1
|
Ngo AN, Chatman KK, Douglas D, Mosley-Kellum KM, Wu K, Vadgama J. Engineering of Layer-by-layer Acetate-coated Paclitaxel Loaded Poly(lactide-co-glycolide) Acid Nanoparticles for Prostate Cancer Therapy- in vitro. J Pharm Sci 2024:S0022-3549(24)00427-1. [PMID: 39313154 DOI: 10.1016/j.xphs.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
It is hypothesized that layer-by-layer acetate-coated Paclitaxel-loaded PLGA nanoparticles (F2) can be engineered to potentiate the effectiveness of Paclitaxel (PTX) on LNCaP, a human prostate cancer cell line. The core of the layer-by-layer NPs is formed by nanoprecipitation, and the shell of the NPs is engineered using the sodium acetate's unique coating mechanism and surface-active properties. The resulting nanoformulation physicochemical properties are characterized by Fourier Transform Infra-Red (FTIR), Differential Scanning Calorimetry (DSC) Transmission Electron Microscopy (TEM), NanoSight NS300, spectrophotometry, Korsmeyer-Peppas model, respectively. The NP's cytotoxicity on LNCaP is assessed by MTS assay. The DSC and the FTIR confirm SA's coating of the NPs. The particle's mean diameters (PMD) are 89.4±2.3- to 114.4±7.6 nm. The TEM shows a unique multilayer and spherical nanoparticle. The encapsulation efficiency of commonly PTX-loaded PLGA NPs (F1) and F2 are 84.37±2.71% and 86.74±2.22, respectively. The drug transport mechanism of F1 and F2 is anomalous transport and case II, respectively. F2 follows a zero-order release mechanism. The cell viability is 45.08±2.18% and 60.17±4.72% when LNCaP is treated with 10 µg/mL of F2 and F1, respectively, after 48 hours of exposure. F2 and F1 cell growth inhibition are dose-dependent. This unique process of engineering the layer-by-layer NPs will provide new horizons for developing future innovative nanoparticles for targeted prostate cancer therapy.
Collapse
Affiliation(s)
- Albert Nguessan Ngo
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States.
| | - Kierston K Chatman
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Dezirae Douglas
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Keb M Mosley-Kellum
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Ke Wu
- Charles R. Drew University of Medicine and Science, United States
| | - Jaydutt Vadgama
- Charles R. Drew University of Medicine and Science, United States
| |
Collapse
|
2
|
Ngo AN, Murowchick J, Gounev AD, Gounev TK, Youan BBC. Physico-chemistry and Cytotoxicity of Tenofovir-Loaded Acid Phosphatase-Responsive Chitosan Nanoparticles. AAPS PharmSciTech 2023; 24:143. [PMID: 37353718 DOI: 10.1208/s12249-023-02580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
This study assesses the in vitro release of tenofovir (TFV)-loaded triphosphate (TPP) cross-linked chitosan nanoparticles (NPs) catalyzed by human prostatic acid phosphatase (hPAP) for 24 h. The physico-chemical characterization of the NPs included particle mean diameter (PMD), zeta potential (ζ), percent drug encapsulation efficiency (% EE), Fourier transform infra-red (FTIR) spectroscopy, powder X-ray diffractometry analysis (PXRD), and drug release kinetics. The first-order rate constant (k) and activation energy (Ea) of the cross-link (TPP) are determined by the integrated rate law and Arrhenius's equations. The hPAP Michaelis-Menten constant (Km) is determined by the Lineweaver-Burk's equation. The NP's safety profile is evaluated on vaginal epithelial cells (VK2/E6E7). The lyophilized drug-loaded NPs' PMD, ζ, and PDI are 149.97 nm, 4.4 mV, and 0.3, respectively. The % EE after lyophilization is 93.7 ± 4.4%. These NPs released drug at faster rate (63% of TFV within 6 h) under the enzyme's influence. The similarity and difference factors of drug release profiles (absence vs presence of hPAP) are 56.5 and 40.3, respectively. The hPAP's Km value of 0.019 mM suggests it has a good affinity for TPP at physiological pH ~ 7.4. The enhanced hydrolysis of TPP or degradation of chitosan NPs is fundamentally due to a decrease of TPP's activation energy by hPAP. In fact, the Ea value is 22.50 ± 3.06 kJ/mol or 16.33 ± 0.62 kJ/mol in the absence or presence of hPAP, respectively. The NPs are non-cytotoxic to the treated vaginal cell line. These hPAP-responsive NPs are promising topical nanomicrobicides for HIV/AIDS prevention.
