1
|
Hovan A, Pevna V, Huntosova V, Miskovsky P, Bánó G. Singlet oxygen lifetime changes in dying glioblastoma cells. Photochem Photobiol 2024; 100:159-171. [PMID: 37357990 DOI: 10.1111/php.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Time-resolved phosphorescence detection was employed to determine the lifetime of singlet oxygen in live cells. Using hypericin as a photosensitizer, singlet oxygen was generated in U87MG glioblastoma cells. The phosphorescence of singlet oxygen was detected in aqueous cell suspensions following pulsed laser excitation. Our goal was to eliminate or reduce the problems associated with lifetime measurements in water-based cell suspensions. The apparatus enabled simultaneous singlet oxygen phosphorescence and transient absorption measurements, reducing uncertainty in lifetime estimation. The changes in singlet oxygen lifetime were observed during early and late apoptosis induced by photodynamic action. Our findings show that the effective lifetime of singlet oxygen in the intracellular space of the studied glioblastoma cells is 0.4 μs and increases to 1.5 μs as apoptosis progresses. Another group of hypericin, presumably located in the membrane blebs and the plasma membrane of apoptotic cells, generates singlet oxygen with a lifetime of 1.9 μs.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovak Republic
| | - Viktoria Pevna
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovak Republic
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Košice, Slovak Republic
| | - Pavol Miskovsky
- Cassovia New Industry Cluster, Košice, Slovak Republic
- SAFTRA Photonics Ltd., Košice, Slovak Republic
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
2
|
Huntošová V, Datta S, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, Čavarga I, Kronek J, Jutková A, Miškovský P, Jancura D. Alkyl Chain Length in Poly(2-oxazoline)-Based Amphiphilic Gradient Copolymers Regulates the Delivery of Hydrophobic Molecules: A Case of the Biodistribution and the Photodynamic Activity of the Photosensitizer Hypericin. Biomacromolecules 2021; 22:4199-4216. [PMID: 34494830 DOI: 10.1021/acs.biomac.1c00768] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembled nanostructures of amphiphilic gradient copoly(2-oxazoline)s have recently attracted attention as promising delivery systems for the effective delivery of hydrophobic anticancer drugs. In this study, we have investigated the effects of increasing hydrophobic side chain length on the self-assembly of gradient copolymers composed of 2-ethyl-2-oxazoline as the hydrophilic comonomer and various 2-(4-alkyloxyphenyl)-2-oxazolines as hydrophobic comonomers. We show that the size of the formed polymeric nanoparticles depends on the structure of the copolymers. Moreover, the stability and properties of the polymeric assembly can be affected by the loading of hypericin, a promising compound for photodiagnostics and photodynamic therapy (PDT). We have found the limitation that allows rapid or late release of hypericin from polymeric nanoparticles. The nanoparticles entering the cells by endocytosis decreased the hypericin-induced PDT, and the contribution of the passive process (diffusion) increased the probability of a stronger photoeffect. A study of fluorescence pharmacokinetics and biodistribution revealed differences in the release of hypericin from nanoparticles toward the quail chorioallantoic membrane, a preclinical model for in vivo studies, depending on the composition of polymeric nanoparticles. Photodamage induced by PDT in vivo well correlated with the in vitro results. All formulations studied succeeded in targeting hypericin at cancer cells. In conclusion, we demonstrated the promising potential of poly(2-oxazoline)-based gradient copolymers for effective drug delivery and sequential drug release needed for successful photodiagnostics and PDT in cancer therapy.
Collapse
Affiliation(s)
- Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia
| | - Shubhashis Datta
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia
| | - Lenka Lenkavská
- Department of Biophysics, Faculty of Science, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Annamária Jutková
- Department of Biophysics, Faculty of Science, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia
| | - Pavol Miškovský
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.,SAFTRA Photonics sro., Moldavska cesta 51, 04011 Kosice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia
| |
Collapse
|
3
|
Chevalier Q, Gallé JB, Wasser N, Mazan V, Villette C, Mutterer J, Elustondo MM, Girard N, Elhabiri M, Schaller H, Hemmerlin A, Vonthron-Sénécheau C. Unravelling the Puzzle of Anthranoid Metabolism in Living Plant Cells Using Spectral Imaging Coupled to Mass Spectrometry. Metabolites 2021; 11:metabo11090571. [PMID: 34564386 PMCID: PMC8472718 DOI: 10.3390/metabo11090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Vismione H (VH) is a fluorescent prenylated anthranoid produced by plants from the Hypericaceae family, with antiprotozoal activities against malaria and leishmaniosis. Little is known about its biosynthesis and metabolism in plants or its mode of action against parasites. When VH is isolated from Psorospermum glaberrimum, it is rapidly converted into madagascine anthrone and anthraquinone, which are characterized by markedly different fluorescent properties. To locate the fluorescence of VH in living plant cells and discriminate it from that of the other metabolites, an original strategy combining spectral imaging (SImaging), confocal microscopy, and non-targeted metabolomics using mass spectrometry, was developed. Besides VH, structurally related molecules including madagascine (Mad), emodin (Emo), quinizarin (Qui), as well as lapachol (Lap) and fraxetin (Fra) were analyzed. This strategy readily allowed a spatiotemporal characterization and discrimination of spectral fingerprints from anthranoid-derived metabolites and related complexes with cations and proteins. In addition, our study validates the ability of plant cells to metabolize VH into madagascine anthrone, anthraquinones and unexpected metabolites. These results pave the way for new hypotheses on anthranoid metabolism in plants.
