1
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Egberink RO, van Asbeck AH, Boswinkel M, Muradjan G, Dieker J, Brock R. Deciphering Structural Determinants Distinguishing Active from Inactive Cell-Penetrating Peptides for Cytosolic mRNA Delivery. Bioconjug Chem 2023; 34:1822-1834. [PMID: 37733627 PMCID: PMC10587869 DOI: 10.1021/acs.bioconjchem.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The formation of noncovalent complexes by mixing of positively charged polymers with negatively charged oligonucleotides (ONs) is a widely explored concept in nanomedicine to achieve cellular delivery of ONs. Uptake of ON complexes occurs through endocytosis, which then requires release of ON from endosomes. As one type of polymer, cell-penetrating peptides (CPPs) are being used which are peptides of about 8-30 amino acids in length. However, only a few CPPs yield effective cytosolic ON delivery and activity. Several strategies have been devised to increase cellular uptake and enhance endosomal release, among which an increase of osmotic pressure through the so-called proton sponge effect, disruption of membrane integrity through membrane activity, and disulfide-mediated polymerization. Here, we address the relevance of these concepts for mRNA delivery by incorporating structural features into the human lactoferrin-derived CPP, which shows uptake but not delivery. The incorporation of histidines was explored to address osmotic pressure and structural motifs of the delivery-active CPP PepFect14 (PF14) to address membrane disturbance, and finally, the impact of polymerization was explored. Whereas oligomerization increased the stability of polyplexes against heparin-induced decomplexation, neither this approach nor the incorporation of histidine residues to promote a proton-sponge effect yielded activity. Also, the replacement of arginine residues with lysine or ornithine residues, as in PF14, was without effect, even though all polyplexes showed cellular uptake. Ultimately, sufficient activity could only be achieved by transferring amphipathic sequence motifs from PF14 into the hLF context with some benefit of oligomerization demonstrating overarching principles of delivery for CPPs, lipid nanoparticles, and other types of delivery polymers.
Collapse
Affiliation(s)
- Rik Oude Egberink
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alexander H. van Asbeck
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Milou Boswinkel
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Grigor Muradjan
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jürgen Dieker
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Roland Brock
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department
of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| |
Collapse
|
3
|
Klipp A, Burger M, Leroux JC. Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Adv Drug Deliv Rev 2023; 200:115047. [PMID: 37536508 DOI: 10.1016/j.addr.2023.115047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
RNA therapeutics offer great potential to transform the biomedical landscape, encompassing the treatment of hereditary conditions and the development of better vaccines. However, the delivery of RNAs into the cell is hampered, among others, by poor endosomal escape. This major hurdle is often tackled using special lipids, polymers, or protein-based delivery vectors. In this review, we will focus on the most prominent peptide- and protein-based endosomal escape strategies with focus on RNA drugs. We discuss cell penetrating peptides, which are still incorporated into novel transfection systems today to promote endosomal escape. However, direct evidence for enhanced endosomal escape by the action of such peptides is missing and their transfection efficiency, even in permissive cell culture conditions, is rather low. Endosomal escape by the help of pore forming proteins or phospholipases, on the other hand, allowed to generate more efficient transfection systems. These are, however, often hampered by considerable toxicity and immunogenicity. We conclude that the perfect enhancer of endosomal escape has yet to be devised. To increase the chances of success, any new transfection system should be tested under relevant conditions and guided by assays that allow direct quantification of endosomal escape.
Collapse
Affiliation(s)
- Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| |
Collapse
|
4
|
Feng R, Chang ACY, Ni R, Li JCY, Chau Y. mRNA Delivery and Storage by Co-Assembling Nanostructures with Designer Oligopeptides. ACS APPLIED BIO MATERIALS 2022; 5:3476-3486. [PMID: 35729172 DOI: 10.1021/acsabm.2c00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Broadening the applicable tools for mRNA delivery provides more flexibility in research and those proven effective and safe can potentially be translated for clinical use. We report here a 27-amino acid peptide sequence mimicking the viral capsid protein, termed pepMAX, capable of co-assembling with mRNA into 100-150 nm nanostructures for efficient transfection of multiple cell lines. The mRNA loading and N/P ratio have been systematically optimized for each cell line. In HeLa, HEK293, and SKNMC, the transfection attained (>80%) is comparable with that of commercially available vectors Lipofectamine MessengerMAXTM (LipoMMAX). Confocal microscopy reveals that pepMAX efficiently delivers mRNA into the cytosol and induces efficient protein production. The pepMAX/mRNA co-assemblies retain their transfection efficiency after storage up to one week at room temperature in lyophilized form.
