic effect of needles and drugs. First, TP was loaded into microneedles using polyvinylpyrrolidone and hyaluronic acid as matrix materials. Next, we established a rat adjuvant-induced arthritis (AIA) model to evaluate the therapeutic effect of TP-loaded microneedles. The experiments showed that TP-loaded microneedles alleviated the AIA rats' inflammatory response, joint swelling, and bone erosion. However, there was no significant difference in the therapeutic effect observed in the acupoint and non-acupoint administration groups. In conclusion, TP-loaded microneedles have the advantages of safety, convenience, and high efficacy over conventional administration routes, laying a foundation for the transdermal drug delivery system-based treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Quanlong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Adick A, Hoheisel W, Schneid S, Hester S, Langer K. Development of a screening platform for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions using nab™ technology. Int J Pharm 2024; 662:124491. [PMID: 39032872 DOI: 10.1016/j.ijpharm.2024.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The nanoparticle albumin bound™ (nab™) technology generally offers great potential for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions for intravenous use while avoiding solubilizers and cross-linking agents. The nab™ technology is a three-step process consisting of emulsification, high-pressure homogenization and solvent evaporation. Within this work, a screening approach was developed to predict whether active pharmaceutical ingredients are suitable for nab™ formulations. A design of experiments approach was used to investigate the effects of ultrasonic homogenization on an albumin-stabilized itraconazole nanosuspension. Based on this, a screening platform was developed, and subsequently evaluated and applied to a selection of poorly water-soluble drugs. The screening process to produce albumin-stabilized nanosuspensions consists of two process steps: Ultrasonic treatment, which combined emulsification and homogenization, followed by solvent evaporation. The results of the screening process were fully transferable to the standard three-step process of nab™ technology. In addition, based on drug screening, drug properties were highlighted that are important for the development of nab™ formulations. All in all, the nab™ technology is a promising but not universal formulation platform for poorly water-soluble drugs. Nevertheless, for some poorly soluble drugs it offers a valuable approach for the formulation of nanosuspensions for intravenous use.
Collapse
Affiliation(s)
- Annika Adick
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| | - Werner Hoheisel
- Bayer AG, Process Technologies, Chempark, Building E41, 51368 Leverkusen, Germany.
| | - Stefan Schneid
- Bayer AG, Pharmaceuticals, Drug Product Development, Friedrich-Ebert-Straße 217-333, 42117 Wuppertal, Germany.
| | - Sarah Hester
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| |
Collapse
|
6
|
Khandelia R, Hodgkinson T, Crean D, Brougham DF, Scholz D, Ibrahim H, Quinn SJ, Rodriguez BJ, Kennedy OD, O’Byrne JM, Brayden DJ. Reproducible Synthesis of Biocompatible Albumin Nanoparticles Designed for Intra-articular Administration of Celecoxib to Treat Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14633-14644. [PMID: 38483312 PMCID: PMC10982941 DOI: 10.1021/acsami.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis, with intra-articular (IA) delivery of therapeutics being the current best option to treat pain and inflammation. However, IA delivery is challenging due to the rapid clearance of therapeutics from the joint and the need for repeated injections. Thus, there is a need for long-acting delivery systems that increase the drug retention time in joints with the capacity to penetrate OA cartilage. As pharmaceutical utility also demands that this is achieved using biocompatible materials that provide colloidal stability, our aim was to develop a nanoparticle (NP) delivery system loaded with the COX-2 inhibitor celecoxib that can meet these criteria. We devised a reproducible and economical method to synthesize the colloidally stable albumin NPs loaded with celecoxib without the use of any of the following conditions: high temperatures at which albumin denaturation occurs, polymer coatings, oils, Class 1/2 solvents, and chemical protein cross-linkers. The spherical NP suspensions were biocompatible, monodisperse with average diameters of 72 nm (ideal for OA cartilage penetration), and they were stable over 6 months at 4 °C. Moreover, the NPs loaded celecoxib at higher levels than those required for the therapeutic response in arthritic joints. For these reasons, they are the first of their kind. Labeled NPs were internalized by primary human articular chondrocytes cultured from the knee joints of OA patients. The NPs reduced the concentration of inflammatory mediator prostaglandin E2 released by the primaries, an indication of retained bioactivity following NP synthesis. Similar results were observed in lipopolysaccharide-stimulated human THP-1 monocytes. The IA administration of these NPs is expected to avoid side-effects associated with oral administration of celecoxib and to maintain a high local concentration in the knee joint over a sustained period. They are now ready for evaluation by IA administration in animal models of OA.
Collapse
Affiliation(s)
- Rumi Khandelia
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Tom Hodgkinson
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - Daniel Crean
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Dermot F. Brougham
- UCD
School of Chemistry, University College
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Dimitri Scholz
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Hossam Ibrahim
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
School of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Susan J. Quinn
- UCD
School of Chemistry, University College
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Brian J. Rodriguez
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
School of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Oran D. Kennedy
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - John M. O’Byrne
- National
Orthopaedics Hospital Cappagh, Dublin D11 EV29, Ireland
| | - David J. Brayden
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| |
Collapse
|
7
|
Tanjung YP, Dewi MK, Gatera VA, Barliana MI, Joni IM, Chaerunisaa AY. Factors Affecting the Synthesis of Bovine Serum Albumin Nanoparticles Using the Desolvation Method. Nanotechnol Sci Appl 2024; 17:21-40. [PMID: 38314401 PMCID: PMC10838516 DOI: 10.2147/nsa.s441324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Currently, protein-based nanoparticles are in high demand as drug delivery systems due to their exceptional qualities, including nontoxicity, nonantigenicity, and biodegradability. Other qualities include high nutritional value, abundance of renewable resources, excellent drug binding capacity, greater stability during storage and in vivo, as well as ease of upgrading during manufacture. Examples of protein suitable for this purpose include ovalbumin (OVA) derived from egg white, human serum albumin (HSA), and bovine serum albumin (BSA). To create albumin nanoparticles, six different processes have been investigated in depth and are frequently used in drug delivery systems. These included desolvation, thermal gelation, emulsification, NAB technology, self-assembly, and nanospray drying. Several experimental conditions in the synthesis of albumin nanoparticles can affect the physicochemical characterization. Therefore, this study aimed to provide an overview of various experimental conditions capable of affecting the physicochemical characteristics of BSA nanoparticles formed using the desolvation method. By considering the variation in optimal experimental conditions, a delivery system of BSA nanoparticles with the best physicochemical characterization results could be developed.
