1
|
Li T, Zhou S, Wang L, Zhao T, Wang J, Shao F. Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions. J Pharmacokinet Pharmacodyn 2024; 51:367-384. [PMID: 38554227 DOI: 10.1007/s10928-024-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024]
Abstract
The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.
Collapse
Affiliation(s)
- Tongtong Li
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Lu Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Tangping Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Jue Wang
- Division of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Khadka P, Dummer J, Hill PC, Das SC. The quest to deliver high-dose rifampicin: can the inhaled approach help? Expert Opin Drug Deliv 2024; 21:31-44. [PMID: 38180078 DOI: 10.1080/17425247.2024.2301931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Tuberculosis (TB) is a global health problem that poses a challenge to global treatment programs. Rifampicin is a potent and highly effective drug for TB treatment; however, higher oral doses than the standard dose (10 mg/kg/day) rifampicin may offer better efficacy in TB treatment. AREAS COVERED High oral dose rifampicin is not implemented in anti-TB regimens yet and requires about a 3-fold increase in dose for increased efficacy. We discuss inhaled delivery of rifampicin as an alternative or adjunct to oral high-dose rifampicin. Clinical results of safety, tolerability, and patient compliance with antibiotic dry powder inhalers are reviewed. EXPERT OPINION Clinical trials suggest that an approximately 3-fold increase in the standard oral dose of rifampicin may be required for better clinical outcomes. On the other hand, animal studies suggest that inhaled rifampicin can deliver a high concentration of the drug to the lungs and achieve approximately double the plasma concentration than that from oral rifampicin. Clinical trials on inhaled antibiotics suggest that dry powder inhalation is a patient-friendly and well-tolerated approach in treating respiratory infections compared to conventional treatments. Rifampicin, a well-known anti-TB drug given orally, is a good candidate for clinical development as a dry powder inhaler.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Jack Dummer
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Hernández-Giottonini K, Arellano-Reynoso B, Rodríguez-Córdova RJ, de la Vega-Olivas J, Díaz-Aparicio E, Lucero-Acuña A. Enhancing Therapeutic Efficacy against Brucella canis Infection in a Murine Model Using Rifampicin-Loaded PLGA Nanoparticles. ACS OMEGA 2023; 8:49362-49371. [PMID: 38162745 PMCID: PMC10753543 DOI: 10.1021/acsomega.3c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The in vivo efficacy of rifampicin encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles was evaluated for the treatment of BALB/c mice experimentally infected with Brucella canis. The PLGA nanoparticles loaded with rifampicin (RNP) were prepared using the single emulsification-solvent evaporation technique, resulting in nanoparticles with a hydrodynamic diameter of 138 ± 6 nm. The zeta potential and polydispersity index values indicated that the system was relatively stable with a narrow size distribution. The release of rifampicin from the nanoparticles was studied in phosphate buffer at pH 7.4 and 37 °C. The release profile showed an initial burst phase, followed by a slower release stage attributed to nanoparticle degradation and relaxation, which continued for approximately 30 days until complete drug release. A combined model of rifampicin release, accounting for both the initial burst and the degradation-relaxation of the nanoparticles, effectively described the experimental data. The efficacy of RNP was studied in vivo; infected mice were treated with free rifampicin at concentrations of 2 mg per kilogram of mice per day (C1) and 4 mg per kilogram of mice per day (C2), as well as equivalent doses of RNP. Administration of four doses of the nanoparticles significantly reduced the B. canis load in the spleen of infected BALB/c mice. RNP demonstrated superior effectiveness compared to the free drug in the spleen, achieving reductions of 85.4 and 49.4%, respectively, when using C1 and 93.3 and 61.8%, respectively, when using C2. These results highlight the improved efficacy of the antibiotic when delivered through nanoparticles in experimentally infected mice. Therefore, the RNP holds promise as a potential alternative for the treatment of B. canis.
Collapse
Affiliation(s)
- Karol
Yesenia Hernández-Giottonini
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad
de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma
de México, Circuito Exterior Ciudad
Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Rosalva Josefina Rodríguez-Córdova
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | - Efrén Díaz-Aparicio
- CENID
Salud Animal e Inocuidad, Instituto Nacional
de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Federal México-Toluca
Km. 15.5, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Armando Lucero-Acuña
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
4
|
Eka Rani YD, Rahmadi M, Hariyadi DM. Characteristics and release of isoniazid from inhalable alginate/carrageenan microspheres. Ther Deliv 2023; 14:689-704. [PMID: 38084393 DOI: 10.4155/tde-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Aim: Inhalable microspheres made of polymers as a targeted drug delivery system have been developed to overcome the limitation of current treatments in Tuberculosis. Materials & methods: Isoniazid inhalable microspheres were created using a gelation ionotropic method with sodium alginate, carrageenan and calcium chloride in four different formulations. Result: The particle morphology has smooth surfaces and round spherical shapes with sizes below 5 μm; good flowability. The drug loading and entrapment efficiency values ranged from 1.69 to 2.75% and 62.44 to 85.30%, respectively. The microspheres drug release followed the Korsmeyer-Peppas model, indicating Fickian diffusion. Conclusion: Isoniazid inhalable microspheres achieved as targeted lung delivery for tuberculosis treatment.
