1
|
Zeng Z, Zhang Z, Yin B, Zhang M. Simultaneously performing Taylor dispersion analysis with fluorimetry, photometry, and contactless conductometry at the same detection window. Talanta 2024; 280:126677. [PMID: 39142127 DOI: 10.1016/j.talanta.2024.126677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Taylor dispersion analysis (TDA) is a rapid and precise method for determining the hydrodynamic radius (RH) of various substances. We present a versatile TDA system with a flow-through sample injection device, two compact 3-in-1 detectors, and a high-voltage power supply. The 3D-printed detectors combine fluorimetry (FD), photometry (AD@255 nm), and contactless conductometry (C4D) in a single head, enabling simultaneous detection at one capillary window. Using bovine serum albumin (BSA) as a model analyte, we compare TDA with different detection methods. BSA labeled with fluorescein isothiocyanate (FITC) is analyzed in both pulse mode and capillary electrophoresis (CE) TDA. FD and AD detection yield similar RH values, except when FITC binds with small ions in the buffer. In phosphate buffer, C4D underestimates RH values by approximately 18 % due to BSA self-association. In Tris-based buffers, C4D values are 87%-96 % of AD values in pulse mode. With CE-TDA using Tris-CHES buffer, no statistical difference is found across all detections. The system is also applied to CE-TDA of various compounds, particularly charged saccharides. CE-TDA improves the accuracy of TDA results from C4D. We demonstrate the resolution of mixed C4D-TDA signals with assistance from FD and AD signals, successfully resolving gluconate peaks fully covered by another compound. The versatile system with 3-in-1 detection offers a powerful tool for TDA of mixtures and enhances sample throughput.
Collapse
Affiliation(s)
- Zihan Zeng
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Zheng Zhang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Bangjie Yin
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| |
Collapse
|
2
|
Chenyakin Y, Chen DDY. Numerical modeling and experimental optimization of Taylor dispersion analysis with and without an electric field. Electrophoresis 2024; 45:1054-1064. [PMID: 38506142 DOI: 10.1002/elps.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Numerical modeling of Taylor dispersion analysis (TDA) was performed using COMSOL Multiphysics to facilitate better and faster optimization of the experimental conditions. Parameters, such as pressure, electric field, diameter, and length of capillary on the TDA conditions, were examined for particles with hydrodynamic radius (Rh) of 2.5-250 Å. The simulations were conducted using 25, 50, and 100 cm length tubes with diameters of 25, 50, and 100 µm. It was shown that particles with larger diffusion coefficients gave more accurate results at higher velocities, and in longer and wider columns; particles with smaller diffusion coefficients gave more accurate results at smaller velocities, and in shorter and thinner columns. Moreover, the effect of electric field on the validity and the applicability of TDA was studied using TDA in conjunction with capillary electrophoresis. Diffusion coefficients were obtained using a pressure and the TDA equation and compared with those obtained with a pressure in combination of an electric field for fluorescein, FD4, FD20, FD70, and FD500. We found that TDA can be used with the presence of moderate electrophoretic migration and electroosmotic flow, when appropriate conditions were met.
Collapse
Affiliation(s)
- Yuri Chenyakin
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Malburet C, Martin M, Leclercq L, Cotte JF, Thiebaud J, Biron JP, Chamieh J, Cottet H. Optimization of limit of detection in Taylor Dispersion Analysis: application to the size determination of vaccine antigens. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
4
|
Malburet C, Leclercq L, Cotte JF, Thiebaud J, Bazin E, Garinot M, Cottet H. Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines. Anal Chem 2022; 94:4677-4685. [PMID: 35254048 DOI: 10.1021/acs.analchem.1c04778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Messenger RNA vaccines have come into the spotlight as a promising and adaptive alternative to conventional vaccine approaches. The efficacy of mRNA vaccines relies on the ability of mRNA to reach the cytoplasm of cells, where it can be translated into proteins of interest, allowing it to trigger the immune response. However, unprotected mRNA is unstable and susceptible to degradation by exo- and endonucleases, and its negative charges are electrostatically repulsed by the anionic cell membranes. Therefore, mRNA needs a delivery system that protects the nucleic acid from degradation and allows it to enter into the cells. Lipid nanoparticles (LNPs) represent a nonviral leading vector for mRNA delivery. Physicochemical parameters of LNPs, including their size and their charge, directly impact their in vivo behavior and, therefore, their cellular internalization. In this work, Taylor dispersion analysis (TDA) was used as a new methodology for the characterization of the size and polydispersity of LNPs, and capillary electrophoresis (CE) was used for the determination of LNP global charge. The results obtained were compared with those obtained by dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE).
