1
|
Wang H, Guo L, Wu M, Chu G, Zhu W, Song J, Guo J. The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals. Biomacromolecules 2024; 25:8006-8015. [PMID: 39546419 DOI: 10.1021/acs.biomac.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.
Collapse
Affiliation(s)
- Huan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Lukuan Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mingfeng Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guang Chu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Kim D, Elf P, Nilsson F, Hedenqvist MS, Larsson A. In-Depth Understanding of the Effect of the Distribution of Substituents on the Morphology and Physical Properties of Ethylcellulose: Molecular Dynamics Simulations Insights. Biomacromolecules 2024; 25:4046-4062. [PMID: 38913613 PMCID: PMC11238332 DOI: 10.1021/acs.biomac.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024]
Abstract
Ethylcellulose (EC) is a crucial cellulose derivative with widespread applications, particularly in the pharmaceutical industry, where precise property adjustments through chemical modification are imperative. The degree of substitution (DS) and the localization of substituents along the cellulose chains are pivotal factors in this process. However, the impact of the substituent location within the repeating unit of EC remains unexplored. To address this gap, we conducted molecular dynamics simulations on amorphous EC, comparing randomly and uniformly substituted ethyl groups in the repeating units. This comprehensive study of pairwise interactions revealed significant differences in intramolecular and intermolecular hydrogen-bonding capabilities, depending on whether the hydroxyl groups were substituted at C2, C3, or C6. While our simulations demonstrated that substituent localization in the repeating unit influenced the density, number of hydrogen bonds, and conformations, the DS emerged as the dominant determinant. This insight led us to propose and validate a hypothesis: a straightforward linear function using the properties of uniform models and molar fractions can predict the properties of randomly substituted EC with a given DS. This innovative approach is anticipated to contribute to the selection of cellulose derivatives with desirable properties for the pharmaceutical industry and new applications in other fields.
Collapse
Affiliation(s)
- Donghyun Kim
- Applied
Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- FibRe
Centre for Lignocellulose-based Thermoplastics, Department of Chemistry
and Chemical Engineering, Chalmers University
of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, SE-412 96 Gothenburg, Sweden
| | - Patric Elf
- Department
of Fibre and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- FibRe
Vinnova competence center, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden
| | - Fritjof Nilsson
- Department
of Fibre and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- FibRe
Vinnova competence center, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden
- FSCN
research centre, Mid Sweden University, 85170 Sundsvall, Sweden
| | - Mikael S. Hedenqvist
- Department
of Fibre and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- FibRe
Vinnova competence center, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden
| | - Anette Larsson
- Applied
Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- FibRe
Centre for Lignocellulose-based Thermoplastics, Department of Chemistry
and Chemical Engineering, Chalmers University
of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
3
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
4
|
Jakka D, Matadh AV, Shankar VK, Shivakumar HN, Narasimha Murthy S. Polymer Coated Polymeric (PCP) Microneedles for Controlled Delivery of Drugs (Dermal and Intravitreal). J Pharm Sci 2022; 111:2867-2878. [PMID: 35662543 PMCID: PMC10775835 DOI: 10.1016/j.xphs.2022.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Microneedles are used to deliver drugs topically across the skin and mucous membranes. Dissolvable microneedles are made using soluble polymers, which disintegrates in the tissue and release the entire payload instantaneously including the polymer construct. Often, a slow release of drug into the tissue is desirable to overcome the severity of side effects at the site of administration as well as systemic adverse effects. In addition, controlled release of active pharmaceutical ingredient (API) only (not the excipients) is safe and effective particularly when the drug delivery is intended to sensitive organs like the eye. In this project, the feasibility of fabricating polymer coated polymeric (PCP) microneedles to achieve a gradual release of only the active ingredient from the device was investigated. The potential application of such PCP microneedles in the dermal and intravitreal drug delivery was also explored using animal tissue models. The PCP microneedles were found to be intact even after prolonged contact with the release medium. The time at which 50% (T50%) of dextran (10 K) was released in case of microneedles prepared using 20% of core polymer (PVP-K30) was about 15 min versus less than 5 min in the case of uncoated microneedles. Whereas when the core polymer concentration was increased to 50%, the T50% was increased to 90 min. The rate of release depended on the polymer molecular weight grade. The rate of drug release was not influenced by the total amount of concentration of dextran. The PCP microneedles of lidocaine hydrochloride could constantly release the drug for up to 9 h in the skin tissue. Likewise, the PCP microneedles infused voriconazole, intravitreally for 6 h.