Collapse
Affiliation(s)
- Yotomi Desia Eka Rani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Campus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
- Nanotechnology & Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
5
|
Zhang J, Song C, Wu M, Yue J, Zhu S, Zhu P, Oo C, Schlender JF, Lv Z, Zhu Y, Sy SKB, Yu M. Physiologically-based pharmacokinetic modeling to inform dosing regimens and routes of administration of rifampicin and colistin combination against Acinetobacter baumannii. Eur J Pharm Sci 2023; 185:106443. [PMID: 37044198 DOI: 10.1016/j.ejps.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to major antibiotics such as penicillin, cephalosporin, fluoroquinolone and aminoglycoside, and has become a significant nosocomial pathogen. The efficacy of rifampicin and colistin combination against CRAB could be dependent on the administration routes and drug concentrations at the site of infection. OBJECTIVE The objective is to predict drug disposition in biological tissues. Treatment efficacy is extrapolated by assessing respective pharmacodynamic (PD) indices, as well as parameters associated with the emergence of resistance. METHODS Physiologically-based pharmacokinetic models of rifampicin and colistin were utilized to predict tissue exposures. Dosing regimens and administration routes for combination therapy were evaluated in terms of in vitro antimicrobial susceptibility of A. baumannii associated with targeted PD indices and resistance parameters. RESULTS Simulated exposures in blood, heart, lung, skin and brain were consistent with reported penetration rates. The results demonstrated that a combination of colistin and rifampicin using conventional intravenous (i.v.) doses could achieve effective exposures in the blood and skin. However, for lung infections, colistin by inhalation would be required due to low lung penetration from intravenous route. Inhaled colistin alone provided good PD coverage but this practice could encourage the emergence of additional resistance which may be overcome by a combination regimen that includes inhaled colistin. CONCLUSION This in silico extrapolation provides valuable information on dosing regimens and routes of administration against CRAB infections in specific tissues. The PBPK modeling approach could be a non-invasive way to inform therapeutic benefits of combination antimicrobial therapy.
Collapse
Affiliation(s)
- Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Mengyuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiali Yue
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, New Jersey, USA
| | | | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Yuanqi Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
6
|
Wu B, Ndugire W, Chen X, Yan M. Maltoheptaose-Presenting Nanoscale Glycoliposomes for the Delivery of Rifampicin to E. coli. ACS APPLIED NANO MATERIALS 2021; 4:7343-7357. [PMID: 34746649 PMCID: PMC8570549 DOI: 10.1021/acsanm.1c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Liposomes, a nanoscale drug delivery system, are well known for their ability to improve pharmacokinetics and reduce drug toxicity. In this work, maltoheptaose (G7)-presenting glycoliposomes were synthesized and evaluated in the delivery of the antibiotic rifampicin. Two types of liposomes were prepared: nonfluid liposomes from l-α-phosphatidylcholine (PC) and cholesterol, and fluid liposomes from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol). G7-derivatized glycolipid, G7-DPPE (DPPE: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine), was incorporated into the liposomes at 21 and 14 μmol/mg to form nanoparticles of 75 ± 12 and 146 ± 14 nm for the nonfluid and fluid G7-glycoliposomes, respectively. The multivalent G7-glycoliposomes were characterized by lectin binding with concanavalin A (Con A). The dissociation constant K d between Con A and the nonfluid or fluid G7-glycoliposomes was 0.93 or 0.51 μM, which represented ~900- or 1600-fold stronger affinity than the binding between Con A and G7. The G7-glycoliposomes were loaded with rifampicin at 6.6 and 16 wt % encapsulation for the nonfluid and fluid G7-glycoliposomes, respectively. Introducing a carbohydrate in the liposomes slowed down the release of rifampicin, with the G7-glycoliposomes having the slowest release rate and the lowest permeability coefficient among the liposome formulations. The fluid G7-glycoliposomes lowered the minimal inhibitory concentration (MIC) of rifampicin against E. coli ORN208 by about 3 times, whereas liposomes without G7 or Man (d-mannose)-glycoliposomes showed no improvement in MIC. The rifampicin-loaded fluid G7-glycoliposomes demonstrated the best sustained antibacterial activity against E. coli, with up to 2 log reduction in the colony forming units at 4 × MIC after 24 h. Fluorescence resonance energy transfer and confocal fluorescence microscopy revealed stronger interactions of the bacterium with the fluid G7-glycoliposomes than other liposome formulations.