Collapse
Affiliation(s)
- Ruilu Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Atta Cheuk Yan Chang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Rong Ni
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
5
|
Kim Y, Kim H, Kim EH, Jang H, Jang Y, Chi SG, Yang Y, Kim SH. The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14061271. [PMID: 35745843 PMCID: PMC9227323 DOI: 10.3390/pharmaceutics14061271] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
In vitro transcribed mRNA for the synthesis of any given protein has shown great potential in cancer gene therapy, especially in cancer vaccines for immunotherapy. To overcome physiological barriers, such as rapid degradation by enzymatic attack and poor cellular uptake due to their large size and hydrophilic properties, many delivery carriers for mRNAs are being investigated for improving the bioavailability of mRNA. Recently, cell-penetrating peptides (CPPs) have received attention as promising tools for gene delivery. In terms of their biocompatibility and the ability to target specific cells with the versatility of peptide sequences, they may provide clues to address the challenges of conventional delivery systems for cancer mRNA delivery. In this study, optimal conditions for the CPP/mRNA complexes were identified in terms of complexation capacity and N/P ratio, and protection against RNase was confirmed. When cancer cells were treated at a concentration of 6.8 nM, which could deliver the highest amount of mRNA without toxicity, the amphipathic CPP/mRNA complexes with a size less than 200 nm showed high cellular uptake and protein expression. With advances in our understanding of CPPs, CPPs designed to target tumor tissues will be promising for use in developing a new class of mRNA delivery vehicles in cancer therapy.
Collapse
Affiliation(s)
- Yelee Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Hyosuk Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
| | - Eun Hye Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Hochung Jang
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Yeongji Jang
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Yoosoo Yang
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (Y.Y.); (S.H.K.); Tel.: +82-2-958-6655 (Y.Y.); +82-2-958-6639 (S.H.K.)
| | - Sun Hwa Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Correspondence: (Y.Y.); (S.H.K.); Tel.: +82-2-958-6655 (Y.Y.); +82-2-958-6639 (S.H.K.)
| |
Collapse
|
6
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Konate K, Josse E, Tasic M, Redjatti K, Aldrian G, Deshayes S, Boisguérin P, Vivès E. WRAP-based nanoparticles for siRNA delivery: a SAR study and a comparison with lipid-based transfection reagents. J Nanobiotechnology 2021; 19:236. [PMID: 34380479 PMCID: PMC8359084 DOI: 10.1186/s12951-021-00972-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Recently, we designed novel amphipathic cell-penetrating peptides, called WRAP, able to transfer efficiently siRNA molecules into cells. In order to gain more information about the relationship between amino acid composition, nanoparticle formation and cellular internalization of these peptides composed of only three amino acids (leucine, arginine and tryptophan), we performed a structure–activity relationship (SAR) study. First, we compared our WRAP1 and WRAP5 peptides with the C6M1 peptide also composed of the same three amino acids and showing similar behaviors in siRNA transfection. Afterwards, to further define the main determinants in the WRAP activity, we synthesized 13 new WRAP analogues harboring different modifications like the number and location of leucine and arginine residues, the relative location of tryptophan residues, as well as the role of the α-helix formation upon proline insertions within the native WRAP sequence. After having compared the ability of these peptides to form peptide-based nanoparticles (PBNs) using different biophysical methods and to induce a targeted gene silencing in cells, we established the main sequential requirements of the amino acid composition of the WRAP peptide. In addition, upon measuring the WRAP-based siRNA transfection ability into cells compared to several non-peptide transfection agents available on the markets, we confirmed that WRAP peptides induced an equivalent level of targeted gene silencing but in most of the cases with lower cell toxicity as clearly shown in clonogenic assays. ![]()
Collapse
Affiliation(s)
- Karidia Konate
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Emilie Josse
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Milana Tasic
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Karima Redjatti
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Gudrun Aldrian
- Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier CEDEX 4, France
| | - Sébastien Deshayes
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Prisca Boisguérin
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Eric Vivès