Collapse
Affiliation(s)
- Yenni Puspita Tanjung
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Bumi Siliwangi Academy of Pharmacy, Bandung, West Java, Indonesia
| | - Mayang Kusuma Dewi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Vesara Ardhe Gatera
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacy and Health Sciences, Universiti Kuala Lumpur - Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Melisa Intan Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
8
|
Karami E, Mesbahi Moghaddam M, Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr Pharm Biotechnol 2024; 25:676-693. [PMID: 37550918 DOI: 10.2174/1389201024666230807161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.
Collapse
Affiliation(s)
- Elmira Karami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Garg U, Jain N, Kaul S, Nagaich U. Role of Albumin as a Targeted Drug Carrier in the Management of Rheumatoid Arthritis: A Comprehensive Review. Mol Pharm 2023; 20:5345-5358. [PMID: 37870420 DOI: 10.1021/acs.molpharmaceut.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An endogenous transporter protein called albumin interacts with the Fc receptor to provide it with multiple substrate-binding domains, cell membrane receptor activation, and an extended circulating half-life. Albumin has the remarkable ability to bind with receptors viz. secreted protein acidic and rich in cysteine (SPARC) and scavenger protein-A (SR-A) that are overexpressed during rheumatoid arthritis (RA), enabling active targeting of the disease site instead of requiring specialized substrates to be added to the nanocarrier. RA, a chronic autoimmune illness, is characterized by the presence of a severe inflammatory response. RA patients have low serum albumin concentration, which signifies the high uptake of albumin at the inflammatory sites, giving a rationale to use albumin as a drug carrier for RA therapy. Albumin has the capacity for both passive and active targeting. It is an abundantly available protein in the bloodstream showing excellent cellular compatibility, degradability in biological tissues, nonantigenicity, and safety. There are three strategies of albumin mediated drug delivery as encapsulating therapeutics in albumin nanoparticles, chemically conjugating drugs with functional proteins, and albumin itself which is used as a targeting ligand to deliver drugs specifically to cells or tissues that express albumin-binding receptors. In the current review, an attempt has been made to highlight the significant evidence of albumin as a drug delivery carrier for the safe and effective management of RA. Evidence has been provided in the form of recent research advances, clinical trials, and patents. Additionally, this review will outline the prospective for the potential utilization of albumin as a drug vehicle for RA and suggest possible future avenues to provide the perspective for subsequent studies.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
10
|
Syed A, Karwa P, Vemula KD, Salwa. Multifunctional nanoparticles encapsulating methotrexate and curcumin for holistic management of rheumatoid arthritis: in-vitro and pre-clinical assessment. Drug Dev Ind Pharm 2023; 49:536-549. [PMID: 37551958 DOI: 10.1080/03639045.2023.2245057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Bovine serum albumin (BSA) nanoparticles (BSA-MTX-CUR-NPs) encapsulating methotrexate (MTX) and curcumin (CUR) was developed with an aim to co-deliver the drugs at the inflamed joint so as to maximize the therapeutic efficacy and alleviate toxic side effects associated with MTX. METHODS Nanoparticle albumin-bound technology was used to formulate nanoparticles, followed by characterization for its particle size, polydispersity index, encapsulation efficiency, zeta potential, surface morphology, in-vitro drug release and drug release kinetics. Further, we investigated the pharmacokinetics and pharmacodynamics of the developed nanoparticles in the adjuvant-induced arthritis model. RESULTS BSA-MTX-CUR-NPs exhibited particle size of 163.05 ± 1.708 nm, polydispersity index of 0.195 ± 0.0024 and % encapsulation efficiency of 68.23 ± 0.640% for MTX and 75.71 ± 0.216% for CUR with controlled release pattern for both the drugs. The scanning electron microscopy revealed nanoparticles exhibited a spherical shape. DSC study confirmed the absence of incompatibility between the drugs and the excipients. Half-life and area under the curve were significantly higher for MTX in the nanoparticulate form in comparison to free MTX. Pharmacodynamic studies revealed that BSA-MTX-CUR-NPs possessed better disease-modifying effects in comparison to free MTX. CONCLUSION Hence, it can be concluded that albumin nanoparticles constitute a viable method for delivering MTX and CUR to inflamed joints simultaneously, because of the strong affinity of albumin and enhanced permeability and retention effect at the inflamed joint. This combinational therapy of MTX & CUR in nanoparticulate form has the potential for the holistic management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ayesha Syed
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, Karnataka, India
| | - Preeti Karwa
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, Karnataka, India
| | - Kusum Devi Vemula
- Department of Pharmaceutics, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal Academy of Higher Education, Manipal, Karnataka
| |
Collapse
|
11
|
Zhang Y, Gao Z, Chao S, Lu W, Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv 2022; 29:1934-1950. [PMID: 35757855 PMCID: PMC9246099 DOI: 10.1080/10717544.2022.2089295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease, with the features of recurrent chronic inflammation of synovial tissue, destruction of cartilage, and bone erosion, which further affects joints tissue, organs, and systems, and eventually leads to irreversible joint deformities and body dysfunction. Therapeutic drugs for rheumatoid arthritis mainly reduce inflammation through regulating inflammatory factors. Transdermal administration is gradually being applied to the treatment of rheumatoid arthritis, which can allow the drug to overcome the skin stratum corneum barrier, reduce gastrointestinal side effects, and avoid the first-pass effect, thus improving bioavailability and relieving inflammation. This paper reviewed the latest research progress of transdermal drug delivery in the treatment of rheumatoid arthritis, and discussed in detail the dosage forms such as gel (microemulsion gel, nanoemulsion gel, nanomicelle gel, sanaplastic nano-vesiclegel, ethosomal gel, transfersomal gel, nanoparticles gel), patch, drug microneedles, nanostructured lipid carrier, transfersomes, lyotropic liquid crystal, and drug loaded electrospinning nanofibers, which provide inspiration for the rich dosage forms of transdermal drug delivery systems for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhaoju Gao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shushu Chao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wenjuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
12
|
Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv 2022; 19:883-898. [PMID: 35760767 DOI: 10.1080/17425247.2022.2094364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune systemic disease in which inflammatory and immune cells accumulate in inflamed joints. Researchers aimed at the characteristics of RA to achieve the effect of treating RA through different therapeutic strategies, and have used various endogenous materials to design drug-loaded nanoparticles that can target RA by binding to cell adhesion molecules or chemokines. In some cases, the nanoparticles can respond to the characteristics of the microenvironment. AREAS COVERED This article reviews the recent advances in the treatment of RA from two aspects of therapeutic strategies and delivery strategies. Therapeutic strategies mainly include neutralization of inflammatory factors, promotion of inflammatory cell apoptosis, ROS scavenger, immunosuppression, and bone tissue repair. The drug delivery strategy is mainly described from two aspects: chemically functionalized biomimetic nanoparticles and endogenous nanoparticles. EXPERT OPINION Biomimetic NPs may be effective drug carriers for targeted RA treatment. NPs can reduce the clearance of mononuclear phagocytes, prolong the blood circulation time, and improve the targeting ability. With the deepening of research, more and more biomimetic NPs have entered the clinical trial stage. However, safe and scalable preparation methods are needed to improve their clinical applicability.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Mei Hu
- Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
13
|
Garg A, Garg R. Current advances in colloidal based delivery systems for Tacrolimus. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|
15
|
Promoted antitumor therapy on pancreatic cancer by a novel recombinant human albumin-bound miriplatin nanoparticle. Eur J Pharm Sci 2021; 167:106000. [PMID: 34517105 DOI: 10.1016/j.ejps.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022]
Abstract
Pancreatic cancer is an aggressive and highly lethal disease with a very poor prognosis. Our previous study found miriplatin can inhibit proliferation of various tumor cells, including pancreatic cancer cells. For the chemotherapy of pancreatic cancer, a novel recombinant human serum albumin (rHSA)-bound miriplatin nanoparticles (rHSA-miPt) were constructed by emulsion-diffusion evaporation method. The optimal formulation was composed of 150 mg of rHSA and 30 mg of miriplatin. The key parameters in rHSA-miPt production were 10 min of high-pressure homogenization in a solution with volume ratio of 10:2 of 5% glucose and chloroform. The rHSA-miPt was characterized with a particle size of 61 ± 10 nm, a zeta potential value of -18 ± 5 mV, encapsulation efficiency of 98.4%, drug loading of 16.4%, T1/2 of 13.3 h and Vd of 0.5 L in Sprague Dawley rats. The concentrations of platinum (Pt) in the tumors were 15 and 22-fold higher than those in the blood at 24 and 72 h in tumor-bearing mice, respectively. The internalization of rHSA-miPt through caveolae-dependent pathway. In vitro, the half-maximal inhibitory concentration (IC50) of rHSA-miPt was 12.7 μM vs more than 100 μM of gemcitabine (Gem). The inhibition rate of tumor growth was 76% of rHSA-miPt and 51% of Gem, respectively. Compared with Gem, rHSA-miPt was identified to be safer and less toxic based on body weight loss in mice (0% vs 20%), the survival rate of mice (100% vs 80%) and hematological and biochemical parameters of the mice including leukocytes, lymphocytes, neutrophils, monocytes, serum alanine aminotransferase and aspartate aminotransferase. The present study revealed that rHSA-miPt might be a promising candidate for pancreatic cancer therapy.
Collapse
|
16
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Mutalik S. Towards next-generation personalization of tacrolimus treatment: a review on advanced diagnostic and therapeutic approaches. Pharmacogenomics 2021; 22:1151-1175. [PMID: 34719935 DOI: 10.2217/pgs-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The benefit of personalized medicine is that it allows the customization of drug therapy - maximizing efficacy while avoiding side effects. Genetic polymorphisms are one of the major contributors to interindividual variability. Currently, the only gold standard for applying personalized medicine is dose titration. Because of technological advancements, converting genotypic data into an optimum dose has become easier than in earlier years. However, for many medications, determining a personalized dose may be difficult, leading to a trial-and-error method. On the other hand, the technologically oriented pharmaceutical industry has a plethora of smart drug delivery methods that are underutilized in customized medicine. This article elaborates the genetic polymorphisms of tacrolimus as case study, and extensively covers the diagnostic and therapeutic technologies which aid in the delivery of personalized tacrolimus treatment for better clinical outcomes, thereby providing a new strategy for implementing personalized medicine.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
17
|
Oshi MA, Haider A, Siddique MI, Zeb A, Jamal SB, Khalil AAK, Naeem M. Nanomaterials for chronic inflammatory diseases: the current status and future prospects. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Helal HM, Samy WM, Kamoun EA, El-Fakharany EM, Abdelmonsif DA, Aly RG, Mortada SM, Sallam MA. Potential Privilege of Maltodextrin-α-Tocopherol Nano-Micelles in Seizing Tacrolimus Renal Toxicity, Managing Rheumatoid Arthritis and Accelerating Bone Regeneration. Int J Nanomedicine 2021; 16:4781-4803. [PMID: 34290503 PMCID: PMC8286967 DOI: 10.2147/ijn.s317409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Tacrolimus (TAC) is a powerful immunosuppressive agent whose therapeutic applicability is confined owing to its systemic side effects. Objective Herein, we harnessed a natural polymer based bioconjugate composed of maltodextrin and α-tocopherol (MD-α-TOC) to encapsulate TAC as an attempt to overcome its biological limitations while enhancing its therapeutic anti-rheumatic efficacy. Methods The designed TAC loaded maltodextrin-α-tocopherol nano-micelles (TAC@MD-α-TOC) were assessed for their physical properties, safety, toxicological behavior, their ability to combat arthritis and assist bone/cartilage formation. Results In vitro cell viability assay revealed enhanced safety profile of optimized TAC@MD-α-TOC with 1.6- to 2-fold increase in Vero cells viability compared with free TAC. Subacute toxicity study demonstrated a diminished nephro- and hepato-toxicity accompanied with optimized TAC@MD-α-TOC. TAC@MD-α-TOC also showed significantly enhanced anti-arthritic activity compared with free TAC, as reflected by improved clinical scores and decreased IL-6 and TNF-α levels in serum and synovial fluids. Unique bone formation criteria were proved with TAC@MD-α-TOC by elevated serum and synovial fluid levels of osteocalcin and osteopontin mRNA and proteins expression. Chondrogenic differentiation abilities of TAC@MD-α-TOC were proved by increased serum and synovial fluid levels of SOX9 mRNA and protein expression. Conclusion Overall, our designed bioconjugate micelles offered an excellent approach for improved TAC safety profile with enhanced anti-arthritic activity and unique bone formation characteristics.
