1
|
Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023; 24:98. [PMID: 37016029 PMCID: PMC10072922 DOI: 10.1208/s12249-023-02559-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Yayi Zhao
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R., China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China.
| |
Collapse
|
2
|
Ke WR, Chang RYK, Chan HK. Engineering the right formulation for enhanced drug delivery. Adv Drug Deliv Rev 2022; 191:114561. [PMID: 36191861 DOI: 10.1016/j.addr.2022.114561] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Dry powder inhalers (DPIs) can be used with a wide range of drugs such as small molecules and biologics and offer several advantages for inhaled therapy. Early DPI products were intended to treat asthma and lung chronic inflammatory disease by administering low-dose, high-potency drugs blended with lactose carrier particles. The use of lactose blends is still the most common approach to aid powder flowability and dose metering in DPI products. However, this conventional approach may not meet the high demand for formulation physical stability, aerosolisation performance, and bioavailability. To overcome these issues, innovative techniques coupled with modification of the traditional methods have been explored to engineer particles for enhanced drug delivery. Different particle engineering techniques have been utilised depending on the types of the active pharmaceutical ingredient (e.g., small molecules, peptides, proteins, cells) and the inhaled dose. This review discusses the challenges of formulating DPI formulations of low-dose and high-dose small molecule drugs, and biologics, followed by recent and emerging particle engineering strategies utilised in developing the right inhalable powder formulations for enhanced drug delivery.
Collapse
Affiliation(s)
- Wei-Ren Ke
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
4
|
Wang Y, Chang RYK, Britton WJ, Chan HK. Advances in the development of antimicrobial peptides and proteins for inhaled therapy. Adv Drug Deliv Rev 2022; 180:114066. [PMID: 34813794 DOI: 10.1016/j.addr.2021.114066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides and proteins (APPs) are becoming increasingly important in targeting multidrug-resistant (MDR) bacteria. APPs is a rapidly emerging area with novel molecules being produced and further optimised to enhance antimicrobial efficacy, while overcoming issues associated with biologics such as potential toxicity and low bioavailability resulting from short half-life. Inhalation delivery of these agents can be an effective treatment of respiratory infections owing to the high local drug concentration in the lungs with lower exposure to systemic circulation hence reducing systemic toxicity. This review describes the recent studies on inhaled APPs, including in vitro and in vivo antimicrobial activities, toxicity assessments, and formulation strategies whenever available. The review also includes studies on combination of APPs with other antimicrobial agents to achieve enhanced synergistic antimicrobial effect. Since different APPs have different biological and chemical stabilities, a targeted formulation strategy should be considered for developing stable and inhalable antimicrobial peptides and proteins. These strategies include the use of sodium chloride to reduce electrostatic interaction between APP and extracellular DNA in sputum, the use of D-enantiomers or dendrimers to minimise protease-mediated degradation and or the use of prodrugs to reduce toxicity. Although great effort has been put towards optimising the biological functions of APPs, studies assessing biological stability in inhalable aerosols are scarce, particularly for novel molecules. As such, formulation and manufacture of inhalable liquid and powder formulations of APPs are underexplored, yet they are crucial areas of research for clinical translation.
Collapse
|
5
|
Advancements in Particle Engineering for Inhalation Delivery of Small Molecules and Biotherapeutics. Pharm Res 2022; 39:3047-3061. [PMID: 36071354 PMCID: PMC9451127 DOI: 10.1007/s11095-022-03363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022]
Abstract
Dry powder inhalation formulations have become increasingly popular for local and systemic delivery of small molecules and biotherapeutics. Powder formulations provide distinct advantages over liquid formulations such as elimination of cold chain due to room temperature stability, improved portability, and the potential for increasing patient adherence. To become a viable product, it is essential to develop formulations that are stable (physically, chemically and/or biologically) and inhalable over the shelf-life. Physical particulate properties such as particle size, morphology and density, as well as chemical properties can significantly impact aerosol performance of the powder. This review will cover these critical attributes that can be engineered to enhance the dispersibility of inhalation powder formulations. Challenges in particle engineering for biotherapeutics will be assessed, followed by formulation strategies for overcoming the hurdles. Finally, the review will discuss recent examples of successful dry powder biotherapeutic formulations for inhalation delivery that have been clinically assessed.