Collapse
Affiliation(s)
- Quentin Chevalier
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
- Correspondence: ; Tel.: +33-367155265
| | - Jean-Baptiste Gallé
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| | - Nicolas Wasser
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| | - Valérie Mazan
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Moléculaire et Applications, Université de Strasbourg-Université de Haute Alsace, CEDEX, F-67087 Strasbourg, France; (V.M.); (M.E.)
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | | | - Nicolas Girard
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| | - Mourad Elhabiri
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Moléculaire et Applications, Université de Strasbourg-Université de Haute Alsace, CEDEX, F-67087 Strasbourg, France; (V.M.); (M.E.)
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | - Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | - Catherine Vonthron-Sénécheau
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| |
Collapse
|
4
|
Verebová V, Beneš J, Staničová J. Biophysical Characterization and Anticancer Activities of Photosensitive Phytoanthraquinones Represented by Hypericin and Its Model Compounds. Molecules 2020; 25:E5666. [PMID: 33271809 PMCID: PMC7731333 DOI: 10.3390/molecules25235666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Photosensitive compounds found in herbs have been reported in recent years as having a variety of interesting medicinal and biological activities. In this review, we focus on photosensitizers such as hypericin and its model compounds emodin, quinizarin, and danthron, which have antiviral, antifungal, antineoplastic, and antitumor effects. They can be utilized as potential agents in photodynamic therapy, especially in photodynamic therapy (PDT) for cancer. We aimed to give a comprehensive summary of the physical and chemical properties of these interesting molecules, emphasizing their mechanism of action in relation to their different interactions with biomacromolecules, specifically with DNA.
Collapse
Affiliation(s)
- Valéria Verebová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Jiří Beneš
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1, 121 08 Prague, Czech Republic;
| | - Jana Staničová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1, 121 08 Prague, Czech Republic;
| |
Collapse
|
5
|
A Model In Vitro Study Using Hypericin: Tumor-Versus Necrosis-Targeting Property and Possible Mechanisms. BIOLOGY 2020; 9:biology9010013. [PMID: 31936002 PMCID: PMC7168897 DOI: 10.3390/biology9010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023]
Abstract
Hypericin (Hyp) had been explored as a tumor-seeking agent for years; however, more recent studies showed its necrosis-avidity rather than cancer-seeking property. To further look into this discrepancy, we conducted an in vitro study on Hyp retention in vital and dead cancerous HepG2 and normal LO2 cell lines by measuring the fluorescence intensity and concentration of Hyp in cells. To question the DNA binding theory for its necrosis-avidity, the subcellular distribution of Hyp was also investigated to explore the possible mechanisms of the necrosis avidity. The fluorescence intensity and concentration are significantly higher in dead cells than those in vital cells, and this difference did not differ between HepG2 and LO2 cell lines. Hyp was taken up in vital cells in the early phase and excreted within hours, whereas it was retained in dead cells for more than two days. Confocal microscopy showed that Hyp selectively accumulated in lysosomes rather than cell membrane or nuclei. Hyp showed a necrosis-avid property rather than cancer-targetability. The long-lasting retention of Hyp in dead cells may be associated with halted energy metabolism and/or binding with certain degraded cellular substrates. Necrosis-avidity of Hyp was confirmed, which may be associated with halted energy metabolism in dead LO2 or HepG2 cells.