Collapse
Affiliation(s)
- Hala M Helal
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Wael M Samy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt.,Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El- Sherouk City, Cairo, 11837, Egypt
| | - Esmail M El-Fakharany
- Proteins Research Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
19
|
Wang R, Yan H, Yu A, Ye L, Zhai G. Cancer targeted biomimetic drug delivery system. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021; 11:1158-1174. [PMID: 34094826 PMCID: PMC8144894 DOI: 10.1016/j.apsb.2021.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing understanding of the pathogenesis of rheumatoid arthritis (RA) has remarkably promoted the development of effective therapeutic regimens of RA. Nevertheless, the inadequate response to current therapies in a proportion of patients, the systemic toxicity accompanied by long-term administration or distribution in non-targeted sites and the comprised efficacy caused by undesirable bioavailability, are still unsettled problems lying across the full remission of RA. So far, these existing limitations have inspired comprehensive academic researches on nanomedicines for RA treatment. A variety of versatile nanocarriers with controllable physicochemical properties, tailorable drug release pattern or active targeting ability were fabricated to enhance the drug delivery efficiency in RA treatment. This review aims to provide an up-to-date progress regarding to RA treatment using nanomedicines in the last 5 years and concisely discuss the potential application of several newly emerged therapeutic strategies such as inducing the antigen-specific tolerance, pro-resolving therapy or regulating the immunometabolism for RA treatments.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Srivastava A, Prajapati A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. ASIAN BIOMED 2020; 14:217-242. [PMID: 37551304 PMCID: PMC10373404 DOI: 10.1515/abm-2020-0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The inherent properties of albumin facilitate its effective use as a raw material to prepare a nanosized drug delivery vehicles. Because of the enhanced surface area, biocompatibility, and extended half-life of albumin nanoparticles, a number of drugs have been incorporated in albumin matrices in recent years. Furthermore, its ability to be conjugated to various receptor ligands makes albumin an ideal candidate for the increased delivery of drugs to specific sites. The present review provides an in-depth discussion of production strategies for the preparation of albumin and conjugated albumin nanoparticles and for the targeting of these formulations to specific organs and cancer cells. This review also provides insights into drug loading, release patterns, and cytotoxicity of various drug-loaded albumin nanoparticles.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Chemistry, GLA University, Chaumuhan, Mathura, Uttar Pradesh281406, India
| | - Anjali Prajapati
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh281406, India
| |
Collapse
|
22
|
Hájovská P, Chytil M, Kalina M. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight. Int J Biol Macromol 2020; 161:738-745. [DOI: 10.1016/j.ijbiomac.2020.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
|
23
|
Gholijani N, Abolmaali SS, Kalantar K, Ravanrooy MH. Therapeutic Effect of Carvacrol-loaded Albumin Nanoparticles on Arthritic Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:312-320. [PMID: 32922489 PMCID: PMC7462511 DOI: 10.22037/ijpr.2019.15494.13131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. Carvacrol, an important natural terpenoid product in aromatic plants such as thyme, has shown anti-inflammatory effects in animal models of arthritis. However, its poor water solubility and high volatility have limited its application. In the present study in order to overcome this problem, we encapsulated carvacrol in the bovine serum albumin (BSA) nanoparticles and examined its therapeutic and immunomodulatory effects in adjuvant-induced arthritis (AIA). Carvacrol-loaded BSA nanoparticles were prepared by desolvation method. Nanoparticles had encapsulation efficiency (EE) of 67.7 ± 6.9% and loading capacity (LC) of 26.6 ± 2%. The size of particles was 148 ± 25 nm and they had monomodal distribution. After arthritis induction, the rats were treated intraperitoneally with nanoparticle for every 3 days until day 28. The treatment of the rats with 375 mg/mL carvacrol-loaded BSA nanoparticle significantly decreased clinical severity score (27.5 ± 9.8%, p = 0.008), erythrocyte sedimentation rate (33.4 ± 10%, p = 0.02), nitric oxide production (82.3 ± 2.6%, p = 0.004) and interleukin (IL)-17 gene expression (55.1 ± 8.2%, p = 0.003) compared to the untreated arthritic group. A higher reduction in inflammation severity in arthritic rats treated with carvacrol-loaded BSA in comparison to those treated with carvacrol alone was observed. In conclusion, encapsulation of carvacrol in nanoparticles reduced arthritis signs and release of NO and IL-17 inflammatory cytokine and therefore is suggested to be considered as a good approach for improving the therapeutic applications of carvacrol in RA.
Collapse
Affiliation(s)
- Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira-Sadat Abolmaali
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medical, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
24
|
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that results in severe inflammatory microenvironments in the joint tissues. In clinics, disease-modifying antirheumatic drugs (DMARDs) are generally prescribed to patients with RA, but their long-term use often shows toxicity in some organs such as the gastrointestinal system, skin, and kidneys and immunosuppression-mediated infection. Nanomedicine has emerged as a new therapeutic strategy to efficiently localize the drugs in inflamed joints for the treatment of RA. In this Review, we introduce recent research in the area of nanomedicine for the treatment of RA and discuss how the nanomedicine can be used to deliver therapeutic agents to the inflamed joints and manage the progression of RA, particularly focusing on targeted delivery, controlled drug release, and immune modulation.