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Internalisation and Biological Activity of Nucleic Acids Delivering Cell-Penetrating Peptide Nanoparticles Is Controlled by the Biomolecular Corona. Pharmaceuticals (Basel) 2021; 14:ph14070667. [PMID: 34358093 PMCID: PMC8308718 DOI: 10.3390/ph14070667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nucleic acid molecules can be transferred into cells to alter gene expression and, thus, alleviate certain pathological conditions. Cell-penetrating peptides (CPPs) are vectors that can be used for transfecting nucleic acids as well as many other compounds. CPPs associate nucleic acids non-covalently, forming stable nanoparticles and providing efficient transfection of cells in vitro. However, in vivo, expected efficiency is achieved only in rare cases. One of the reasons for this discrepancy is the formation of protein corona around nanoparticles, once they are exposed to a biological environment, e.g., blood stream. In this study, we compared protein corona of CPP-nucleic acid nanoparticles formed in the presence of bovine, murine and human serum. We used Western blot and mass-spectrometry to identify the major constituents of protein corona forming around nanoparticles, showing that proteins involved in transport, haemostasis and complement system are its major components. We investigated physical features of nanoparticles and measured their biological efficiency in splice-correction assay. We showed that protein corona constituents might alter the fate of nanoparticles in vivo, e.g., by subjecting them to phagocytosis. We demonstrated that composition of protein corona of nanoparticles is species-specific that leads to dissimilar transfection efficiency and should be considered while developing delivery systems for nucleic acids.
Collapse
|
9
|
Boisguérin P, Konate K, Josse E, Vivès E, Deshayes S. Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomedicines 2021; 9:583. [PMID: 34065544 PMCID: PMC8161338 DOI: 10.3390/biomedicines9050583] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy offers the possibility to skip, repair, or silence faulty genes or to stimulate the immune system to fight against disease by delivering therapeutic nucleic acids (NAs) to a patient. Compared to other drugs or protein treatments, NA-based therapies have the advantage of being a more universal approach to designing therapies because of the versatility of NA design. NAs (siRNA, pDNA, or mRNA) have great potential for therapeutic applications for an immense number of indications. However, the delivery of these exogenous NAs is still challenging and requires a specific delivery system. In this context, beside other non-viral vectors, cell-penetrating peptides (CPPs) gain more and more interest as delivery systems by forming a variety of nanocomplexes depending on the formulation conditions and the properties of the used CPPs/NAs. In this review, we attempt to cover the most important biophysical and biological aspects of non-viral peptide-based nanoparticles (PBNs) for therapeutic nucleic acid formulations as a delivery system. The most relevant peptides or peptide families forming PBNs in the presence of NAs described since 2015 will be presented. All these PBNs able to deliver NAs in vitro and in vivo have common features, which are characterized by defined formulation conditions in order to obtain PBNs from 60 nm to 150 nm with a homogeneous dispersity (PdI lower than 0.3) and a positive charge between +10 mV and +40 mV.
Collapse
Affiliation(s)
| | | | | | | | - Sébastien Deshayes
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier, France; (P.B.); (K.K.); (E.J.); (E.V.)
| |
Collapse
|
10
|
Ferreiro I, Genevois C, Konate K, Vivès E, Boisguérin P, Deshayes S, Couillaud F. In Vivo Follow-Up of Gene Inhibition in Solid Tumors Using Peptide-Based Nanoparticles for siRNA Delivery. Pharmaceutics 2021; 13:pharmaceutics13050749. [PMID: 34069377 PMCID: PMC8158684 DOI: 10.3390/pharmaceutics13050749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Small interfering RNA (siRNA) exhibits a high degree of specificity for targeting selected genes. They are efficient on cells in vitro, but in vivo siRNA therapy remains a challenge for solid tumor treatment as siRNAs display difficulty reaching their intracellular target. The present study was designed to show the in vivo efficiency of a new peptide (WRAP5), able to form peptide-based nanoparticles (PBN) that can deliver siRNA to cancer cells in solid tumors. WRAP5:siRNA nanoparticles targeting firefly luciferase (Fluc) were formulated and assayed on Fluc-expressing U87 glioblastoma cells. The mode of action of WRAP5:siRNA by RNA interference was first confirmed in vitro and then investigated in vivo using a combination of bioluminescent reporter genes. Finally, histological analyses were performed to elucidate the cell specificity of this PBN in the context of brain tumors. In vitro and in vivo results showed efficient knock-down of Fluc expression with no toxicity. WRAP5:siFluc remained in the tumor for at least 10 days in vivo. Messenger RNA (mRNA) analyses indicated a specific decrease in Fluc mRNA without affecting tumor growth. Histological studies identified PBN accumulation in the cytoplasm of tumor cells but also in glial and neuronal cells. Through in vivo molecular imaging, our findings established the proof of concept for specific gene silencing in solid tumors. The evidence generated could be translated into therapy for any specific gene in different types of tumors without cell type specificity but with high molecular specificity.