Collapse
Affiliation(s)
- Albert Nguessan Ngo
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
- School of Pharmacy, American University of Health Sciences, Signal Hill, California, 90755, USA
- College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California, 90059, USA
| | - James Murowchick
- Department of Geosciences, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Andrea Drew Gounev
- Department of Chemistry, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Todor K Gounev
- Department of Chemistry, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Bi-Botti Celestin Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
3
|
Fengyuan S, Di Y, Dongyue Z, Yulin D, Zifeng P, Fei Z, Hao Y. Preparation of solid dispersion of Dushen decoction and establishment of its evaluation method. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Sulaiman Hameed G, Basim Mohsin Mohamed M, Naji Sahib M. Binary or ternary mixture of solid dispersion: Meloxicam case. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present work was carried out to assess the value of adding water insoluble polymer to meloxicam amorphous solid formulation (ASD). Meloxicam was mixed with polyvinylpyrrolidone (PVP) (1:1 ratio) as a binary mixture and with PVP and ethyl cellulose (1:1:1 ratio) as a ternary mixture. Solvent evaporation method was used to prepare ASD formulations. The differential scanning calorimetry, powder X-Ray diffraction, Cambridge Structural Database and in-vitro dissolution were performed to assess the formulas. The results showed that the addition of insoluble polymer could prevent the recrystallization process during ASD formation. However, the binary mixture showed higher drug release percentage than the ternary mixture. Therefore, a rational amount of insoluble polymer could be considered to control recrystallization and manipulate drug release from ASD formulations.
Collapse
|
5
|
Li X, Fan L, Li J. Extrusion-based 3D printing of high internal phase emulsions stabilized by co-assembled β-cyclodextrin and chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Alshamrani M, Ayon NJ, Alsalhi A, Akinjole O. Self-Assembled Nanomicellar Formulation of Docetaxel as a Potential Breast Cancer Chemotherapeutic System. Life (Basel) 2022; 12:life12040485. [PMID: 35454976 PMCID: PMC9024535 DOI: 10.3390/life12040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Docetaxel (DTX) is classified as a class IV drug that exhibits poor aqueous solubility (6–7 µg/mL in water) and permeability (P-glycoprotein substrate). The main objective of this study was to construct, characterize, and evaluate docetaxel loaded nanomicellar formulation in vitro for oral delivery to enhance the absorption and bioavailability of DTX, as well as to circumvent P-gp efflux inhibition. Formulations were prepared with two polymeric surfactants, hydrogenated castor oil-40 (HCO-40) and D-α-Tocopherol polyethylene glycol 1000 succinate (VIT E TPGS) with solvent evaporation technique, and the resulting DTX nanomicellar formulations were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier Transform Infrared Spectroscopy (FT–IR), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). Proton NMR, FT–IR, and XRD data indicated that DTX was completely encapsulated within the hydrophobic core of the nanomicelles in its amorphous state. TEM data revealed a smooth spherical shape of the nanomicellar formulation. The optimized formulation (F-2) possessed a mean diameter of 13.42 nm, a zeta potential of −0.19 mV, with a 99.3% entrapment efficiency. Dilution stability study indicated that nanomicelles were stable up to 100-fold dilution with minimal change in size, poly dispersity index (PDI), and zeta potential. In vitro cytotoxicity study revealed higher anticancer activity of DTX nanomicelles at 5 µM compared to the native drug against breast cancer cell line (MCF-7) cells. The LC–MS data confirmed the chemical stability of DTX within the nanomicelles. In vitro drug release study demonstrated faster dissolution of DTX from the nanomicelles compared to the naked drug. Our experimental results exhibit that nanomicelles could be a drug delivery system of choice to encapsulate drugs with low aqueous solubility and permeability that can preserve the stability of the active constituents to provide anticancer activity.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
- Correspondence:
| | - Navid J. Ayon
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA;
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|
7
|
Spatial-thermodynamic understanding of stabilization mechanism using computational approaches and molecular-level elucidation of the mechanism of crystal transformation in polymorphic irbesartan nanosuspensions. Int J Pharm 2022; 612:121350. [PMID: 34896564 DOI: 10.1016/j.ijpharm.2021.121350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Irbesartan polymorphisms possess low solubility properties, nanosuspensions represent a method for improving the dissolution. Stabilizers are significant constituents of nanosuspensions. Herein we presented computational research on screening stabilizers and exploring stabilization mechanisms. The crystal transformation mechanism was also investigated. Soluplus-P407 and TPGS-HPMCE5 were screened by spatial conformation and thermodynamic energy analyses. The prepared nanosuspensions improved the dissolution properties of bulk drugs at pH 1.2, 4.5, 6.8. The nanosuspensions stabilization mechanism was analyzed by Molecular docking, Molecular dynamics simulations, Fourier transform infrared spectroscopy and Raman spectroscopy. It might be relate to the decreased enthalpy and Gibbs free energy which were determined by the synergy of external and internal energy factors. The X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy showed the crystal structures. The irbesartan B form was transformed in a Soluplus-P407-B/TPGS-HPMCE5-B physical mixture, but not in an SDS (-OH free)-B physical mixture. The intra-proton transfer induced by -OH on the stabilizer might be the transformation mechanism.