Collapse
Affiliation(s)
- Moonkyoung Jeong
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
25
|
Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Qari HA, Umar K, Mohamad Ibrahim MN. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem 2020; 8:341. [PMID: 32509720 PMCID: PMC7248377 DOI: 10.3389/fchem.2020.00341] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Hilal Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Akil Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iqbal M. I. Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda A. Qari
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
26
|
Wang S, Lv J, Meng S, Tang J, Nie L. Recent Advances in Nanotheranostics for Treat-to-Target of Rheumatoid Arthritis. Adv Healthc Mater 2020; 9:e1901541. [PMID: 32031759 DOI: 10.1002/adhm.201901541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Early diagnosis, standardized treatment, and regular monitoring are the clinical treatment principle of rheumatoid arthritis (RA). The overarching principles and recommendations of treat-to-target (T2T) in RA advocate remission as the optimum aim, especially for patients with very early disease who are initiating therapy with anti-RA medications. However, traditional anti-RA drugs cannot selectively target the inflammatory areas and may cause serious side effects due to its short biological half-life and poor bioavailability. These limitations have significantly driven the research and application of nanomaterial-based drugs in theranostics of RA. Nanomedicines have appropriate sizes and easily modified surfaces which can enhance their biological compatibility and prolong circulation time of drug-loading systems in vivo. Traditional T2T regimens cannot evaluate the efficacy of drugs in real time, while clinical drug nanosizing can realize the integration of diagnosis and treatment of RA. This review bridges clinically proposed T2T concepts and nanomedicine in an integrated system for RA early-stage diagnosis and treatment. The most advanced progress in various nanodrug delivery systems for theranostics of RA is summarized, establishing a clear path and a new perspective for further optimization of T2T. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Shasha Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
27
|
Xu XL, Lu KJ, Yao XQ, Ying XY, Du YZ. Stimuli-responsive Drug Delivery Systems as an Emerging Platform for Treatment of Rheumatoid Arthritis. Curr Pharm Des 2020; 25:155-165. [PMID: 30907308 DOI: 10.2174/1381612825666190321104424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid Arthritis (RA) is a systemic autoimmune disease accompanied by chronic inflammation. Due to the long-term infiltration in inflammatory sites, joints get steadily deteriorated, eventually resulting in functional incapacitation and disability. Despite the considerable effect, RA sufferers treated with current drug therapeutic efficacy are exposed to severe side effects. Application of Drug Delivery Systems (DDS) has improved these situations while the problem of limited drug exposure remains untackled. Stimuli-responsive DDS that are responsive to a variety of endogenous and exogenous stimuli, such as pH, redox status, and temperature, have emerged as a promising therapeutic strategy to optimize the drug release. Herein, we discussed the therapeutic regimes and serious side effects of current RA therapy, as well as focused on some of the potential stimuliresponsive DDS utilized in RA therapy. Besides, the prospective room in designing DDS for RA treatment has also been discussed.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Qin Yao
- School of Medicine, Zhejiang University City College, Hangzhou 310058, China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res 2020; 43:118-133. [PMID: 31916145 DOI: 10.1007/s12272-020-01204-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Albumin is a biocompatible, non-immunogenic and versatile drug carrier system. It has been widely used to extend the half-life, enhance stability, provide protection from degradation and allow specific targeting of therapeutic agents to various disease states. Understanding the role of albumin as a drug delivery and distribution system has increased remarkably in the recent years from the development of albumin-binding prodrugs to albumin as a drug carrier system. The extraordinary surface property of albumin makes it possible to bind various endogenous and exogenous molecules. This review succinctly deals with several albumin-drug conjugates and nanoparticles along with their preparation techniques and focuses on surface-modified albumin and targeting of albumin formulation to specific organs and tissues. It also summarizes research efforts on albumin nanoparticles used for delivering drugs to tumor cells and describes their role in permeation through tumor vasculature and in receptor mediated endocytosis, which is also described in this review. The versatility of albumin and ease of preparation makes it a suitable drug carrier system, swhich is the major objective of this review.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu, 704-701, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu, 704-701, Republic of Korea.
| |
Collapse
|
29
|
Nagy A, Robbins NL. The hurdles of nanotoxicity in transplant nanomedicine. Nanomedicine (Lond) 2019; 14:2749-2762. [DOI: 10.2217/nnm-2019-0192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanomedicine has matured significantly in the past 20 years and a number of nanoformulated therapies are cleared by regulatory agencies for use across the globe. Transplant medicine is one area that has significantly benefited from the advancement of nanomedicine in recent times. However, while nanoparticle-based therapies have improved toxicological profiles of some drugs, there are still a number of aspects regarding the biocompatibility and toxicity of nanotherapies that require further research. The goal of this article is to review toxicological profiles of immunosuppressant therapies and their conversion into nanomedicine formulations as well as introduce future challenges associated with current in vitro and in vivo toxicological models.
Collapse
Affiliation(s)
- Amber Nagy
- 59th Medical Wing, Office of Science & Technology, Joint Base San Antonio-Lackland, TX 78236, USA
| | - Nicholas L Robbins
- 59th Medical Wing, Office of Science & Technology, Joint Base San Antonio-Lackland, TX 78236, USA
| |
Collapse
|
30
|
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. ACTA ACUST UNITED AC 2019; 71:1185-1198. [PMID: 31049986 DOI: 10.1111/jphp.13098] [Citation(s) in RCA: 507] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/07/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This review highlights both the physicochemical characteristics of the nanocarriers (NCs) and the physiological features of tumour microenvironment (TME) to outline what strategies undertaken to deliver the molecules of interest specifically to certain lesions. This review discusses these properties describing the convenient choice between passive and active targeting mechanisms with details, illustrated with examples of targeting agents up to preclinical research or clinical advances. KEY FINDINGS Targeted delivery approaches for anticancers have shown a steep rise over the past few decades. Though many successful preclinical trials, only few passive targeted nanocarriers are approved for clinical use and none of the active targeted nanoparticles. Herein, we review the principles and for both processes and the correlation with the tumour microenvironment. We also focus on the limitation and advantages of each systems regarding laboratory and industrial scale. SUMMARY The current literature discusses how the NCs and the enhanced permeation and retention effect impact the passive targeting. Whereas the active targeting relies on the ligand-receptor binding, which improves selective accumulation to targeted sites and thus discriminates between the diseased and healthy tissues. The latter could be achieved by targeting the endothelial cells, tumour cells, the acidic environment of cancers and nucleus.