Collapse
Affiliation(s)
- Isabel Ferreiro
- Imagerie Moléculaire et Thérapies Innovantes en Oncologie—EA 7435 IMOTION, Université de Bordeaux, 33076 Bordeaux, France; (I.F.); (C.G.)
| | - Coralie Genevois
- Imagerie Moléculaire et Thérapies Innovantes en Oncologie—EA 7435 IMOTION, Université de Bordeaux, 33076 Bordeaux, France; (I.F.); (C.G.)
- VIVOPTIC TBM-Core, Université de Bordeaux, CNRS UMS 3427, INSERM US 005, 33076 Bordeaux, France
| | - Karidia Konate
- PhyMedExp, Université de Montpellier, Inserm U1046, CNRS UMR 9214, 34395 Montpellier, France; (K.K.); (E.V.); (P.B.)
| | - Eric Vivès
- PhyMedExp, Université de Montpellier, Inserm U1046, CNRS UMR 9214, 34395 Montpellier, France; (K.K.); (E.V.); (P.B.)
| | - Prisca Boisguérin
- PhyMedExp, Université de Montpellier, Inserm U1046, CNRS UMR 9214, 34395 Montpellier, France; (K.K.); (E.V.); (P.B.)
| | - Sébastien Deshayes
- PhyMedExp, Université de Montpellier, Inserm U1046, CNRS UMR 9214, 34395 Montpellier, France; (K.K.); (E.V.); (P.B.)
- Correspondence: (S.D.); (F.C.)
| | - Franck Couillaud
- Imagerie Moléculaire et Thérapies Innovantes en Oncologie—EA 7435 IMOTION, Université de Bordeaux, 33076 Bordeaux, France; (I.F.); (C.G.)
- Correspondence: (S.D.); (F.C.)
| |
Collapse
|
11
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
12
|
Vila-Gómez P, Noble JE, Ryadnov MG. Peptide Nanoparticles for Gene Packaging and Intracellular Delivery. Methods Mol Biol 2021; 2208:33-48. [PMID: 32856254 DOI: 10.1007/978-1-0716-0928-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient gene transfer is necessary for advanced biotechnologies ranging from gene therapy to synthetic biology. Peptide nanoparticles provide suitable packaging systems promoting targeted gene expression or silencing. Though these systems have yet to match the transfection efficacy of viruses, they are typically devoid of drawbacks characteristic of virus-based vectors, including insertional mutagenesis, low packaging capacities, and strong immune responses. Given the promise nanoparticle formulations hold for gene delivery, methods of their preparation and accurate analysis of their physicochemical and biological properties become indispensable for progress toward systems that seek to outperform viral vectors. Herein, we report a comprehensive protocol for the preparation and characterization of archetypal peptide nanoparticles resulting from nonspecific and noncovalent complexation with RNA and DNA.
Collapse
Affiliation(s)
| | - James E Noble
- National Physical Laboratory, Teddington, Middlesex, UK
| | | |
Collapse
|
13
|
Lauroylated Histidine-Enriched S4 13-PV Peptide as an Efficient Gene Silencing Mediator in Cancer Cells. Pharm Res 2020; 37:188. [PMID: 32888084 DOI: 10.1007/s11095-020-02904-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE This study aimed to endow the cell-penetrating peptide (CPP) S413-PV with adequate features towards a safe and effective application in cancer gene therapy. METHODS Peptide/siRNA complexes were prepared with two new derivatives of the CPP S413-PV, which combine a lauroyl group attached to the N- or C-terminus with a histidine-enrichment in the N-terminus of the S413-PV peptide, being named C12-H5-S413-PV and H5-S413-PV-C12, respectively. Physicochemical characterization of siRNA complexes was performed and their cytotoxicity and efficiency to mediate siRNA delivery and gene silencing in cancer cells were assessed in the absence and presence of serum. RESULTS Peptide/siRNA complexes prepared with the C12-H5-S413-PV derivative showed a nanoscale (ca. 100 nm) particle size, as revealed by TEM, and efficiently mediated gene silencing (37%) in human U87 glioblastoma cells in the presence of 30% serum. In addition, the new C12-H5-S413-PV-based siRNA delivery system efficiently downregulated stearoyl-CoA desaturase-1, a key-enzyme of lipid metabolism overexpressed in cancer, which resulted in a significant decrease in the viability of U87 cells. Importantly, these complexes were able to spare healthy human astrocytes. CONCLUSIONS These encouraging results pave the way for a potential application of the C12-H5-S413-PV peptide as a promising tool in cancer gene therapy.