Collapse
Affiliation(s)
- Deeksha Jakka
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, University, MS, USA
| | - Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Bengaluru 560086, India
| | - Vijay Kumar Shankar
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, University, MS, USA
| | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bengaluru 560086, India; KLE College of Pharmacy, Bengaluru, 560010, India
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bengaluru 560086, India; Topical Products Testing LLC, Oxford, MS 38655, USA.
| |
Collapse
|
5
|
Bizmark N, Caggiano NJ, Liu JX, Arnold CB, Prud'homme RK, Datta SS, Priestley RD. Hysteresis in the thermally induced phase transition of cellulose ethers. SOFT MATTER 2022; 18:6254-6263. [PMID: 35946517 DOI: 10.1039/d2sm00564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalized cellulosics have shown promise as naturally derived thermoresponsive gelling agents. However, the dynamics of thermally induced phase transitions of these polymers at the lower critical solution temperature (LCST) are not fully understood. Here, with experiments and theoretical considerations, we address how molecular architecture dictates the mechanisms and dynamics of phase transitions for cellulose ethers. Above the LCST, we show that hydroxypropyl substituents favor the spontaneous formation of liquid droplets, whereas methyl substituents induce fibril formation through diffusive growth. In celluloses which contain both methyl and hydroxypropyl substituents, fibrillation initiates after liquid droplet formation, suppressing the fibril growth to a sub-diffusive rate. Unlike for liquid droplets, the dissolution of fibrils back into the solvated state occurs with significant thermal hysteresis. We tune this hysteresis by altering the content of substituted hydroxypropyl moieties. This work provides a systematic study to decouple competing mechanisms during the phase transition of multi-functionalized macromolecules.
Collapse
Affiliation(s)
- Navid Bizmark
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Nicholas J Caggiano
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason X Liu
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig B Arnold
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Rodney D Priestley
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
6
|
Nilsson R, Olsson M, Westman G, Matic A, Larsson A. Screening of hydrogen bonds in modified cellulose acetates with alkyl chain substitutions. Carbohydr Polym 2022; 285:119188. [DOI: 10.1016/j.carbpol.2022.119188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
|
7
|
Abdul Aziz NFH, Abbasiliasi S, Abu Zarin M, Ng HS, Lan C, Tan JS. Extraction behaviors of aqueous PEG impregnated resin system in terms of impregnation stability and recovery via protein impregnated resin interactions on bovine serum albumin. PeerJ 2021; 9:e11920. [PMID: 34963820 PMCID: PMC8656375 DOI: 10.7717/peerj.11920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Current advances in biotechnology have been looked at as alternative approaches towards the limited product recovery due to time- and cost-consuming drawbacks on the conventional purification methods. This study aimed to purify bovine serum albumin (BSA) as an exemplary target product using an aqueous impregnated resin system (AIRS). This method implies the concept of hydrophobicity of polymer that impregnated into the resins and driven by electrostatic attractions and hydrophilicity of aqueous salt solution to extract the target product. Methods The extraction behaviors of impregnation in terms of stability and adsorption kinetics via protein-aqueous polymer impregnated resin were studied. Impregnation stability was determined by the leaching factor of polyethylene glycol (PEG). The major factors such as PEG molecular weights and concentration, pH of aqueous salt solution, extraction methods (sonication and agitation) and types of adsorbent material and concentration of aqueous salt phase influencing on partitioning of biomolecule were also investigated. Results For impregnation stability, the leaching factor for Amberlite XAD4 did not exceed 1%. The scanning electron microscopy (SEM) image analysis of Amberlite XAD4 attributes the structural changes with impregnation of resins. For adsorption kinetics, Freundlich adsorption isotherm with the highest R2 value (0.95) gives an indication of favorable adsorption process. Performance of AIRS impregnated with 40% (w/w) of PEG 2000 was found better than aqueous-two phase system (ATPS) by yielding the highest recovery of BSA (53.72%). The outcomes of this study propound the scope for the application of AIRS in purification of biomolecules.