Collapse
Affiliation(s)
- Mohamed F Attia
- CNRS, CAMB, UMR 7199, Université de Strasbourg, Strasbourg, France.,Department of Bioengineering, Clemson University, Clemson, SC, USA.,National Research Centre, Cairo, Egypt
| | - Nicolas Anton
- CNRS, CAMB, UMR 7199, Université de Strasbourg, Strasbourg, France
| | - Justine Wallyn
- CNRS, CAMB, UMR 7199, Université de Strasbourg, Strasbourg, France
| | - Ziad Omran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Umm Al-Qura, Kingdom of Saudi Arabia
| | | |
Collapse
|
31
|
Qu N, Sun Y, Li Y, Hao F, Qiu P, Teng L, Xie J, Gao Y. Docetaxel-loaded human serum albumin (HSA) nanoparticles: synthesis, characterization, and evaluation. Biomed Eng Online 2019; 18:11. [PMID: 30704488 PMCID: PMC6357434 DOI: 10.1186/s12938-019-0624-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background Docetaxel (DTX) is an anticancer drug that is currently formulated with polysorbate 80 and ethanol (50:50, v/v) in clinical use. Unfortunately, this formulation causes hypersensitivity reactions, leading to severe side-effects, which have been primarily attributed to polysorbate 80. Methods In this study, a DTX-loaded human serum albumin (HSA) nanoparticle (DTX-NP) was designed to overcome the hypersensitivity reactions that are induced by polysorbate 80. The methods of preparing the DTX-NPs have been optimized based on factors including the drug-to-HSA weight ratio, the duration of HSA incubation, and the choice of using a stabilizer. Synthesized DTX-NPs were characterized with regard to their particle diameters, drug loading capacities, and drug release kinetics. The morphology of the DTX-NPs was observed via scanning electron microscopy (SEM) and the successful preparation of DTX-NPs was confirmed via differential scanning calorimetry (DSC). The cytotoxicity and cellular uptake of DTX-NPs were investigated in the non-small cell lung cancer cell line A549 and the maximum tolerated dose (MTD) of DTX-NPs was evaluated via investigations with BALB/c mice. Results The study showed that the loading capacity and the encapsulation efficiency of DTX-NPs prepared under the optimal conditions was 11.2 wt% and 63.1 wt%, respectively and the mean diameter was less than 200 nm, resulting in higher permeability and controlled release. Similar cytotoxicity against A549 cells was exhibited by the DTX-NPs in comparison to DTX alone while higher maximum tolerated dose (MTD) with the DTX-NPs (75 mg/kg) than with DTX (30 mg/kg) was demonstrated in mice, suggesting that the DTX-NPs prepared with HSA yielded similar anti-tumor activity but were accompanied by less systemic toxicity than solvent formulated DTX. Conclusions DTX-NPs warrant further investigation and are promising candidates for clinical applications.![]()
Collapse
Affiliation(s)
- Na Qu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Yating Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Yujing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Fei Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Pengyu Qiu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Lesheng Teng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China.,State Key Laboratory of Long-acting and Targeted Drug Delivery System, Yantai, China
| | - Jing Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China.
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
32
|
Janakiraman K, Krishnaswami V, Rajendran V, Natesan S, Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. MATERIALS TODAY. COMMUNICATIONS 2018; 17:200-213. [PMID: 32289062 PMCID: PMC7104012 DOI: 10.1016/j.mtcomm.2018.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 05/02/2023]
Abstract
Rheumatoid arthritis (RA) is the most common complex multifactorial joint related autoimmune inflammatory disease with unknown etiology accomplished with increased cardiovascular risks. RA is characterized by the clinical findings of synovial inflammation, autoantibody production, and cartilage/bone destruction, cardiovascular, pulmonary and skeletal disorders. Pro-inflammatory cytokines such as IL-1, IL-6, IL-8, and IL-10 were responsible for the induction of inflammation in RA patients. Drawbacks such as poor efficacy, higher doses, frequent administration, low responsiveness, and higher cost and serious side effects were associated with the conventional dosage forms for RA treatment. Nanomedicines were recently gaining more interest towards the treatment of RA, and researchers were also focusing towards the development of various anti-inflammatory drug loaded nanoformulations with an aid to both actively/passively targeting the inflamed site to afford an effective treatment regimen for RA. Alterations in the surface area and nanoscale size of the nanoformulations elicit beneficial physical and chemical properties for better pharmacological activities. These drug loaded nanoformulations may enhances the solubility of poorly water soluble drugs, improves the bioavailability, affords targetability and may improve the therapeutic activity. In this regimen, the present review focus towards the novel nanoparticulate formulations (nanoparticles, nanoemulsions, solid lipid nanoparticles, nanomicelles, and nanocapsules) utilized for the treatment of RA. The recent advancements such as siRNA, peptide and targeted based nanoparticulate systems for RA treatment were also discussed. Special emphasis was provided regarding the pathophysiology, prevalence and symptoms towards the development of RA.
Collapse
Key Words
- A-SLN, actarit loaded solid lipid nanoparticles
- ACF-SLN, aceclofenac loaded solid lipid nanoparticles
- AIA, antigen-induced arthritis
- ALP, alkaline phosphate
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- C-SLN, curcumin loaded solid lipid nanoparticles
- CEL-TS-LN, celecoxib loaded tristearin based lipidic nanoparticles
- CFA, complete freund’s adjuvant
- CHNP, chitosan nanoparticle
- CLSM, confocal laser scanning microscopy
- COX- 1, cyclooxygenase - 1
- COX- 2, cyclooxygenase - 2
- DEX, dexamethasone
- DEX-PMs, dexamethasone-loaded polymeric micelles
- DMARD, disease modifying antirheumatic drugs
- FA, folic acid
- FR-β, folate receptor-beta
- GC, glucocorticoid
- HA- AuNP/TCZ, hyaluronate gold nanoparticle/Tocilizumab
- HEKcells, human embryonic kidney cells
- HSA-NCs, human serum albumin nanocapsules
- HUVEC, human umbilical vein cells
- IL, interleukin
- IND-NMs, indomethacin loaded polymeric micelles
- Ig, immunoglobulin
- Ind-NCs, indomethacin-loaded nanocapsules
- Inflammation
- LDE, lipidic nanoemulsion
- LX-NMs, larnoxicam loaded nanomicelles
- MTX-LCNCs, methotrexate-loaded lipidic core nanocapsules
- NSAIDs, non steroidal anti-inflammatory drugs
- Nanoformulation
- Nanoparticles
- P-SLN, piperine loaded solid lipid nanoparticle
- PCL, polycaprolactone
- PCL-PEG, poly (ethylene glycol)-block-poly (ε-caprolactone)
- PSA, polysialic acid
- PSA-PCL-CyA-NMs, polysialic acid- polycaprolactone cyclosporine A nanomicelles
- Pir-SLN, piroxicam solid lipid nanoparticles
- RA, rheumatoid arthritis
- RGD, arginine-glycine aspartic acid
- RNAi, RNA interference
- Rheumatoid arthritis
- SLN, solid lipid nanoparticles
- TAC-HSA-NPs, tacrolimus human serum albumin nanoparticle
- TAC-LCNCs, tacrolimus loaded lipidic core nanocapsules
- TNF-α, tumour necrosis factor
- VCAM-1, vascular cell adhesion molecule-1
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- mRNA, messenger RNA
- shRNA, short hairpin RNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Kumar Janakiraman
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Vijaya Rajendran
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Subramanian Natesan
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
33
|
Long-lasting immunosuppressive effects of tacrolimus-loaded micelle NK61060 in preclinical arthritis and colitis models. Ther Deliv 2018; 9:711-729. [PMID: 30277135 DOI: 10.4155/tde-2018-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Tacrolimus (TAC) is an important drug for inflammatory diseases. However, TAC has several limitations, such as variable trough concentrations among individuals and a high medication frequency. In this study, we created NK61060, a novel micellar TAC formulation, to circumvent these disadvantages. MATERIALS & METHODS Immunosuppressive activity of NK61060 was determined in the collagen-induced arthritis rat model, mannan-induced arthritis mouse model and dextran sodium sulfate-induced colitis mouse model. The pharmacokinetics and toxicology of NK61060 were evaluated in those models. RESULTS In arthritis and colitis models, NK61060 exhibited superior immunosuppressive activity compared with that of TAC. Pharmacokinetic and toxicological analyses indicated that NK61060 had a wider safety margin and could be administered at a reduced medication frequency. CONCLUSION NK61060 mitigates the trough concentration variability and the medication frequency and it may be a safer and more effective option for use in clinical settings. Further studies are needed to determine its clinical usefulness.