Collapse
|
14
|
Zhang X, Zhang X, Wang X, Wang T, Bai B, Zhang N, Zhao Y, Yu Y, Wang B. Efficient Delivery of Triptolide Plus a miR-30-5p Inhibitor Through the Use of Near Infrared Laser Responsive or CADY Modified MSNs for Efficacy in Rheumatoid Arthritis Therapeutics. Front Bioeng Biotechnol 2020; 8:170. [PMID: 32258008 PMCID: PMC7092621 DOI: 10.3389/fbioe.2020.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease for which treatment focuses on suppressing an overactive immune system and maintaining the physiological balance of synovial fibroblasts (SFs). We found that miR-30-5p was highly expressed in rheumatoid arthritis synovial fibroblasts (RASFs). Subsequently, we predicted that phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) might be a putative target of miR-30-5p. Recent studies have reported that PIK3R2 can maintain the physiological homeostasis of RASFs. Therefore, miR-30-5p inhibitor has the potential to be used in the treatment of RA, but low levels of miR-30-5p inhibitor internalization affect its application. Triptolide (TP) is an effective drug in the treatment of RA but induces severe toxicity and has a narrow therapeutic window. In this study, the cell internalization performance of miR-30-5p inhibitor was improved by loading it into cell membrane penetrating peptide (CADY)-modified mesoporous silica nanoparticles (MSNs), and the toxicity of TP was decreased by loading it into a controlled drug release system based on MSNs. The nanodrug carrier was constructed by filling a phase-change material (PCM) of 1-tetradecanol and drugs into MSNs that could be triggered by an NIR laser with thermo-chemo combination RA therapy. Our results show that the miR-30-5p inhibitor-loaded MSNs@CADY significantly inhibited RASF proliferation and increased apoptosis. In addition, MSNs@PCM@TP under 808 nm laser irradiation were effective in downregulating immune system activation in an RA rat model. Finally, the results of a pharmacodynamics study showed that the combination of MSNs@CADY@miR-30-5p inhibitor and MSNs@PCM@TP under 808 nm laser significantly increased the effectiveness of RA treatment. These findings provide a novel understanding of RA pathogenesis and a theoretical basis for RA treatment.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xin Zhang
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xipeng Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bin Bai
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Na Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjiao Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
15
|
Deshayes S, Konate K, Dussot M, Chavey B, Vaissière A, Van TNN, Aldrian G, Padari K, Pooga M, Vivès E, Boisguérin P. Deciphering the internalization mechanism of WRAP:siRNA nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183252. [PMID: 32135145 DOI: 10.1016/j.bbamem.2020.183252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/17/2020] [Accepted: 02/27/2020] [Indexed: 01/08/2023]
Abstract
Gene silencing mediated by double-stranded small interfering RNA (siRNA) has been widely investigated as a potential therapeutic approach for a variety of diseases and, indeed, the first therapeutic siRNA was approved by the FDA in 2018. As an alternative to the traditional delivery systems for nucleic acids, peptide-based nanoparticles (PBNs) have been applied successfully for siRNA delivery. Recently, we have developed amphipathic cell-penetrating peptides (CPPs), called WRAP allowing a rapid and efficient siRNA delivery into several cell lines at low doses (20 to 50 nM). In this study, using a highly specific gene silencing system, we aimed to elucidate the cellular uptake mechanism of WRAP:siRNA nanoparticles by combining biophysical, biological, confocal and electron microscopy approaches. We demonstrated that WRAP:siRNA complexes remain fully active in the presence of chemical inhibitors of different endosomal pathways suggesting a direct cell membrane translocation mechanism. Leakage studies on lipid vesicles indicated membrane destabilization properties of the nanoparticles and this was supported by the measurement of WRAP:siRNA internalization in dynamin triple-KO cells. However, we also observed some evidences for an endocytosis-dependent cellular internalization. Indeed, nanoparticles co-localized with transferrin, siRNA silencing was inhibited by the scavenger receptor A inhibitor Poly I and nanoparticles encapsulated in vesicles were observed by electron microscopy in U87 cells. In conclusion, we demonstrate here that the efficiency of WRAP:siRNA nanoparticles is mainly based on the use of multiple internalization mechanisms including direct translocation as well as endocytosis-dependent pathways.