Collapse
|
6
|
Boffoli D, Bellato F, Avancini G, Gurnani P, Yilmaz G, Romero M, Robertson S, Moret F, Sandrelli F, Caliceti P, Salmaso S, Cámara M, Mantovani G, Mastrotto F. Tobramycin-loaded complexes to prevent and disrupt Pseudomonas aeruginosa biofilms. Drug Deliv Transl Res 2021; 12:1788-1810. [PMID: 34841492 DOI: 10.1007/s13346-021-01085-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Carbohydrate-based materials are increasingly investigated for a range of applications spanning from healthcare to advanced functional materials. Synthetic glycopolymers are particularly attractive as they possess low toxicity and immunogenicity and can be used as multivalent ligands to target sugar-binding proteins (lectins). Here, we utilised RAFT polymerisation to synthesize two families of novel diblock copolymers consisting of a glycopolymers block containing either mannopyranose or galactopyranose pendant units, which was elongated with sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) to generate a polyanionic block. The latter enabled complexation of cationic aminoglycoside antibiotic tobramycin through electrostatic interactions (loading efficiency in the 0.5-6.3 wt% range, depending on the copolymer). The resulting drug vectors were characterized by dynamic light scattering, zeta-potential, and transmission electron microscopy. Tobramycin-loaded complexes were tested for their ability to prevent clustering or disrupt biofilm of the Pseudomonas aeruginosa Gram-negative bacterium responsible for a large proportion of nosocomial infection, especially in immunocompromised patients. P. aeruginosa possesses two specific tetrameric carbohydrate-binding adhesins, LecA (PA-IL, galactose/N-acetyl-D-galactosamine-binding) and LecB (PA-IIL, fucose/mannose-binding), and the cell-associated and extracellular adhesin CdrA (Psl/mannose-binding) thus ideally suited for targeted drug delivery using sugar-decorated tobramycin-loaded complexes here developed. Both aliphatic and aromatic linkers were utilised to link the sugar pendant units to the polyacrylamide polymer backbone to assess the effect of the nature of such linkers on bactericidal/bacteriostatic properties of the complexes. Results showed that tobramycin-loaded complexes efficiently suppressed (40 to 60% of inhibition) in vitro biofilm formation in PAO1-L P. aeruginosa and that preferential targeting of PAO1-L biofilm can be achieved using mannosylated glycopolymer-b-AMPSm.
Collapse
Affiliation(s)
- Delia Boffoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Greta Avancini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.,Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Gokhan Yilmaz
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Shaun Robertson
- School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy.,School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Federica Sandrelli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Miguel Cámara
- School of Life Sciences, Nottingham University Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Giuseppe Mantovani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.
| |
Collapse
|
7
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Chang RYK, Chow MY, Khanal D, Chen D, Chan HK. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev 2021; 172:64-79. [PMID: 33705876 DOI: 10.1016/j.addr.2021.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale. Furthermore, the review includes manufacture technologies which are based on lyophilization and spray-drying as they have been applied to manufacture Food and Drug Administration (FDA)-approved protein powders. In perspective, formulation and manufacture of inhalable powders for biologic are highly challenging but attainable. The key requirements are the stability of both the biologics and the powder, along with the powder dispersibility. The formulation to be developed depends on the manufacture process as it will subject the biologics to different stresses (temperature, mechanical and chemical) which could lead to degradation by different pathways. Stabilizing excipients coupled with the suitable choice of process can alleviate the stability issues of inhaled powders of biologics.