Collapse
Affiliation(s)
- Camille Malburet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier France
- Sanofi Pasteur, 1541 avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier France
| | | | - Jérôme Thiebaud
- Sanofi Pasteur, 1541 avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Emilie Bazin
- Sanofi Pasteur, 1541 avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Marie Garinot
- Sanofi Pasteur, 1541 avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier France
| |
Collapse
|
5
|
Moser MR, Baker CA. Taylor dispersion analysis in fused silica capillaries: a tutorial review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2357-2373. [PMID: 33999088 DOI: 10.1039/d1ay00588j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological and pharmaceutical analytes like liposomes, therapeutic proteins, nanoparticles, and drug-delivery systems are utilized in applications, such as pharmaceutical formulations or biomimetic models, in which controlling their size is often critical. Many of the common techniques for sizing these analytes require method development, significant sample preparation, large sample quantities, and lengthy analysis times. In other cases, such as DLS, sizing can be biased towards the largest constituents in a mixture. Therefore, there is a need for more rapid, sensitive, accurate, and straightforward analytical methods for sizing macromolecules, especially those of biological origin which may be sample-limited. Taylor dispersion analysis (TDA) is a sizing technique that requires no calibration and consumes only nL to pL sample volumes. In TDA, average diffusion coefficients are determined via the Taylor-Aris equation by characterizing band broadening of an analyte plug under well-controlled laminar flow conditions. Diffusion coefficient can then be interpreted as hydrodynamic radius (RH) via the Stokes-Einstein equation. Here, we offer a tutorial review of TDA, intended to make the method better understood and more widely accessible to a community of analytical chemists and separations scientists who may benefit from the unique advantages of this versatile sizing method. We first provide a tutorial on the fundamental principles that allow TDA to achieve calibration-free sizing of analytes across a wide range of RH, with an emphasis on the reduced sample consumption and analysis times that result from utilizing fused silica capillaries. We continue by highlighting relationships between operating parameters and critically important flow conditions. Our discussion continues by looking at methods for applying TDA to sample mixtures via algorithmic approaches and integration of capillary electrophoresis and TDA. Finally, we present a selection of reports that demonstrate TDA applied to complex challenges in bioanalysis and materials science.