Collapse
|
8
|
Alsalhi A, Ayon NJ, Sikder S, Youan BBC. Self-Assembled Nanomicelles to Enhance Solubility and Anticancer Activity of Etoposide. Assay Drug Dev Technol 2021; 19:526-538. [PMID: 34813380 DOI: 10.1089/adt.2021.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is hypothesized that etoposide/VP-16 nanomicellar formulation (VP-16 NMF) utilizing D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) can improve etoposide solubility and anticancer activity. The following four different concentrations of TPGS: 3, 6, 8, and 10 wt% were used to solubilize the drug. Among these four formulations, 10 wt% of TPGS loaded with VP-16 NMF dramatically enhanced etoposide apparent solubility by 26-folds compared with the native drug. The physicochemical properties of the optimized formulation were further analyzed by dynamic light scattering, X-ray powder diffraction, scanning electron microscopy, proton nuclear magnetic resonance (1HNMR) and Fourier transform infrared spectroscopy. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) was used to assess solubility and intracellular uptake of the drug from the NMF. Cell viability assay ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium solution [MTS]) was performed on MCF-7 and MCF-10A cell lines to assess intracellular uptake and anticancer activity of etoposide. The MTS assay results showed that the VP-16 NMF platform provides a higher anticancer activity than the native VP-16 on the MCF-7 cells line as it integrates a dual anticancer activity of VP-16 and TPGS. LC-MS/MS data showed a threefold increase in cellular uptake of VP-16 NMF in MCF-7 cell line compared with the native etoposide. These data suggest that an optimal TPGS concentration can improve VP-16 bioavailability and efficacy with potential benefits for chemotherapy.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Navid J Ayon
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Sadia Sikder
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bi-Botti C Youan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
9
|
Alsalhi A, Ayon NJ, Coulibaly F, Alshamrani M, Al-Nafisah A, Youan BBC. Enhancing Etoposide Aqueous Solubility and Anticancer Activity with L-Arginine. Assay Drug Dev Technol 2021; 19:508-525. [PMID: 34757813 DOI: 10.1089/adt.2021.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is hypothesized that L-arginine (ARG) can improve etoposide (VP-16) water solubility while preserving its anticancer activity. Factorial design is used to identify conditions for optimum drug aqueous solubility after freeze-drying. The physicochemical properties of the optimized formulation is further analyzed by X-ray powder diffraction, scanning electron microscopy, proton nuclear magnetic resonance, and fourier transform infrared spectroscopy. Drug stability in formulation is analyzed using mass spectrometry based fragmentation analysis. Liquid chromatography tandem mass spectrometry and cell viability assay on Michigan Cancer Foundation-7 (MCF-7) cell line are performed to assess the drug cellular uptake and the anticancer activity, respectively. At the VP-16: ARG ratio of 4:10 (w/w), the drug apparent solubility increased significantly (∼65-folds) with a 3.5-fold improvement in the drug dissolution rate. The interaction between VP-16 and ARG transforms the drug from crystalline to amorphous solid state. VP-16-ARG complex in lower native drug concentration range (50-300 μM) has lower anticancer activity compared with native VP-16, due to reduced intracellular transport of the more hydrophilic complex as indicated by the cell viability assay and confirmed by cell uptake study. However, at higher drug concentrations (500 μM) the complex's higher anticancer activity is ascribed to the synergistic effect between ARG and VP-16. These data suggest that an optimal ARG concentration can have positive effects with potential benefits for chemotherapy.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Navid J Ayon
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Fohona Coulibaly
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Meshal Alshamrani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Abrar Al-Nafisah
- Department of Chemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bi-Botti C Youan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| |
Collapse
|
10
|
Atsukawa K, Amari S, Takiyama H. Solid dispersion melt crystallization (SDMC) concept using binary eutectic system for improvement of dissolution rate. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Ziaei E, Emami J, Rezazadeh M, Kazemi M. Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer. Anticancer Agents Med Chem 2021; 22:951-967. [PMID: 34382530 DOI: 10.2174/1871520621666210811111152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND using a combination of chemotherapeutic agents with novel drug delivery platforms to enhance the anticancer efficacy of the drug and minimizing the side effects, is very imperative for lung cancer treatments. OBJECTIVE The aim of the present study was to develop, characterize, and optimize porous poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles for simultaneous delivery of docetaxel (DTX) and celecoxib (CXB) through the pulmonary route for lung cancer. METHODS Drug-loaded porous microparticles were prepared by an emulsion solvent evaporation method. The impact of various processing and formulation variables including PLGA amount, dichloromethane volume, homogenization speed, polyvinyl alcohol volume and concentration were assessed on entrapment efficiency, mean release time, particle size, mass median aerodynamic diameter, fine particle fraction and geometric standard deviation using a two-level factorial design. An optimized formulation was prepared and evaluated in terms of size and morphology using a scanning electron microscope. RESULTS FTIR, DSC, and XRD analysis confirmed drug entrapment and revealed no drug-polymer chemical interaction. Cytotoxicity of DTX along with CXB against A549 cells was significantly enhanced compared to DTX and CXB alone and the combination of DTX and CXB showed the greatest synergistic effect at a 1/500 ratio. CONCLUSION In conclusion, the results of the present study suggest that encapsulation of DTX and CXB in porous PLGA microspheres with desirable features are feasible and their pulmonary co-administration would be a promising strategy for the effective and less toxic treatment of various lung cancers.
Collapse
Affiliation(s)
- Elham Ziaei
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Mahboubeh Rezazadeh
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Moloud Kazemi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
12
|
The application of freeze-drying as a production method of drug nanocrystals and solid dispersions – A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Soliman MAN, Ibrahim HK, Nour SAEK. Diacerein solid dispersion loaded tablets for minimization of drug adverse effects: statistical design, formulation, in vitro, and in vivo evaluation. Pharm Dev Technol 2021; 26:302-315. [PMID: 33356729 DOI: 10.1080/10837450.2020.1869982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diacerein is a BCS class II drug employed in osteoarthritis management. The acid/base hydrolysis of the unabsorbed diacerein in the colon is responsible for its laxative effect. Therefore, this work aimed to enhance the solubility, dissolution, and oral bioavailability of diacerein. Such enhancement means lower doses and fewer gastrointestinal adverse effects. A 41.31.21 full factorial design was adopted to prepare 24 solid dispersion formulae. Solid-state characterization showed the dissolution of diacerein crystals as metastable amorphous or microcrystalline forms in a matrix system that enhanced the drug dissolution. Desirability factor suggested compounding an optimized formula (F1) of Pluronic®F68 with 1:3 drug:carrier ratio using rotavap that showed higher drug solubility (187.61 µg/mL) than drug powder (22.5 µg/mL). It achieved higher dissolution efficiency (4.04-fold) and rate (6.6-fold) as well as 100% release in 2 min. F1 was compressed into tablets recording greater dissolution efficiency (1.24-fold) and rate (12.5-fold) than the marketed product. The prepared tablet accomplished a 2.66-fold enhancement in diacerein bioavailability compared to the marketed product. In conclusion, the formulation of diacerein as solid dispersion loaded tablets could be of added value for the treatment of osteoarthritis in terms of enhanced patient compliance. Solid dispersion is an easy and scalable technique.
Collapse
Affiliation(s)
- Mohamed Ahmed Naseef Soliman
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt.,Faculty of Health and Life Sciences, Leicester Institute of Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Howida Kamal Ibrahim
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Samia Abd El-Kader Nour
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Talkar SS, Kharkar PB, Patravale VB. Docetaxel Loaded Pomegranate Seed Oil Based Nanostructured Lipid Carriers: A Potential Alternative to Current Formulation. AAPS PharmSciTech 2020; 21:295. [PMID: 33099708 DOI: 10.1208/s12249-020-01839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/04/2020] [Indexed: 11/30/2022] Open
Abstract
The current work is focused on the development of docetaxel loaded pomegranate seed oil based lipid nanosystem. Docetaxel loaded pomegranate seed oil nanostructured lipid carriers (DTX-PSO-NLCs) were formulated by the melt emulsification method for parenteral delivery. The developed formulation was characterized in terms of their physicochemical parameters, solid-state characterization, in vitro drug release, in vitro cytotoxicity studies, and in vivo pharmacokinetics and biodistribution studies. Stability studies were carried out as per ICH guidelines Q1A. Melt emulsification method resulted in the formulation of stable DTX-PSO-NLCs with a particle size in the range of 150-180 nm and an entrapment efficiency of 63-65%. The in vitro release showed a slow and sustained release of the drug from the formulation compared to the marketed formulation (i.e., Daxotel®). The formulation was found to be stable for a period of 12 months at conditions of 4°C ± 2°C, 25°C ± 2°C/60% RH ± 5%RH, and 40°C ± 2°C/75% RH ± 5%RH. The developed nanosystem exhibited promising antitumor activity against various types of cancerous cell lines (i.e., MCF7, DU145, U87MG, and NCI-H460) relative to the marketed formulation. The pharmacokinetic evaluation revealed that DTX-PSO-NLCs had a better kinetic profile compared to the marketed formulation. Graphical abstract.
