1
|
Sari MHM, Saccol CP, Custódio VN, da Rosa LS, da Costa JS, Fajardo AR, Ferreira LM, Cruz L. Carrageenan-xanthan nanocomposite film with improved bioadhesion and permeation profile in human skin: A cutaneous-friendly platform for ketoprofen local delivery. Int J Biol Macromol 2024; 265:130864. [PMID: 38493820 DOI: 10.1016/j.ijbiomac.2024.130864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Ketoprofen (KET), commonly used for inflammation in clinical settings, leads to systemic adverse effects with prolonged use, mitigated by topical administration. Nanotechnology-based cutaneous forms, like films, may enhance KET efficacy. Therefore, this study aimed to prepare and characterize films containing KET nanoemulsions (F-NK) regarding mechanical properties, chemical composition and interactions, occlusive potential, bioadhesion, drug permeation in human skin, and safety. The films were prepared using a κ-carrageenan and xanthan gum blend (2 % w/w, ratio 3: 1) plasticized with glycerol through the solvent casting method. Non-nanoemulsioned KET films (F-K) were prepared for comparative purposes. F-NK was flexible and hydrophilic, exhibited higher drug content and better uniformity (94.40 ± 3.61 %), maintained the NK droplet size (157 ± 12 nm), and was thinner and lighter than the F-K. This film also showed increased tensile strength and Young's modulus values, enhanced bioadhesion and occlusive potential, and resulted in more of the drug in the human skin layers. Data also suggested that nano-based formulations are homogeneous and more stable than F-KET. Hemolysis and chorioallantoic membrane tests suggested the formulations' safety. Thus, the nano-based film is suitable for cutaneous KET delivery, which may improve the drug's efficacy in managing inflammatory conditions.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil.
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Vanessa Neuenschwander Custódio
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | | | - Juliê Silveira da Costa
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - André Ricardo Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
2
|
Qiu G, Zhou W, Liu Y, Meng T, Yu F, Jin X, Lian K, Zhou X, Yuan H, Hu F. NIR-Triggered Thermosensitive Nanoreactors for Dual-Guard Mechanism-Mediated Precise and Controllable Cancer Chemo-Phototherapy. Biomacromolecules 2024; 25:964-974. [PMID: 38232296 DOI: 10.1021/acs.biomac.3c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.
Collapse
Affiliation(s)
- Guoxi Qiu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yupeng Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiangyu Jin
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Keke Lian
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xueqing Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang S, Zeng Y, Wang K, Song G, Yu Y, Meng T, Yuan H, Hu F. Chitosan-based nano-micelles for potential anti-tumor immunotherapy: Synergistic effect of cGAS-STING signaling pathway activation and tumor antigen absorption. Carbohydr Polym 2023; 321:121346. [PMID: 37739513 DOI: 10.1016/j.carbpol.2023.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway is an essential DNA-sensing pathway to regulate the innate and adaptive immune response, which plays an important role in tumor immunotherapy. Although the STING agonists can be used, they are limited by their inability to target immune cells and systemic immunotoxicity, calling for novel strategies to accurately and effectively activate the cGAS-STING signaling pathway. Herein, mannose-modified stearic acid-grafted chitosan (M-CS-SA) micelles with the ability to activate the cGAS-STING signaling pathway and absorb tumor antigens were constructed. The chitosan-based nano-micelles showed valid dendritic cell (DCs) targeting and could escape from lysosomes leading to the activation of the cGAS-STING signaling pathway and the maturation of DCs. In addition, a combinatorial therapy was presented based on the programmed administration of oxaliplatin and M-CS-SA. M-CS-SA adsorbed tumor antigens released by chemotherapy to construct an autologous tumor vaccine and built a comprehensive antitumor immune response. In vivo, the combinatorial therapy achieved a tumor inhibition rate of 76.31 % at the oxaliplatin dose of 5 mg/kg and M-CS-SA dose of 15 mg/kg, and increased the CD3+ CD8+ T cell infiltration. This work demonstrated that M-CS-SA and its co-treatment with oxaliplatin showed great potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Yiru Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
4
|
Zhu Y, Yu F, Tan Y, Hong Y, Meng T, Liu Y, Dai S, Qiu G, Yuan H, Hu F. Reversing activity of cancer associated fibroblast for staged glycolipid micelles against internal breast tumor cells. Am J Cancer Res 2019; 9:6764-6779. [PMID: 31660067 PMCID: PMC6815968 DOI: 10.7150/thno.36334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Rationale: Nano-carrier based combinational therapies for tumor cells hold great potential to improve the outcomes of patients. However, cancer associated fibroblasts (CAFs) in desmoplastic tumors and the derived pathological tumor stroma severely impede the access and sensitibity of tumor cells to antitumor therapies. Methods: Glycolipid-based polymeric micelles (GLPM) were developed to encapsulate an angiotensin II receptor I inhibitor (telmisartan, Tel) and a cytotoxic drug (doxorubicin, DOX) respectively, which could exert combinational antitumor efficacy by reprogramming tumor microenvironment to expose the vulnerability of internal tumor cells. Results: As demonstrated, α-SMA positive CAFs significantly decreased after the pre-administration of GLPM/Tel in vitro, which accordingly inhibited the secretion of the CAFs derived stroma. The tumor vessels were further decompressed as a result of the alleviated solid stress inside the tumor masses, which promoted more intratumoral drug delivery and penetration. Ultimately, staged administration of the combined GLPM/Tel and GLPM/DOX at the screened molar ratio not only inhibited the stroma continuously, but also achieved a synergistic antitumor effect through the apoptosis-related peroxisome proliferator-activated receptor-gamma (PPAR-γ) pathway. Conclusion: In summary, the strategy of suppressing tumor stroma for subsequent combinational therapies against internal breast tumor cells could provide avenues for management of intractable desmoplastic tumors.