Collapse
|
9
|
Lotocki V, Kakkar A. Miktoarm Star Polymers: Branched Architectures in Drug Delivery. Pharmaceutics 2020; 12:E827. [PMID: 32872618 PMCID: PMC7559275 DOI: 10.3390/pharmaceutics12090827] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Delivering active pharmaceutical agents to disease sites using soft polymeric nanoparticles continues to be a topical area of research. It is becoming increasingly evident that the composition of amphiphilic macromolecules plays a significant role in developing efficient nanoformulations. Branched architectures with asymmetric polymeric arms emanating from a central core junction have provided a pivotal venue to tailor their key parameters. The build-up of miktoarm stars offers vast polymer arm tunability, aiding in the development of macromolecules with adjustable properties, and allows facile inclusion of endogenous stimulus-responsive entities. Miktoarm star-based micelles have been demonstrated to exhibit denser coronae, very low critical micelle concentrations, high drug loading contents, and sustained drug release profiles. With significant advances in chemical methodologies, synthetic articulation of miktoarm polymer architecture, and determination of their structure-property relationships, are now becoming streamlined. This is helping advance their implementation into formulating efficient therapeutic interventions. This review brings into focus the important discoveries in the syntheses of miktoarm stars of varied compositions, their aqueous self-assembly, and contributions their formulations are making in advancing the field of drug delivery.
Collapse
Affiliation(s)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|
10
|
Nieto-Orellana A, Li H, Rosiere R, Wauthoz N, Williams H, Monteiro CJ, Bosquillon C, Childerhouse N, Keegan G, Coghlan D, Mantovani G, Stolnik S. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. J Control Release 2019; 316:250-262. [PMID: 31678655 DOI: 10.1016/j.jconrel.2019.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Pulmonary delivery is increasingly seen as an attractive, non-invasive route for the delivery of forthcoming protein therapeutics. In this context, here we describe protein complexes with a new 'complexing excipient' - vitamin B12-targeted poly(ethylene glycol)-block-poly(glutamic acid) copolymers. These form complexes in sub-200nm size with a model protein, suitable for cellular targeting and intracellular delivery. Initially we confirmed expression of vitamin B12-internalization receptor (CD320) by Calu-3 cells of the in vitro lung epithelial model used, and demonstrated enhanced B12 receptor-mediated cellular internalization of B12-targeted complexes, relative to non-targeted counterparts or protein alone. To develop an inhalation formulation, the protein complexes were spray dried adopting a standard protocol into powders with aerodynamic diameter within the suitable range for lower airway deposition. The cellular internalization of targeted complexes from dry powders applied directly to Calu-3 model was found to be 2-3 fold higher compared to non-targeted complexes. The copolymer complexes show no complement activation, and in vivo lung tolerance studies demonstrated that repeated administration of formulated dry powders over a 3 week period in healthy BALB/c mice induced no significant toxicity or indications of lung inflammation, as assessed by cell population count and quantification of IL-1β, IL-6, and TNF-α pro-inflammatory markers. Importantly, the in vivo data appear to suggest that B12-targeted polymer complexes administered as dry powder enhance lung retention of their protein payload, relative to protein alone and non-targeted counterparts. Taken together, our data illustrate the potential developability of novel B12-targeted poly(ethylene glycol)-poly(glutamic acid) copolymers as excipients suitable to be formulated into a dry powder product for the inhalation delivery of proteins, with no significant lung toxicity, and with enhanced protein retention at their in vivo target tissue.
Collapse
Affiliation(s)
- A Nieto-Orellana
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - H Li
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - R Rosiere
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - N Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - H Williams
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - C J Monteiro
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - C Bosquillon
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - G Keegan
- Vectura Group plc, Chippenhafm, UK
| | | | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Muller AG, Sarker SD, Saleem IY, Hutcheon GA. Delivery of natural phenolic compounds for the potential treatment of lung cancer. Daru 2019; 27:433-449. [PMID: 31115871 PMCID: PMC6593021 DOI: 10.1007/s40199-019-00267-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The application of natural products to treat various diseases, such as cancer, has been an important area of research for many years. Several phytochemicals have demonstrated anticarcinogenic activity to prevent or reduce the progression of cancer by modulating various cellular mechanisms. However, poor bioavailability has hindered clinical success and the incorporation of these drugs into efficient drug delivery systems would be beneficial. For lung cancer, local delivery via the pulmonary route would also be more effective. In this article, recent in vitro scientific literature on phenolic compounds with anticancer activity towards lung cancer cell lines is reviewed and nanoparticulate delivery is mentioned as a possible solution to the problem of bioavailability. The first part of the review will explore the different classes of natural phenolic compounds and discuss recent reports on their activity on lung cancer cells. Then, the problem of the poor bioavailability of phenolic compounds will be explored, followed by a summary of recent advances in improving the efficacy of these phenolic compounds using nanoparticulate drug delivery systems. Graphical abstract The rationale for direct delivery of phenolic compounds loaded in microparticles to the lungs.