Collapse
Affiliation(s)
- Meagan R Moser
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
6
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
7
|
Mass transfer efficiency in rare earth extraction using a hollow fiber pertraction device. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Jörgensen AM, Friedl JD, Wibel R, Chamieh J, Cottet H, Bernkop-Schnürch A. Cosolvents in Self-Emulsifying Drug Delivery Systems (SEDDS): Do They Really Solve Our Solubility Problems? Mol Pharm 2020; 17:3236-3245. [PMID: 32658482 PMCID: PMC7482394 DOI: 10.1021/acs.molpharmaceut.0c00343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The
aim of this study was to investigate the fate and the impact
of cosolvents in self-emulsifying drug delivery systems (SEDDS). Three
different SEDDS comprising the cosolvents DMSO (FD), ethanol
(FE), and benzyl alcohol (FBA) as well as the
corresponding formulations without these cosolvents (FD0, FE0, and FBA0) were developed. Mean droplet
size, polydispersity index (PDI), ζ potential, stability, and
emulsification time were determined. Cosolvent release studies were
performed via the dialysis membrane method and Taylor dispersion analysis
(TDA). Furthermore, the impact of cosolvent utilization on payloads
in SEDDS was examined using quinine as a model drug. SEDDS with and
without a cosolvent showed no significant differences in droplet size,
PDI, and ζ potential. The emulsification time was 3-fold (FD0), 80-fold (FE0), and 7-fold (FBA0)
longer due to the absence of the cosolvents. Release studies in demineralized
water provided evidence for an immediate and complete release of DMSO,
ethanol, and benzyl alcohol. TDA confirmed this result. Moreover,
a 1.4-fold (FD), 2.91-fold (FE), and 2.17-fold
(FBA) improved payload of the model drug quinine in the
selected SEDDS preconcentrates was observed that dropped after emulsification
within 1–5 h due to drug precipitation. In parallel, the quinine
concentrations decreased until reaching the same levels of the corresponding
SEDDS without cosolvents. Due to the addition of hydrophilic cosolvents,
the emulsifying properties of SEDDS are strongly improved. As hydrophilic
cosolvents are immediately released from SEDDS during the emulsification
process, however, their drug solubilizing properties in the resulting
oily droplets are very limited.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| | - Joseph Chamieh
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: Ex vivo and in vivo rat studies. J Control Release 2019; 310:115-126. [PMID: 31401199 DOI: 10.1016/j.jconrel.2019.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023]
Abstract
Labrasol® ALF (Labrasol®), is a non-ionic surfactant excipient primarily used as a solubilising agent. It was investigated here as an intestinal permeation enhancer in isolated rat colonic mucosae in Ussing chamber and in rat in situ intestinal instillations. Labrasol® comprises mono-, di- and triglycerides and mono- and di- fatty acid esters of polyethylene glycol (PEG)-8 and free PEG-8, with caprylic (C8)- and capric acid (C10) as the main fatty acids. Source components of Labrasol® as well as Labrasol® modified with either C8 or C10 as the sole fatty acid components were also tested to determine which element of Labrasol® was responsible for its permeability-enhancing properties. Labrasol® (4, 8 mg/mL) enhanced the transport of the paracellular markers, [14C] mannitol, FITC-dextran 4000, and FITC-insulin across colonic mucosae. The enhancement was non-damaging, transient, and molecular weight-dependent. The PEG ester fraction of Labrasol® also had enhancing properties. When insulin was administered with Labrasol® in instillations, it had a relative bioavailability of 7% in jejunum and 12% in colon. C8- and C10 versions of Labrasol® and the PEG ester fraction also induced similar bioavailability values in jejunal instillations: 6, 5 and 7% respectively. Inhibition of lipases in instillations did not reduce the efficacy of Labrasol®, suggesting that its mechanism as a PE is not simply due to liberated medium chain fatty acids. Labrasol® acts as an efficacious intestinal permeation enhancer and has potential for use in oral formulations of macromolecules and BCS Class III molecules.