Collapse
Affiliation(s)
- Sébastien Deshayes
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Karidia Konate
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Marion Dussot
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Bérengère Chavey
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France; Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier, CEDEX 4, France
| | - Anaïs Vaissière
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Thi Nhu Ngoc Van
- Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier, CEDEX 4, France
| | - Gudrun Aldrian
- Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier, CEDEX 4, France
| | - Kärt Padari
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Margus Pooga
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Eric Vivès
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Prisca Boisguérin
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| |
Collapse
|
16
|
Cummings JC, Zhang H, Jakymiw A. Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment. Transl Res 2019; 214:92-104. [PMID: 31404520 PMCID: PMC6848774 DOI: 10.1016/j.trsl.2019.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Cancer is a significant health concern worldwide and its clinical treatment presents many challenges. Consequently, much research effort has focused on the development of new anticancer drugs to combat this disease. One area of exploration, in particular, has been in the therapeutic application of RNA interference (RNAi). Although RNAi appears to be an attractive therapeutic tool for the treatment of cancer, one of the primary obstacles towards its pervasive use in the clinic has been cell/tissue type-specific cytosolic delivery of therapeutic small interfering RNA (siRNA) molecules. Consequently, varied drug delivery platforms have been developed and widely explored for siRNA delivery. Among these candidate drug delivery systems, peptides have shown great promise as siRNA carriers due to their varied physiochemical properties and functions, simple formulations, and flexibility in design. In this review, we will focus on distinguishing between the different classes of peptide carriers based on their functions, as well as summarize and discuss the various design strategies and advancements that have been made in circumventing the barriers to siRNA delivery for cancer treatment. Resolution of these challenges by peptide carriers will accelerate the translation of RNAi-based therapies to the clinic.
Collapse
Affiliation(s)
- James C Cummings
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Haiwen Zhang
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Andrew Jakymiw
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina.
| |
Collapse
|
17
|
Konate K, Dussot M, Aldrian G, Vaissière A, Viguier V, Neira IF, Couillaud F, Vivès E, Boisguerin P, Deshayes S. Peptide-Based Nanoparticles to Rapidly and Efficiently "Wrap 'n Roll" siRNA into Cells. Bioconjug Chem 2019; 30:592-603. [PMID: 30586303 DOI: 10.1021/acs.bioconjchem.8b00776] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery of small interfering RNA (siRNA) as a therapeutic tool is limited due to critical obstacles such as the cellular barrier, the negative charges of the siRNA molecule, and its instability in serum. Several siRNA delivery systems have been constructed using cell-penetrating peptides (CPPs) since the CPPs have shown a high potential for oligonucleotide delivery into the cells, especially by forming nanoparticles. In this study, we have developed a new family of short (15mer or 16mer) tryptophan-(W) and arginine-(R) rich Amphipathic Peptides (WRAP) able to form stable nanoparticles and to enroll siRNA molecules into cells. The lead peptides, WRAP1 and WRAP5, form defined nanoparticles smaller than 100 nm as characterized by biophysical methods. Furthermore, they have several benefits as oligonucleotide delivery tools such as the rapid encapsulation of the siRNA, the efficient siRNA delivery in several cell types, and the high gene silencing activity, even in the presence of serum. In conclusion, we have designed a new family of CPPs specifically dedicated for siRNA delivery through nanoparticle formation. Our results indicate that the WRAP family has significant potential for the safe, efficient, and rapid delivery of siRNA for diverse applications.