Collapse
|
15
|
Tekade AR, Yadav JN. A Review on Solid Dispersion and Carriers Used Therein for Solubility Enhancement of Poorly Water Soluble Drugs. Adv Pharm Bull 2020; 10:359-369. [PMID: 32665894 PMCID: PMC7335980 DOI: 10.34172/apb.2020.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
A large number of hydrophilic and hydrophobic carriers in pharmaceutical excipients are available today which are used for formulation of solid dispersions. Depending on nature of carriers the immediate release solid dispersions and/or controlled release solid dispersions can be formulated. Initially crystalline carriers were used which are transformed into amorphous solid dispersions with enhanced properties. The carriers used previously were mostly synthetic one. Recent trend towards the use of natural carriers have replaced the use of synthetic carriers. This review is the overview of various synthetic, natural, semisynthetic, modified natural hydrophilic carriers used for formulation of solid dispersions.
Collapse
Affiliation(s)
- Avinash Ramrao Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra- 411033, India
| | - Jyoti Narayan Yadav
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra- 411033, India
| |
Collapse
|
16
|
Effects of Different Formulation Methods on Drug Crystallinity, Drug-Carrier Interaction, and Ex Vivo Permeation of a Ternary Solid Dispersion Containing Nisoldipine. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09415-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Lee D, Ha E, Ha D, Sim W, Choi J, Kim M, Cho C, Hwang S. Effect of Polymer Type on the Dissolution Profile of a Solid Dispersion of Cilostazol. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deokkeun Lee
- College of PharmacyChungnam National University Daejeon 305‐764 South Korea
| | - Eun‐Sol Ha
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Dong‐Hyeon Ha
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Woo‐Yong Sim
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Ji‐Eun Choi
- PRIME College of Interdisciplinary & Creative StudiesKonyang University Nonsan 32992 South Korea
| | - Min‐Soo Kim
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Cheong‐Weon Cho
- College of PharmacyChungnam National University Daejeon 305‐764 South Korea
| | - Sung‐Joo Hwang
- College of Pharmacy and Yonsei Institute of Pharmaceutical SciencesYonsei University Incheon 406‐840 Republic of Korea
| |
Collapse
|
18
|
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019; 11:E132. [PMID: 30893899 PMCID: PMC6470797 DOI: 10.3390/pharmaceutics11030132] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023] Open
Abstract
Approximately 40% of new chemical entities (NCEs), including anticancer drugs, have been reported as poorly water-soluble compounds. Anticancer drugs are classified into biologic drugs (monoclonal antibodies) and small molecule drugs (nonbiologic anticancer drugs) based on effectiveness and safety profile. Biologic drugs are administered by intravenous (IV) injection due to their large molecular weight, while small molecule drugs are preferentially administered by gastrointestinal route. Even though IV injection is the fastest route of administration and ensures complete bioavailability, this route of administration causes patient inconvenience to visit a hospital for anticancer treatments. In addition, IV administration can cause several side effects such as severe hypersensitivity, myelosuppression, neutropenia, and neurotoxicity. Oral administration is the preferred route for drug delivery due to several advantages such as low cost, pain avoidance, and safety. The main problem of NCEs is a limited aqueous solubility, resulting in poor absorption and low bioavailability. Therefore, improving oral bioavailability of poorly water-soluble drugs is a great challenge in the development of pharmaceutical dosage forms. Several methods such as solid dispersion, complexation, lipid-based systems, micronization, nanonization, and co-crystals were developed to improve the solubility of hydrophobic drugs. Recently, solid dispersion is one of the most widely used and successful techniques in formulation development. This review mainly discusses classification, methods for preparation of solid dispersions, and use of solid dispersion for improving solubility of poorly soluble anticancer drugs.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ki Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|