Collapse
Affiliation(s)
| | - Sahar Abbasiliasi
- Halal Products Research Institute, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mazni Abu Zarin
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chiwei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Carmona P, Röding M, Särkkä A, von Corswant C, Olsson E, Lorén N. Structure evolution during phase separation in spin-coated ethylcellulose/hydroxypropylcellulose films. SOFT MATTER 2021; 17:3913-3922. [PMID: 33710242 DOI: 10.1039/d1sm00044f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous phase-separated films made of ethylcellulose (EC) and hydroxypropylcellulose (HPC) are commonly used for controlled drug release. The structure of these thin films is controlling the drug transport from the core to the surrounding liquids in the stomach or intestine. However, detailed understanding of the time evolution of these porous structures as they are formed remains elusive. In this work, spin-coating, a widely applied technique for making thin uniform polymer films, was used to mimic the industrial manufacturing process. The focus of this work was on understanding the structure evolution of phase-separated spin-coated EC/HPC films. The structure evolution was determined using confocal laser scanning microscopy (CLSM) and image analysis. In particular, we determined the influence of spin-coating parameters and EC : HPC ratio on the final phase-separated structure and the film thickness. The film thickness was determined by profilometry and it influences the ethanol solvent evaporation rate and thereby the phase separation kinetics. The spin speed was varied between 1000 and 10 000 rpm and the ratio of EC : HPC in the polymer blend was varied between 78 : 22 wt% and 40 : 60 wt%. The obtained CLSM micrographs showed phase separated structures, typical for the spinodal decomposition phase separation mechanism. By using confocal laser scanning microscopy combined with Fourier image analysis, we could extract the characteristic length scale of the phase-separated final structure. Varying spin speed and EC : HPC ratio gave us precise control over the characteristic length scale and the thickness of the film. The results showed that the characteristic length scale increases with decreasing spin speed and with increasing HPC ratio. The thickness of the spin-coated film decreases with increasing spin speed. It was found that the relation between film thickness and spin speed followed the Meyerhofer equation with an exponent close to 0.5. Furthermore, good correlations between thickness and spin speed were found for the compositions 22 wt% HPC, 30 wt% HPC and 45 wt% HPC. These findings give a good basis for understanding the mechanisms responsible for the morphology development and increase the possibilities to tailor thin EC/HPC film structures.
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University Gothenburg, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University Gothenburg, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Chen L, Yang G, Chu X, Gao C, Wang Y, Gong W, Li Z, Yang Y, Yang M, Gao C. Polymer Distribution and Mechanism Conversion in Multiple Media of Phase-Separated Controlled-Release Film-Coating. Pharmaceutics 2019; 11:pharmaceutics11020080. [PMID: 30769846 PMCID: PMC6410001 DOI: 10.3390/pharmaceutics11020080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/04/2023] Open
Abstract
Phase-separated films of water-insoluble ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be utilized to tailor drug release from coated pellets. In the present study, the effects of HPC levels and the pH, type, ionic strength and osmolarity of the media on the release profiles of soluble metoprolol succinates from the EC/HPC-coated pellets were investigated, and the differences in drug-release kinetics in multiple media were further elucidated through the HPC leaching and swelling kinetics of the pellets, morphology (SEM) and water uptake of the free films and the interaction between the coating polymers and the media compositions. Interestingly, the drug release rate from the pellets in different media was not in agreement with the drug solubility which have a positive correlation with the drug dissolution rate based on Noyes–Whitney equation law. In particular, the drug release rate in acetate buffer at pH 4.5 was faster than that in other media despite the solubility of drug was relatively lower, regardless of the HPC levels. It may be attributed to the mutual effect between the EC and acetate buffer, which improved the permeability of the film. In contrast, the release of drug in HCl solution was dependent on the HPC levels. Increasing the levels of HPC increased the effects of hydrogen ions on the polymer of HPC, which resulted in a lower viscosity and strength of the gel, forming the larger size of pores in polymer films, thus increasing the drug diffused from the coating film. Further findings in phosphate buffer showed a reduction in the drug release compared to that in other media, which was only sensitive to the osmolarity rather than the HPC level and pH of the buffer. Additionally, a mathematical theory was used to better explain and understand the experimentally measured different drug release patterns. In summary, the study revealed that the effects of the media overcompensated that of the drug solubility to some extent for controlled-release of the coating polymers, and the drug release mechanism in multiple media depend on EC and HPC rather than on HPC alone, which may have a potential to facilitate the optimization of ideally film-coated formulations.
Collapse
Affiliation(s)
- Lu Chen
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Guobao Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xiaoyang Chu
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunhong Gao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuli Wang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Wei Gong
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Zhiping Li
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yang Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Meiyan Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
10
|
Gårdebjer S, Larsson M, Gebäck T, Skepö M, Larsson A. An overview of the transport of liquid molecules through structured polymer films, barriers and composites - Experiments correlated to structure-based simulations. Adv Colloid Interface Sci 2018; 256:48-64. [PMID: 29804691 DOI: 10.1016/j.cis.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Films engineered to control the transport of liquids are widely used through society. Examples include barriers in packaging, wound care products, and controlled release coatings in pharmaceutics. When observed at the macroscopic scale such films commonly appear homogeneous, however, a closer look reveals a complex nano- and microstructure that together with the chemical properties of the different domains control the transport properties. In this review we compare and discuss macroscopic transport properties, measured using the straightforward, yet highly powerful technique "modified Ussing chambers", also denoted side-by-side diffusion cells, for a wide range of structured polymer films and composites. We also discuss and compare the macroscopic observations and conclusions on materials properties with that of lattice Boltzmann simulations of transport properties based on underlying material structure and chemistry. The survey of the field: (i) highlights the use and power of modified Ussing Chambers for determining liquid transport properties of polymer films, (ii) demonstrates the predictability in both directions between macroscopic observations of transport using modified Ussing chambers and structure-based simulations, and (iii) provides experimental and theoretical insights regarding the transport-determining properties of structured polymer films and composites.