Collapse
|
34
|
Liu L, Guo W, Liang XJ. Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. Biotechnol J 2018; 14:e1800024. [DOI: 10.1002/biot.201800024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease; The Second Affiliated Hospital; Guangzhou Medical University; Guangzhou 510260 P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
35
|
Pei W, Wan X, Shahzad KA, Zhang L, Song S, Jin X, Wang L, Zhao C, Shen C. Direct modulation of myelin-autoreactive CD4 + and CD8 + T cells in EAE mice by a tolerogenic nanoparticle co-carrying myelin peptide-loaded major histocompatibility complexes, CD47 and multiple regulatory molecules. Int J Nanomedicine 2018; 13:3731-3750. [PMID: 29983566 PMCID: PMC6027825 DOI: 10.2147/ijn.s164500] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Numerous nanomaterials have been reported in the treatment of multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). But most of these nanoscale therapeutics deliver myelin antigens together with toxins or cytokines and underlay the cellular uptake and induction of tolerogenic antigen-presenting cells by which they indirectly induce T cell tolerance. This study focuses on the on-target and direct modulation of myelin-autoreactive T cells and combined use of multiple regulatory molecules by generating a tolerogenic nanoparticle. Materials and methods Poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) were fabricated by co-coupling MOG40–54/H-2Db-Ig dimer, MOG35–55/I-Ab multimer, anti-Fas, PD-L1-Fc and CD47-Fc and encapsulating transforming growth factor-β1. The resulting 217 nm tolerogenic nanoparticles (tNPs) were administered intravenously into MOG35–55 peptide-induced EAE mice, which was followed by the investigation of therapeutic outcomes and the in vivo mechanism. Results Four infusions of the tNPs durably ameliorated EAE with a marked reduction of clinical score, neuroinflammation and demyelination. They were distributed in secondary lymphoid tissues, various organs and brain after intravenous injection, with retention over 36 h, and made contacts with CD4+ and CD8+ T cells. Two injections of the tNPs markedly decreased the MOG35–55-reactive Th1 and Th17 cells and MOG40–55-reactive Tc1 and Tc17 cells, increased regulatory T cells, inhibited T cell proliferation and elevated T cell apoptosis in spleen. Transforming growth factor-β1 and interleukin-10 were upregulated in the homogenates of central nervous system and supernatant of spleen cells. Conclusion Our data suggest a novel therapeutic nanoparticle to directly modulate autoreactive T cells by surface presentation of multiple ligands and paracrine release of cytokine in the antigen-specific combination immunotherapy for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Weiya Pei
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Xin Wan
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Shilong Song
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Limin Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| |
Collapse
|
36
|
Dheer D, Jyoti, Gupta PN, Shankar R. Tacrolimus: An updated review on delivering strategies for multifarious diseases. Eur J Pharm Sci 2018; 114:217-227. [DOI: 10.1016/j.ejps.2017.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
|
37
|
Tan YL, Ho HK. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov Today 2018; 23:1108-1114. [PMID: 29408437 DOI: 10.1016/j.drudis.2018.01.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
As a natural polymer, albumin is well-received for being nontoxic, nonimmunogenic, biodegradable and biocompatible. Together with its targeting potential on specific cells, albumin-based nanoparticles appear as an effective carrier for various therapeutics. In recent years, there has been an increasing number of studies investigating the use of albumin-based nanoparticles across different administration routes. Although each route and target tissue presents a distinct anatomical and physiological profile that demands specific consideration, pharmaceuticals could still be delivered effectively via albumin-based nanoparticles. Therefore, this review discusses the features that warrant such applications across various delivery routes and explores their possibilities in other administration routes. The challenges associated with its use will also be elaborated to provide a holistic consideration to realise their clinical potentials.