Collapse
Affiliation(s)
- Karidia Konate
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Marion Dussot
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Gudrun Aldrian
- Sys2Diag , UMR 9005-CNRS/ALCEDIAG , 1682 Rue de la Valsière , 34184 Montpellier Cedex 4, France
| | - Anaïs Vaissière
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Véronique Viguier
- Université de Montpellier , Place Eugène Bataillon , 34095 Montpellier , France
| | - Isabel Ferreiro Neira
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie) , Université de Bordeaux , 146 rue Leo Saignat , 33076 Bordeaux , France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie) , Université de Bordeaux , 146 rue Leo Saignat , 33076 Bordeaux , France
| | - Eric Vivès
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Sébastien Deshayes
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| |
Collapse
|
18
|
Chamiolo J, Fang GM, Hövelmann F, Friedrich D, Knoll A, Loewer A, Seitz O. Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging. Chembiochem 2018; 20:595-604. [PMID: 30326174 PMCID: PMC6470956 DOI: 10.1002/cbic.201800526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Fluorogenic oligonucleotide probes allow mRNA imaging in living cells. A key challenge is the cellular delivery of probes. Most delivery agents, such as cell‐penetrating peptides (CPPs) and pore‐forming proteins, require interactions with the membrane. Charges play an important role. To explore the influence of charge on fluorogenic properties and delivery efficiency, we compared peptide nucleic acid (PNA)‐ with DNA‐based forced intercalation (FIT) probes. Perhaps counterintuitively, fluorescence signaling by charged DNA FIT probes proved tolerant to CPP conjugation, whereas CPP–FIT PNA conjugates were affected. Live‐cell imaging was performed with a genetically engineered HEK293 cell line to allow the inducible expression of a specific mRNA target. Blob‐like features and high background were recurring nuisances of the tested CPP and lipid conjugates. By contrast, delivery by streptolysin‐O provided high enhancements of the fluorescence of the FIT probe upon target induction. Notably, DNA‐based FIT probes were brighter and more responsive than PNA‐based FIT probes. Optimized conditions enabled live‐cell multicolor imaging of three different mRNA target sequences.
Collapse
Affiliation(s)
- Jasmine Chamiolo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Felix Hövelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Dhana Friedrich
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Andrea Knoll
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Alexander Loewer
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| |
Collapse
|
19
|
Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:491-504. [DOI: 10.1016/j.bbamem.2017.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
|
20
|
Xue XY, Mao XG, Zhou Y, Chen Z, Hu Y, Hou Z, Li MK, Meng JR, Luo XX. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:745-758. [PMID: 29341934 DOI: 10.1016/j.nano.2017.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/12/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022]
Abstract
Discovery and development of new antibacterial drugs against multidrug resistant bacterial strains have become more and more urgent. Antisense oligonucleotides (ASOs) show immense potential to control the spread of resistant microbes due to its high specificity of action, little risk to human gene expression, and easy design and synthesis to target any possible gene. However, efficient delivery of ASOs to their action sites with enough concentration remains a major obstacle, which greatly hampers their clinical application. In this study, we reviewed current progress on delivery strategies of ASOs into bacteria, focused on various non-virus gene vectors, including cell penetrating peptides, lipid nanoparticles, bolaamphiphile-based nanoparticles, DNA nanostructures and Vitamin B12. The current review provided comprehensive understanding and novel perspective for the future application of ASOs in combating bacterial infections.