Collapse
|
5
|
Bhargava A, Srivastava RK, Mishra DK, Tiwari RR, Sharma RS, Mishra PK. Dendritic cell engineering for selective targeting of female reproductive tract cancers. Indian J Med Res 2019; 148:S50-S63. [PMID: 30964081 PMCID: PMC6469378 DOI: 10.4103/ijmr.ijmr_224_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Female reproductive tract cancers (FRCs) are considered as one of the most frequently occurring malignancies and a foremost cause of death among women. The late-stage diagnosis and limited clinical effectiveness of currently available mainstay therapies, primarily due to the developed drug resistance properties of tumour cells, further increase disease severity. In the past decade, dendritic cell (DC)-based immunotherapy has shown remarkable success and appeared as a feasible therapeutic alternative to treat several malignancies, including FRCs. Importantly, the clinical efficacy of this therapy is shown to be restricted by the established immunosuppressive tumour microenvironment. However, combining nanoengineered approaches can significantly assist DCs to overcome this tumour-induced immune tolerance. The prolonged release of nanoencapsulated tumour antigens helps improve the ability of DC-based therapeutics to selectively target and remove residual tumour cells. Incorporation of surface ligands and co-adjuvants may further aid DC targeting (in vivo) to overcome the issues associated with the short DC lifespan, immunosuppression and imprecise uptake. We herein briefly discuss the necessity and progress of DC-based therapeutics in FRCs. The review also sheds lights on the future challenges to design and develop clinically effective nanoparticles-DC combinations that can induce efficient anti-tumour immune responses and prolong patients’ survival.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Dinesh Kumar Mishra
- School of Pharmacy & Technology Management, Narsee Monjee Institute of Management & Studies, Shirpur, India
| | - Rajnarayan R Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal & Child Health, Indian Council of Medical Research, New Delhi, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
6
|
Redox-responsive polymer inhibits macrophages uptake for effective intracellular gene delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 2018; 175:392-402. [PMID: 30554018 DOI: 10.1016/j.colsurfb.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
The development of advanced gene delivery carriers with stimuli-responsive release manner for tumor therapeutics is desirable, since they can exclusively release the therapeutic gene via their structural changes in response to the specific stimuli of the target site. Moreover, interactions between macrophages and drug delivery systems (DDSs) seriously impair the treatment efficiency of DDSs, thus macrophages uptake inhibition would to some extent improve the intracellular uptake of DDSs in tumor cells. Herein, a PEGylated redox-responsive gene delivery system was developed for effective cancer therapy. PEG modified glycolipid-like polymer (P-CSSO) was electrostatic interacted with p53 to form P-CSSO/p53 complexes, which exhibited an enhanced redox sensitivity in that the disulfide bond was degraded and the rate the plasmid released from P-CSSO was 2.29-fold that of nonresponsive platform (P-CSO-SA) in 10 mM levels of glutathione (GSH). PEGylation could significantly weaken macrophages uptake, while enhance the accumulation of P-CSSO in tumor cells both in vitro and in vivo. Compared with nonresponsive complexes (P-CSO-SA/p53) (59.2%) and Lipofectamine™ 2000/p53 complexes (52.0%), the tumor inhibition rate of P-CSSO/p53 complexes (77.1%) significantly increased, which was higher than CSSO/p53 complexes (69.9%). The present study indicates that tumor microenvironment sensitive and macrophages uptake suppressive P-CSSO/p53 is a powerful in vivo gene delivery system for enhanced anticancer therapy.
Collapse
|
7
|
Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017; 12:5879-5892. [PMID: 28860754 PMCID: PMC5566389 DOI: 10.2147/ijn.s123437] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common malignant disease in women worldwide, but the current drug therapy is far from optimal as indicated by the high death rate of breast cancer patients. Nanomedicine is a promising alternative for breast cancer treatment. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for breast cancer adjuvant therapy with favorable clinical outcomes. However, these products were originally designed for generic anticancer purpose and not specifically for breast cancer treatment. With better understanding of the molecular biology of breast cancer, a number of novel promising nanotherapeutic strategies and devices have been developed in recent years. In this review, we will first give an overview of the current breast cancer treatment and the updated status of nanomedicine use in clinical setting, then discuss the latest important trends in designing breast cancer nanomedicine, including passive and active cancer cell targeting, breast cancer stem cell targeting, tumor microenvironment-based nanotherapy and combination nanotherapy of drug-resistant breast cancer. Researchers may get insight from these strategies to design and develop nanomedicine that is more tailored for breast cancer to achieve further improvements in cancer specificity, antitumorigenic effect, antimetastasis effect and drug resistance reversal effect.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Mengjie Si
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Hui-Yi Xue
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ho-Lun Wong
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|