Collapse
Affiliation(s)
- Yeong L Tan
- Department of Pharmacy, Faulty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Han K Ho
- Department of Pharmacy, Faulty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
38
|
Al-Lawati H, Aliabadi HM, Makhmalzadeh BS, Lavasanifar A. Nanomedicine for immunosuppressive therapy: achievements in pre-clinical and clinical research. Expert Opin Drug Deliv 2018; 15:397-418. [DOI: 10.1080/17425247.2018.1420053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hanan Al-Lawati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Prosperi D, Colombo M, Zanoni I, Granucci F. Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Semin Immunol 2017; 34:61-67. [PMID: 28855088 PMCID: PMC5705526 DOI: 10.1016/j.smim.2017.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
Nanoparticles represent a new generation of drug delivery systems that can be engineered to harness optimal target selectivity for specific cells and tissues and high drug loading capacity, allowing for improved pharmacokinetics and enhanced bioavailability of therapeutics. The spontaneous propensity of both organic and colloidal nanoparticles to be captured by the cells of the reticuloendothelial system encouraged their utilization as passive targeting systems that can be preferentially directed to innate immune cells, such as macrophages, dendritic cells and neutrophils. The natural affinity for phagocytic cells suggests the possible implementation of nanoparticles as an immunotherapeutic platform for inflammatory diseases and autoimmune disorders. Here we discuss the recent advances in the application of nanotechnology to induce antigen-specific tolerance in autoimmunity and the use of nanoparticles for anti-inflammatory therapies, including treatment of inflammatory bowel diseases, psoriasis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Davide Prosperi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Francesca Granucci
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
40
|
Novel oleyl amine-modified polymannuronic acid micelle loading tacrolimus for therapy of allergic conjunctivitis. Int J Biol Macromol 2017; 104:862-873. [DOI: 10.1016/j.ijbiomac.2017.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/29/2016] [Accepted: 06/13/2017] [Indexed: 01/02/2023]
|
41
|
Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017; 246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
A major challenge in the field of nanomedicine is to transform laboratory innovations into commercially successful clinical products. In this campaign, a variety of nanoenabled approaches have been designed and investigated for their role in biomedical applications. The advantages associated with the unique structure of albumin imparts it with the ability to interact with variety of molecules, while the functional groups present on their surface provide base for large number of modifications making it as an ideal nanocarrier system. So far, a variety of albumin based nanoenabled approaches have been intensively exploited for effective diagnosis and personalized medicine, among them some have successfully completed their journey from lab bench to marketed products. This review focuses on the recent most promising advancement in the field of albumin based nanoenabled approaches for various biomedical applications and their potential use in cancer diagnosis and therapy.
Collapse
|
42
|
de Jesús Valle MJ, Maderuelo Martín C, Zarzuelo Castañeda A, Sánchez Navarro A. Albumin micro/nanoparticles entrapping liposomes for itraconazole green formulation. Eur J Pharm Sci 2017; 106:159-165. [PMID: 28577996 DOI: 10.1016/j.ejps.2017.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 01/22/2023]
Affiliation(s)
- María José de Jesús Valle
- Pharmaceutical Sciences Department, University of Salamanca, Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain; Institute of Biomedical Research of University of Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007 Salamanca, Spain.
| | - Cristina Maderuelo Martín
- Pharmaceutical Sciences Department, University of Salamanca, Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain.
| | - Aránzazu Zarzuelo Castañeda
- Pharmaceutical Sciences Department, University of Salamanca, Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain.
| | - Amparo Sánchez Navarro
- Pharmaceutical Sciences Department, University of Salamanca, Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain; Institute of Biomedical Research of University of Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007 Salamanca, Spain.
| |
Collapse
|
43
|
Wan T, Pan J, Long Y, Yu K, Wang Y, Pan W, Ruan W, Qin M, Wu C, Xu Y. Dual roles of TPGS based microemulsion for tacrolimus: Enhancing the percutaneous delivery and anti-psoriatic efficacy. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release 2017; 252:108-124. [DOI: 10.1016/j.jconrel.2017.02.032] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 01/08/2023]
|
45
|
Scott EA, Karabin NB, Augsornworawat P. Overcoming Immune Dysregulation with Immunoengineered Nanobiomaterials. Annu Rev Biomed Eng 2017; 19:57-84. [PMID: 28226216 DOI: 10.1146/annurev-bioeng-071516-044603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune system is governed by an immensely complex network of cells and both intracellular and extracellular molecular factors. It must respond to an ever-growing number of biochemical and biophysical inputs by eliciting appropriate and specific responses in order to maintain homeostasis. But as with any complex system, a plethora of false positives and false negatives can occur to generate dysregulated responses. Dysregulated immune responses are essential components of diverse inflammation-driven pathologies, including cancer, heart disease, and autoimmune disorders. Nanoscale biomaterials (i.e., nanobiomaterials) have emerged as highly customizable platforms that can be engineered to interact with and direct immune responses, holding potential for the design of novel and targeted approaches to redirect or inhibit inflammation. Here, we present recent developments of nanobiomaterials that were rationally designed to target and modulate inflammatory cells and biochemical pathways for the treatment of immune dysregulation.
Collapse
Affiliation(s)
- Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Punn Augsornworawat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
46
|
Abstract
Schematic illustration of inflammatory microenvironment in inflamed joints and events occurring in rheumatoid arthritis.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
47
|
Kim B, Lee C, Lee ES, Shin BS, Youn YS. Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Maltas E, Gubbuk IH, Yildiz S. Development of doxorubicin loading platform based albumin-sporopollenin as drug carrier. Biochem Biophys Rep 2016; 7:201-205. [PMID: 28955907 PMCID: PMC5613350 DOI: 10.1016/j.bbrep.2016.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/01/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
Albumin is thought as an drug carrier for doxorubicin (DOX). The binding of doxorubicin to albumin was studied on the surface of sporopolleninin (SP) to produce a new drug system based natural materials. Human serum albumin (HSA) was immobilized on SPIONs in 20 mM Tris buffer, 7.4 of pH. Data showed that binding amount of HSA has been found to be as 285.53 µg to the 25 mg of Sporopolleninin which also bounded 319.76 µM of DOX. Binding of protein and drug to Sp were clarified by SEM, EDX and FT-IR analysis.
Collapse
Affiliation(s)
- Esra Maltas
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey
| | | | - Salih Yildiz
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey
| |
Collapse
|
49
|
DeMarino C, Schwab A, Pleet M, Mathiesen A, Friedman J, El-Hage N, Kashanchi F. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. J Neuroimmune Pharmacol 2016; 12:31-50. [PMID: 27372507 DOI: 10.1007/s11481-016-9692-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Abstract
Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Angela Schwab
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Allison Mathiesen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Joel Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
50
|
Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther 2016; 9:2873-84. [PMID: 27274282 PMCID: PMC4876107 DOI: 10.2147/ott.s104691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few years, nanomaterial-based drug delivery systems have been applied to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting efficacy, even when targeting modalities and surface markers are introduced. Immunological problems have also limited their wide applications. Biological drug delivery systems, such as erythrocytes, platelets, and albumin, have been extensively investigated because of their unique properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug delivery systems. Their properties, applications, advantages, and limitations in disease treatment are explained. This review confirms that these systems can be used to facilitate a specific, biocompatible, and smart drug delivery.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ruju Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaohui Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|