1
|
Baig MMFA, Wong LK, Zia AW, Wu H. Development of biomedical hydrogels for rheumatoid arthritis treatment. Asian J Pharm Sci 2024; 19:100887. [PMID: 38419762 PMCID: PMC10900807 DOI: 10.1016/j.ajps.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 03/02/2024] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that hinders the normal functioning of bones and joints and reduces the quality of human life. Every year, millions of people are diagnosed with RA worldwide, particularly among elderly individuals and women. Therefore, there is a global need to develop new biomaterials, medicines and therapeutic methods for treating RA. This will improve the Healthcare Access and Quality Index and also relieve administrative and financial burdens on healthcare service providers at a global scale. Hydrogels are soft and cross-linked polymeric materials that can store a chunk of fluids, drugs and biomolecules for hydration and therapeutic applications. Hydrogels are biocompatible and exhibit excellent mechanical properties, such as providing elastic cushions to articulating joints by mimicking the natural synovial fluid. Hence, hydrogels create a natural biological environment within the synovial cavity to reduce autoimmune reactions and friction. Hydrogels also lubricate the articulating joint surfaces to prevent degradation of synovial surfaces of bones and cartilage, thus exhibiting high potential for treating RA. This work reviews the progress in injectable and implantable hydrogels, synthesis methods, types of drugs, advantages and challenges. Additionally, it discusses the role of hydrogels in targeted drug delivery, mechanistic behaviour and tribological performance for RA treatment.
Collapse
Affiliation(s)
| | - Lee Ki Wong
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Abdul Wasy Zia
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
2
|
Nassar N, Kasapis S. Fundamental advances in hydrogels for the development of the next generation of smart delivery systems as biopharmaceuticals. Int J Pharm 2023; 633:122634. [PMID: 36690133 DOI: 10.1016/j.ijpharm.2023.122634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Recent advances in developing and applying therapeutic peptides for anticancer, antimicrobial and immunomodulatory remedies have opened a new era in therapeutics. This development has resulted in the engineering of new biologics as part of a concerted effort by the pharmaceutical industry. Many alternative routes of administration and delivery vehicles, targeting better patient compliance and optimal therapeutic bioavailability, have emerged. However, the design of drug delivery systems to protect a range of unstable macromolecules, including peptides and proteins, from high temperatures, acidic environments, and enzymatic degradation remains a priority. Herein, we give chronological insights in the development of controlled-release drug delivery systems that occurred in the last 70 years or so. Subsequently, we summarise the key physicochemical characteristics of hydrogels contributing to the development of protective delivery systems concerning drug-targeted delivery in the chronospatial domain for biopharmaceuticals. Furthermore, we shed some light on promising hydrogels that can be utilised for systemic bioactive administration.
Collapse
Affiliation(s)
- Nazim Nassar
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia.
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| |
Collapse
|
3
|
Yang Y, Sha L, Zhao H, Guo Z, Wu M, Lu P. Recent advances in cellulose microgels: Preparations and functionalized applications. Adv Colloid Interface Sci 2023; 311:102815. [PMID: 36427465 DOI: 10.1016/j.cis.2022.102815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Microgels are soft, deformable, permeable, and stimuli-responsive microscopic polymeric particles that are now emerging as prospective multifunctional soft materials for delivery systems, interface stabilization, cell cultures and tissue engineering. Cellulose microgels are emerging biopolymeric microgels with unique characteristics such as abound hydroxyl structure, admirable designability, multiscale pore network and excellent biocompatibility. This review summarizes the fabrication strategies for microgel, then highlights the fabrication routes for cellulose microgels, and finally elaborates cellulose microgels' bright application prospects with unique characteristics in the fields of controlled release, interface stabilization, coating, purification, nutrition/drug delivery, and bio-fabrication. The challenges to be addressed for further applications and considerable scope for development in future of cellulose microgels are also discussed.