Collapse
Affiliation(s)
- Ashley G Muller
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK.
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Imran Y Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Gillian A Hutcheon
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
12
|
Zhang G, Mo S, Fang B, Zeng R, Wang J, Tu M, Zhao J. Pulmonary delivery of therapeutic proteins based on zwitterionic chitosan-based nanocarriers for treatment on bleomycin-induced pulmonary fibrosis. Int J Biol Macromol 2019; 133:58-66. [PMID: 30981773 DOI: 10.1016/j.ijbiomac.2019.04.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticle-based pulmonary delivery of protein therapeutics provides a promising approach for improving protein bioavailability to treat either local or systemic diseases, however high-efficient nanocarrier is a great challenge. Here, biomimetic phosphorylcholine-chitosan nanoparticles (PCCs-NPs) taking advantages of both zwitterionic phosphorylcholine and chitosan were developed as a pulmonary protein delivery platform. msFGFR2c, a potential therapeutic protein for lung fibrosis as model was loaded into PCCs-NPs via ionic gelation. The obtained msFGFR2c/PCCs-NPs inhibited α-SMA expression in fibroblasts induced by TGF-β1, slightly more effective than naked msFGFR2c. After orotracheal administration to bleomycin-induced pulmonary fibrosis model rats, msFGFR2c/PCCs-NPs resulted in a significant antifibrotic efficacy, with reduction in inflammatory cytokines and α-SMA expression, remarkable attenuation of lung fibrosis score and collagen deposition, and significant increase in survival rate, while naked msFGFR2c exhibited a poor efficacy. The in vitro and in vivo results strongly indicated that PCCs-NPs may be a promising nanocarrier for pulmonary protein delivery.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shanyi Mo
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Bangren Fang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.
| | - Ju Wang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Mei Tu
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
13
|
Andrianov AK, Marin A, Martinez AP, Weidman JL, Fuerst TR. Hydrolytically Degradable PEGylated Polyelectrolyte Nanocomplexes for Protein Delivery. Biomacromolecules 2018; 19:3467-3478. [PMID: 29953203 DOI: 10.1021/acs.biomac.8b00785] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel oppositely charged polyphosphazene polyelectrolytes containing grafted poly(ethylene glycol) (PEG) chains were synthesized as modular components for the assembly of biodegradable PEGylated protein delivery vehicles. These macromolecular counterparts, which contained either carboxylic acid or tertiary amino groups, were then formulated at near physiological conditions into supramolecular assemblies of nanoscale level, below 100 nm. Nanocomplexes with electroneutral surface charge, as assessed by zeta potential measurements, were stable in aqueous solutions, which suggests their compact polyelectrolyte complex "core"-hydrophilic PEG "shell" structure. Investigation of PEGylated polyphosphazene nanocomplexes as agents for noncovalent PEGylation of the therapeutic protein l-asparaginase (L-ASP) in vitro demonstrated their ability to dramatically reduce protein antigenicity, as measured by antibody binding using enzyme linked immunosorbent assay (ELISA). Encapsulation in nanocomplexes did not affect enzymatic activity of L-ASP, but improved its thermal stability and proteolytic resistance. Gel permeation chromatography (GPC) experiments revealed that all synthesized polyphosphazenes exhibited composition controlled hydrolytic degradability in aqueous solutions at neutral pH and showed greater stability at lower temperatures. Overall, novel hydrolytically degradable polyphosphazene polyelectrolytes capable of spontaneous self-assembly into PEGylated nanoparticulates in aqueous solutions can potentially enable a simple and effective approach to modifying therapeutic proteins without the need for their covalent modification.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Andre P Martinez
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Jacob L Weidman
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States.,Department of Cell Biology and Molecular Genetics , 1109 Microbiology Building , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|