Collapse
Affiliation(s)
- Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| | - Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Zhou
- Department of Pharmacology, Xi'an Medical University, Xi'an, China
| | - Zhou Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yue Hu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Ming-Kai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Xing Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
21
|
Vaissière A, Aldrian G, Konate K, Lindberg MF, Jourdan C, Telmar A, Seisel Q, Fernandez F, Viguier V, Genevois C, Couillaud F, Boisguerin P, Deshayes S. A retro-inverso cell-penetrating peptide for siRNA delivery. J Nanobiotechnology 2017; 15:34. [PMID: 28454579 PMCID: PMC5410048 DOI: 10.1186/s12951-017-0269-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/17/2017] [Indexed: 01/28/2023] Open
Abstract
Background Small interfering RNAs (siRNAs) are powerful tools to control gene expression. However, due to their poor cellular permeability and stability, their therapeutic development requires a specific delivery system. Among them, cell-penetrating peptides (CPP) have been shown to transfer efficiently siRNA inside the cells. Recently we developed amphipathic peptides able to self-assemble with siRNAs as peptide-based nanoparticles and to transfect them into cells. However, despite the great potential of these drug delivery systems, most of them display a low resistance to proteases. Results Here, we report the development and characterization of a new CPP named RICK corresponding to the retro-inverso form of the CADY-K peptide. We show that RICK conserves the main biophysical features of its L-parental homologue and keeps the ability to associate with siRNA in stable peptide-based nanoparticles. Moreover the RICK:siRNA self-assembly prevents siRNA degradation and induces inhibition of gene expression. Conclusions This new approach consists in a promising strategy for future in vivo application, especially for targeted anticancer treatment (e.g. knock-down of cell cycle proteins).RICK-based nanoparticles: RICK peptides and siRNA self-assemble in peptide-based nanoparticles to penetrate into the cells and to induce target protein knock-down. ![]() Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0269-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anaïs Vaissière
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Gudrun Aldrian
- Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsiere, 34184, Montpellier, France
| | - Karidia Konate
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Mattias F Lindberg
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Carole Jourdan
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Anthony Telmar
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Quentin Seisel
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Frédéric Fernandez
- Microscopie Électronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Véronique Viguier
- Microscopie Électronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Coralie Genevois
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076, Bordeaux, France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076, Bordeaux, France
| | - Prisca Boisguerin
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Sébastien Deshayes
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
22
|
Aldrian G, Vaissière A, Konate K, Seisel Q, Vivès E, Fernandez F, Viguier V, Genevois C, Couillaud F, Démèné H, Aggad D, Covinhes A, Barrère-Lemaire S, Deshayes S, Boisguerin P. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J Control Release 2017; 256:79-91. [PMID: 28411182 DOI: 10.1016/j.jconrel.2017.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/24/2022]
Abstract
Small interfering RNAs (siRNAs) present a strong therapeutic potential because of their ability to inhibit the expression of any desired protein. Recently, we developed the retro-inverso amphipathic RICK peptide as novel non-covalent siRNA carrier. This peptide is able to form nanoparticles (NPs) by self-assembling with the siRNA resulting in the fully siRNA protection based on its protease resistant peptide sequence. With regard to an in vivo application, we investigated here the influence of the polyethylene glycol (PEG) grafting to RICK NPs on their in vitro and in vivo siRNA delivery properties. A detailed structural study shows that PEGylation did not alter the NP formation (only decrease in zeta potential) regardless of the used PEGylation rates. Compared to the native RICK:siRNA NPs, low PEGylation rates (≤20%) of the NPs did not influence their cellular internalization capacity as well as their knock-down specificity (over-expressed or endogenous system) in vitro. Because the behavior of PEGylated NPs could differ in their in vivo application, we analyzed the repartition of fluorescent labeled NPs injected at the one-cell stage in zebrafish embryos as well as their pharmacokinetic (PK) profile after administration to mice. After an intra-cardiac injection of the PEGylated NPs, we could clearly determine that 20% PEG-RICK NPs reduce significantly liver and kidney accumulation. NPs with 20% PEGylation constitutes a modular, easy-to-handle drug delivery system which could be adapted to other types of functional moieties to develop safe and biocompatible delivery systems for the clinical application of RNAi-based cancer therapeutics.
Collapse
Affiliation(s)
- Gudrun Aldrian
- Sys2Diag, CNRS UMR 9005/ALCEDIAG, 1682 Rue de la Valsière, 34184 Montpellier Cedex 4, France
| | - Anaïs Vaissière
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Karidia Konate
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Quentin Seisel
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Eric Vivès
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Frédéric Fernandez
- Microscopie Electronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Véronique Viguier
- Microscopie Electronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Coralie Genevois
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Héléne Démèné
- Centre de Biochimie Structurale, CNRS UMR 5048, Inserm U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Dina Aggad
- Institut des Biomolécules Max Mousseron, CNRS UMR 5247, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Aurélie Covinhes
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U661, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France.; Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U661, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France.; Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Sébastien Deshayes
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
23
|
Bivalkar-Mehla S, Mehla R, Chauhan A. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection. J Drug Target 2016; 25:307-319. [PMID: 27800697 DOI: 10.1080/1061186x.2016.1245311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4+ lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.
Collapse
Affiliation(s)
- Shalmali Bivalkar-Mehla
- a Department of Pathology, Microbiology and Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Rajeev Mehla
- a Department of Pathology, Microbiology and Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Ashok Chauhan
- a Department of Pathology, Microbiology and Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| |
Collapse
|