Collapse
|
6
|
Importance of Hypericin-Bcl2 interactions for biological effects at subcellular levels. Photodiagnosis Photodyn Ther 2019; 28:38-52. [PMID: 31430575 DOI: 10.1016/j.pdpdt.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Hypericin (Hyp) is a naturally occurring compound used as photosensitizer in photodynamic therapy and diagnosis. Recently, we have shown that Hyp presence alone, without illumination, resulted in substantial biological effects at several sub-cellular levels. Hyp induced changes in cellular ultrastructure, mitochondria function and metabolism, and distribution of Bcl2 proteins in malignant and non-malignant cells. The molecular mechanisms that underlie Hyp light-independent effects are still elusive. We have hypothesized that Bcl2-Hyp interactions might be one possible mechanism. We performed molecular docking studies to determine the Hyp-Bcl2 interaction profile. Based on the interaction profiles small Bcl2 peptide segments were selected for further study. We designed small peptides corresponding to Bcl2 BH3 and BH1 domains and tested the binding of Hyp and Bcl2 known inhibitor, ABT263, to the peptides in computer modeling and in vitro binding studies. We employed endogenous tryptophan and tyrosine in the BH3 and BH1 peptides, respectively, and their fluorescent properties to show interaction with Hyp and ABT263. Overall, our results indicate that Hyp can interact with Bcl2 protein at its BH3-BH1 hydrophobic groove, and this interaction may trigger changes in intracellular distribution of Bcl2 proteins. In addition, our computer modeling results suggest that Hyp also interacts with other anti-apoptotic members of Bcl2 family similar to the known BH3 mimetics. Our findings are novel and might contribute to understanding Hyp light-independent effects. In addition, they may substantiate the therapeutic use of Hyp as a BH3 mimetic molecule to enhance other cancer treatments.
Collapse
|
7
|
Lenkavska L, Blascakova L, Jurasekova Z, Macajova M, Bilcik B, Cavarga I, Miskovsky P, Huntosova V. Benefits of hypericin transport and delivery by low- and high-density lipoproteins to cancer cells: From in vitro to ex ovo. Photodiagnosis Photodyn Ther 2019; 25:214-224. [DOI: 10.1016/j.pdpdt.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 12/27/2018] [Indexed: 01/29/2023]
|
8
|
Siposova K, Kozar T, Huntosova V, Tomkova S, Musatov A. Inhibition of amyloid fibril formation and disassembly of pre-formed fibrils by natural polyphenol rottlerin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:259-274. [DOI: 10.1016/j.bbapap.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
|
9
|
Misuth M, Joniova J, Horvath D, Dzurova L, Nichtova Z, Novotova M, Miskovsky P, Stroffekova K, Huntosova V. The flashlights on a distinct role of protein kinase C δ: Phosphorylation of regulatory and catalytic domain upon oxidative stress in glioma cells. Cell Signal 2017; 34:11-22. [PMID: 28237688 DOI: 10.1016/j.cellsig.2017.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Glioblastoma multiforme are considered to be aggressive high-grade tumors with poor prognosis for patient survival. Photodynamic therapy is one of the adjuvant therapies which has been used for glioblastoma multiforme during last decade. Hypericin, a photosensitizer, can be employed in this treatment. We have studied the effect of hypericin on PKCδ phosphorylation in U87 MG cells before and after light application. Hypericin increased PKCδ phosphorylation at tyrosine 155 in the regulatory domain and serine 645 in the catalytic domain. However, use of the light resulted in apoptosis, decreased phosphorylation of tyrosine 155 and enhanced serine 645. The PKCδ localization and phosphorylation of regulatory and catalytic domains were shown to play a distinct role in the anti-apoptotic response of glioma cells. We hypothesized that PKCδ phosphorylated at the regulatory domain is primarily present in the cytoplasm and in mitochondria before irradiation, and it may participate in Bcl-2 phosphorylation. After hypericin and light application, PKCδ phosphorylated at a regulatory domain which is in the nucleus. In contrast, PKCδ phosphorylated at the catalytic domain may be mostly active in the nucleus before irradiation, but active in the cytoplasm after the irradiation. In summary, light-induced oxidative stress significantly regulates PKCδ pro-survival and pro-apoptotic activity in glioma cells by its phosphorylation at serine 645 and tyrosine 155.
Collapse
Affiliation(s)
- Matus Misuth
- Department of Biophysics, Faculty of Sciences, P. J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Jaroslava Joniova
- Department of Biophysics, Faculty of Sciences, P. J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Denis Horvath
- Center for Interdisciplinary Biosciences, Faculty of Sciences, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Lenka Dzurova
- Department of Biophysics, Faculty of Sciences, P. J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Zuzana Nichtova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Science, Bratislava, Slovakia
| | - Marta Novotova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Science, Bratislava, Slovakia
| | - Pavol Miskovsky
- Center for Interdisciplinary Biosciences, Faculty of Sciences, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia; SAFTRA Photonics Ltd., Jesenna 5, 041 54, Kosice, Slovakia
| | - Katarina Stroffekova
- Department of Biophysics, Faculty of Sciences, P. J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Sciences, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Faculty of Sciences, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia.
| |
Collapse
|