Collapse
Affiliation(s)
- Yang Yang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Lishan Sha
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Han Zhao
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhaojun Guo
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Liu L, Ode Boni BO, Ullah MW, Qi F, Li X, Shi Z, Yang G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zafar N, Akhlaq M, Mahmood A, Ijaz H, Sarfraz RM, Hussain Z, Masood Z. Facile synthesis and in vitro evaluation of semi-interpenetrating polymeric network. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Baig MMFA, Zhang C, Akhtar MF, Saleem A, Mudassir J. The effective transfection of a low dose of negatively charged drug-loaded DNA-nanocarriers into cancer cells via scavenger receptors. J Pharm Anal 2021; 11:174-182. [PMID: 34012693 PMCID: PMC8116213 DOI: 10.1016/j.jpha.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
DNA-nanotechnology-based nano-architecture scaffolds based on circular strands were designed in the form of DNA-nanowires (DNA-NWs) as a polymer of DNA-triangles. Circularizing a scaffold strand (84-NT) was the critical step followed by annealing with various staple strands to make stiff DNA-triangles. Atomic force microcopy (AFM), native polyacrylamide gel electrophoresis (PAGE), UV-analysis, MTT-assay, flow cytometry, and confocal imaging were performed to assess the formulated DNA-NWs and cisplatin (CPT) loading. The AFM and confocal microscopy images revealed a uniform shape and size distribution of the DNA-NWs, with lengths ranging from 2 to 4 μm and diameters ranging from 150 to 300 nm. One sharp band at the top of the lane (500 bp level) with the loss of electrophoretic mobility during the PAGE (native) gel analysis revealed the successful fabrication of DNA-NWs. The loading efficiency of CPT ranged from 66.85% to 97.35%. MTT and flow cytometry results showed biocompatibility of the blank DNA-NWs even at 95% concentration compared with the CPT-loaded DNA-NWs. The CPT-loaded DNA-NWs exhibited enhanced apoptosis (22%) compared to the apoptosis (7%) induced by the blank DNA-NWs. The release of CPT from the DNA-NWs was sustained at < 75% for 6 h in the presence of serum, demonstrating suitability for systemic applications. The IC50 of CPT@DNA-NWs was reduced to 12.8 nM CPT, as compared with the free CPT solution exhibiting an IC50 of 51.2 nM. Confocal imaging revealed the targetability, surface binding, and slow internalization of the DNA-NWs in the scavenger-receptor-rich cancer cell line (HepG2) compared with the control cell line.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Chengfei Zhang
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
7
|
Baig MMFA, Lai WF, Akhtar MF, Saleem A, Mikrani R, Farooq MA, Ahmed SA, Tahir A, Naveed M, Abbas M, Ansari MT. Targeting folate receptors (α1) to internalize the bleomycin loaded DNA-nanotubes into prostate cancer xenograft CWR22R cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Baig MMFA, Lai WF, Ashraf S, Saleem A, Akhtar MF, Mikrani R, Naveed M, Siddique F, Taleb A, Mudassir J, Khan GJ, Ansari MT. The integrin facilitated internalization of fibronectin-functionalized camptothecin-loaded DNA-nanofibers for high-efficiency anticancer effects. Drug Deliv Transl Res 2020; 10:1381-1392. [PMID: 32661832 DOI: 10.1007/s13346-020-00820-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Camptothecin (CMPT) in a free form is extremely cytotoxic as well as hydrophobic drug, and is considered to be highly contagious for systemic administration. The fibronectin (FN)-functionalized DNA-based nanocarrier has been designed to load CMPT and target integrin (αvβ3) receptors which are highly expressed on the A549 cancer cells. Here, we report DNA nanocarrier in the form of DNA-nanofibers (DNA-NFs) capable of loading CMPT via strand intercalation in the GC (base pairs)-rich regions of the DNA duplex. Hence, our keen purpose was to explore the potential of DNA-NFs to load CMPT and assess the improvements of the outcomes in terms of enhanced therapeutic effects to integrin-rich A549 cancer cells with reduced cytotoxic effects to integrin-lacking HEK293 cells. DNA-NFs were formulated as a polymer of DNA triangles. DNA triangles arranged in a programmed way through the complementary overhangs present at the vertices. DNA triangles were primarily obtained through the annealing of the freshly circularized scaffold strands with the three distinct staple strands of specific sequences. The polymerized triangular tiles instead of forming two-dimensional nanosheets underwent self-coiling to give rise to DNA-NF-shaped structures. Flow cytometry and MTT assays were performed to observe cytotoxic and apoptotic effects on integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. AFM, native-page, and confocal experiments confirmed the polymerization of DNA triangles and the morphology of the resulting nanostructures. AFM and confocal images revealed the length of DNA-NFs to be 3-6 μm and the width from 70 to 110 nm. CMPT loading (via strands intercalation) in GC-rich regions of DNA-NFs and the FN functionalization (TAMRA tagged; red fluorescence) via amide chemistry using amino-modified strands of DNA-NFs were confirmed through the UV-shift analysis (> 10 nm shift) and confocal imaging. Blank DNA-NFs were found to be highly biocompatible in 2-640 μM concentrations. MTT assay and flow cytometry experiments revealed that CMPT-loaded DNA-NFs showed a dose-dependent decrease in the cell viability to integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. Conclusively, FN-functionalized, CMPT-loaded DNA-NFs effectively destroyed integrin-rich A549 cancer cells in a targeted manner compared with integrin-deficient HEK293 cells. Grapical abstract.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Saba Ashraf