Collapse
|
10
|
Leclercq L, Saetear P, Rolland-Sabaté A, Biron JP, Chamieh J, Cipelletti L, Bornhop DJ, Cottet H. Size-Based Characterization of Polysaccharides by Taylor Dispersion Analysis with Photochemical Oxidation or Backscattering Interferometry Detections. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laurent Leclercq
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Phoonthawee Saetear
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Agnès Rolland-Sabaté
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
- UMR0408 Sécurité et Qualité des Produits d’Origine Végétale, INRA, Université Avignon, F-84000 Avignon, France
| | | | - Joseph Chamieh
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Luca Cipelletti
- L2C, Université de Montpellier, CNRS, Montpellier 34095, France
| | | | - Hervé Cottet
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
11
|
Peptide release from SEDDS containing hydrophobic ion pair therapeutic peptides measured by Taylor dispersion analysis. Int J Pharm 2019; 559:228-234. [DOI: 10.1016/j.ijpharm.2019.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/05/2023]
|
12
|
Kuentz M. Drug supersaturation during formulation digestion, including real-time analytical approaches. Adv Drug Deliv Rev 2019; 142:50-61. [PMID: 30445096 DOI: 10.1016/j.addr.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023]
Abstract
Self-emulsifying and other lipid-based drug delivery systems have drawn considerable interest from pharmaceutical scientists for managing oral delivery of poorly water-soluble compounds. Following administration, self-emulsifying systems exhibit complex aqueous dispersion and digestion in the gastro-intestinal tract. These processes generally result in drug supersaturation, which leads to enhanced absorption or the high drug concentrations may cause precipitation with erratic and variable oral bioavailability. This review briefly outlines drug supersaturation obtained from self-emulsifying and other lipid-based formulations; recent advancements of in vitro lipolysis testing are also discussed. Further, a main focus is mechanisms by which supersaturation is triggered from gastro-intestinal processes, as well as analytical techniques that are promising from a research and development perspective. Comparatively simple approaches are presented together with more sophisticated process analytics to enable direct examination of kinetic changes. The analytical methods together with their sensor probes are discussed in detail to clarify opportunities as well as technical limitations. Some of the more sophisticated methods, including those based on synchrotron radiation, are primarily research oriented despite interesting experimental findings from an industrial viewpoint. The availability of kinetic data further opens the door to mathematical modeling of supersaturation and precipitation versus permeation, which lays the groundwork for better in vitro to in vivo correlations as well as for physiologically-based modeling of lipid-based systems.
Collapse
|
13
|
Chamieh J, Merdassi H, Rossi JC, Jannin V, Demarne F, Cottet H. Size characterization of lipid-based self-emulsifying pharmaceutical excipients during lipolysis using Taylor dispersion analysis with fluorescence detection. Int J Pharm 2018; 537:94-101. [DOI: 10.1016/j.ijpharm.2017.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
|
14
|
Østergaard J. UV imaging in pharmaceutical analysis. J Pharm Biomed Anal 2017; 147:140-148. [PMID: 28797957 DOI: 10.1016/j.jpba.2017.07.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
UV imaging provides spatially and temporally resolved absorbance measurements, which are highly useful in pharmaceutical analysis. Commercial UV imaging instrumentation was originally developed as a detector for separation sciences, but the main use is in the area of in vitro dissolution and release testing studies. The review covers the basic principles of the technology and summarizes the main applications in relation to intrinsic dissolution rate determination, excipient compatibility studies and in vitro release characterization of drug substances and vehicles intended for parenteral administration. UV imaging has potential for providing new insights to drug dissolution and release processes in formulation development by real-time monitoring of swelling, precipitation, diffusion and partitioning phenomena. Limitations of current instrumentation are discussed and a perspective to new developments and opportunities given as new instrumentation is emerging.
Collapse
Affiliation(s)
- Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Particle sizing methods for the detection of protein aggregates in biopharmaceuticals. Bioanalysis 2017; 9:313-326. [DOI: 10.4155/bio-2016-0269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein aggregation is a common biological phenomenon which is responsible for degenerative diseases and is problematic in the pharmaceutical industry. According to the rules provided by regulatory agencies, industry is supposed to assess the product quality regarding the presence of subvisible particles. Also, they should evaluate the technologies that are used to measure these particles. Therefore, US FDA and industry have been looking for methods capable of accurately characterizing the protein products. Four sizing techniques reviewed here are good candidates to be used for characterization of protein and their aggregates: dynamic light scattering, size-exclusion chromatography, electron microscopy and Taylor dispersion analysis. The first three are more established techniques while the last one is a more recent and growing technique.
Collapse
|