Collapse
|
11
|
Moore HA, Marucci M, Härdelin L, Hjärtstam J, Stading M, von Corswant C, Larsson A. New insights on the influence of manufacturing conditions and molecular weight on phase-separated films intended for controlled release. Int J Pharm 2018; 536:261-271. [PMID: 29157964 DOI: 10.1016/j.ijpharm.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
The aim of this work was to investigate how manufacturing conditions influence phase-separated films of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) with different molecular weights of HPC. Two HPC grades, SSL and M, with weight average molecular weights (Mw) of 30×103g/mol and 365×103g/mol, respectively, were combined with EC 10 cps (70:30w/w EC/HPC) and spray-coated from ethanol solutions onto a rotating drum under well-controlled process conditions. Generally, a low spray rate resulted in a more rapid film drying process and, consequently, in smaller HPC-rich domains in the phase-separated film structure. For EC/HPC films with the low Mw HPC (SSL) the most rapid drying process resulted in a shift from a HPC-discontinuous to a partly bicontinuous structure and an increase in the permeability for water. In contrast, films containing the high Mw HPC (M) all showed bicontinuous structures, which resulted in overall higher water permeabilities and polymer release compared to the low Mw films. Interestingly, a maximum in permeability was observed for the high Mw films at intermediate spray rates. Below this spray rate the permeability decreased due to a lower amount of polymer released and at higher spray rates, the permeability decreased due to a loss of pore connectivity (or increased tortuosity). To conclude, this study shows that different Mw systems of EC/HPC can respond differently to variations in manufacturing conditions.
Collapse
Affiliation(s)
- Helene Andersson Moore
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mariagrazia Marucci
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Linda Härdelin
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden
| | - Johan Hjärtstam
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Mats Stading
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Christian von Corswant
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Anette Larsson
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
12
|
Karrout Y, Siepmann F, Benzine Y, Paccou L, Guinet Y, Hedoux A, Siepmann J. When drugs plasticize film coatings: Unusual formulation effects observed with metoprolol and Eudragit RS. Int J Pharm 2018; 539:39-49. [PMID: 29337184 DOI: 10.1016/j.ijpharm.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Metoprolol tartrate and metoprolol free base loaded pellet starter cores were coated with Eudragit RS, plasticized with 25% triethyl citrate (TEC). The initial drug loading and coating level were varied from 10 to 40 and 0 to 20%, respectively. Drug release was measured in 0.1 N HCl and phosphate buffer pH 7.4. The water uptake and swelling kinetics, mechanical properties and TEC leaching of/from coated pellets and/or thin, free films of identical composition as the film coatings were monitored. The following unusual tendencies were observed: (i) the relative drug release rate from coated pellets increased with increasing initial drug content, and (ii) drug release from pellets was much faster for metoprolol free base compared to metoprolol tartrate, despite its much lower solubility (factor >70). These phenomena could be explained by plasticizing effects of the drug for the polymeric film coatings. In particular: 1) Metoprolol free base is a much more potent plasticizer for Eudragit RS than the tartrate, leading to higher film permeability and overcompensating the pronounced differences in drug solubility. Also, Raman imaging revealed that substantial amounts of the free base migrated into the film coatings, whereas this was not the case for the tartrate. 2) The plasticizing effects of the drug for the film coating overcompensated potential increasing limited solubility effects when increasing the initial drug loading from 10 to 40%. In summary, this study clearly demonstrates how important the plasticization of polymeric controlled release film coatings by drugs can be, leading to unexpected formulation effects.
Collapse
Affiliation(s)
- Youness Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - Youcef Benzine
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Laurent Paccou
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | - Yannick Guinet
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | - Alain Hedoux
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | | |
Collapse
|
13
|
McGinity M, Floyd JR, McGinity J, Zhang F. Implant compositions for the unidirectional delivery of drugs to the brain. Drug Dev Ind Pharm 2017; 43:1421-1429. [DOI: 10.1080/03639045.2017.1318904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Michael McGinity
- Department of Neurosurgery, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John R. Floyd
- Department of Neurosurgery, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James McGinity
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|