- Nishtar Medical University and Hospital, Multan, 60000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Reyaj Mikrani
- School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Farhan Siddique
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Ghulam Jilany Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54570, Pakistan
| | - Muhammad Tayyab Ansari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
9
|
DNA scaffold nanoparticles coated with HPMC/EC for oral delivery. Int J Pharm 2019; 562:321-332. [DOI: 10.1016/j.ijpharm.2019.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
|
10
|
Tourné-Péteilh C, Robin B, Lions M, Martinez J, Mehdi A, Subra G, Devoisselle JM. Combining sol–gel and microfluidics processes for the synthesis of protein-containing hybrid microgels. Chem Commun (Camb) 2019; 55:13112-13115. [DOI: 10.1039/c9cc04963k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible encapsulation of proteins in hybrid microgels of a silylated hydrogel, focused on soft procedures and cross-linking conditions.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Mehdi
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Gilles Subra
- IBMM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | | |
Collapse
|
11
|
Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S. Biopolymers and Their Composites for Drug Delivery: A Brief Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sreeraj Gopi
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
- Chemical Faculty; Gdansk University of Technology; Gdańsk Poland
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| | - Augustine Amalraj
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
| | | | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| |
Collapse
|
12
|
A review on pH and temperature responsive gels and other less explored drug delivery systems. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Jesus CRN, Molina EF, Pulcinelli SH, Santilli CV. Highly Controlled Diffusion Drug Release from Ureasil-Poly(ethylene oxide)-Na +-Montmorillonite Hybrid Hydrogel Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19059-19068. [PMID: 29749723 DOI: 10.1021/acsami.8b04559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we report the effects of incorporation of variable amounts (1-20 wt %) of sodium montmorillonite (MMT) into a siloxane-poly(ethylene oxide) hybrid hydrogel prepared by the sol-gel route. The aim was to control the nanostructural features of the nanocomposite, improve the release profile of the sodium diclofenac (SDCF) drug, and optimize the swelling behavior of the hydrophilic matrix. The nanoscopic characteristics of the siloxane-cross-linked poly(ethylene oxide) network, the semicrystallinity of the hybrid, and the intercalated or exfoliated structure of the clay were investigated by X-ray diffraction, small-angle X-ray scattering, and differential scanning calorimetry. The correlation between the nanoscopic features of nanocomposites containing different amounts of MMT and the swelling behavior revealed the key role of exfoliated silicate in controlling the water uptake by means of a flow barrier effect. The release of the drug from the nanocomposite displayed a stepped pattern kinetically controlled by the diffusion of SDCF molecules through the mass transport barrier created by the exfoliated silicate. The sustained SDCF release provided by the hybrid hydrogel nanocomposite could be useful for the prolonged treatment of painful conditions, such as arthritis, sprains and strains, gout, migraine, and pain after surgical procedures.
Collapse
Affiliation(s)
- Celso R N Jesus
- Instituto de Química, UNESP , Rua Professor Francisco Degni 55 , Araraquara , São Paulo 14800-900 , Brazil
| | - Eduardo F Molina
- Universidade de Franca , Av. Dr. Armando Salles Oliveira 201 , Franca , São Paulo 14404-600 , Brazil
| | - Sandra H Pulcinelli
- Instituto de Química, UNESP , Rua Professor Francisco Degni 55 , Araraquara , São Paulo 14800-900 , Brazil
| | - Celso V Santilli
- Instituto de Química, UNESP , Rua Professor Francisco Degni 55 , Araraquara , São Paulo 14800-900 , Brazil
| |
Collapse
|
14
|
Montheil T, Echalier C, Martinez J, Subra G, Mehdi A. Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. J Mater Chem B 2018; 6:3434-3448. [DOI: 10.1039/c8tb00456k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sol–gel process is one of the main techniques leading to hybrid hydrogels that can be used in a wide scope of applications, especially in the biomedical field.
Collapse
Affiliation(s)
- Titouan Montheil
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Cécile Echalier
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Ahmad Mehdi
- Institut Charles Gerhardt Université de Montpellier
- CNRS
- ENSCM
- Montpellier
- France
| |
Collapse
|