Collapse
Affiliation(s)
- Bin Wu
- Department of Chemistry, The University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - William Ndugire
- Department of Chemistry, The University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Xuan Chen
- Department of Chemistry, The University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, The University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
7
|
Rossi I, Bettini R, Buttini F. Resistant Tuberculosis: the Latest Advancements of Second-line Antibiotic Inhalation Products. Curr Pharm Des 2021; 27:1436-1452. [PMID: 33480336 DOI: 10.2174/1381612827666210122143214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug-resistant tuberculosis (TB) can be considered the man-made result of interrupted, erratic or inadequate TB therapy. As reported in WHO data, resistant Mycobacterium tuberculosis (Mtb) strains continue to constitute a public health crisis. Mtb is naturally able to survive host defence mechanisms and to resist most antibiotics currently available. Prolonged treatment regimens using the available first-line drugs give rise to poor patient compliance and a rapid evolution of strains resistant to rifampicin only or to both rifampicin and isoniazid (multi drug-resistant, MDR-TB). The accumulation of mutations may give rise to extensively drug-resistant strains (XDR-TB), i.e. strains with resistance also to fluoroquinolones and to the injectable aminoglycoside, which represent the second-line drugs. Direct lung delivery of anti-tubercular drugs, as an adjunct to conventional routes, provides high concentrations within the lungs, which are the intended target site of drug delivery, representing an interesting strategy to prevent or reduce the development of drug-resistant strains. The purpose of this paper is to describe and critically analyse the most recent and advanced results in the formulation development of WHO second-line drug inhalation products, with particular focus on dry powder formulation. Although some of these formulations have been developed for other lung infectious diseases (Pseudomonas aeruginosa, nontuberculous mycobacteria), they could be valuable to treat MDR-TB and XDR-TB.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
8
|
Ke WR, Kwok PCL, Khanal D, Chang RYK, Chan HK. Co-spray dried hydrophobic drug formulations with crystalline lactose for inhalation aerosol delivery. Int J Pharm 2021; 602:120608. [PMID: 33862136 DOI: 10.1016/j.ijpharm.2021.120608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/15/2023]
Abstract
Spray drying is a rapid method for converting a liquid feed into dried particles for inhalation aerosols. Lactose is a major inhalation excipient used in spray-dried (SD) formulations. However, SD powders produced from solutions are usually amorphous hence unstable to moisture. This problem can potentially be minimized by spray drying a suspension (instead of solution) containing crystalline lactose particles and dissolved drugs. In the present study, the suspension formulation containing dissolved budesonide (BUD) or rifampicin (RIF) and suspended lactose crystals in isopropanol alcohol (IPA) were produced. For comparison, powders were also produced from solution formulations containing the same proportions of drug and lactose dissolved in 50:50 IPA/water as controls. These SD powders were stored at 25 °C/60% RH and 40 °C/75% RH for six months. The particulate properties and in vitro dispersion performance were examined at various storage time points. All powders obtained from spray drying of solutions recrystallized after one week of storage at 25 °C/60% RH. In contrast, SD BUD-lactose obtained from suspension did not change until after three-months of storage when the particle size increased gradually with morphology change and yet the crystallinity remained the same as determined by X-ray powder diffraction. For the SD RIF-lactose obtained from suspension, both particulate properties and in vitro powder dispersion performance showed no significant difference before and after storage at both storage conditions. To conclude, this is the first study to show that SD powder formulations obtained from suspensions containing lactose crystals demonstrated superior storage stability performance, which is desirable for inhaled powders.
Collapse
Affiliation(s)
- Wei-Ren Ke
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Lavanya MN, Preethi R, Moses JA, Anandharamakrishnan C. Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. N. Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - R. Preethi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| |
Collapse
|
10
|
Berkenfeld K, McConville JT, Lamprecht A. Inhalable dry powders of rifampicin highlighting potential and drawbacks in formulation development for experimental tuberculosis aerosol therapy. Expert Opin Drug Deliv 2020; 17:305-322. [PMID: 32017637 DOI: 10.1080/17425247.2020.1720644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Introduction: Recently, tuberculosis was reported as the leading cause of death from a single infectious agent. Standard therapy includes administration of four first-line antibiotics, i.e. rifampicin, isoniazid, ethambutol, and pyrazinamide over a period of at least 26 weeks, which in case of rifampicin oftentimes is accompanied by unwanted side effects and variable bioavailability that compromise a positive therapeutic outcome. As the main site of infection is the lungs, it is desirable to develop a therapeutic formulation to be administered via the pulmonary route.Areas covered: This work presents a literature review on studies investigating inhalable dry powder formulations including rifampicin in the context of an experimental tuberculosis therapy, with a special focus on aerosol performance.Expert opinion: It was found that formulation approaches involving different strategies and functional excipients are under investigation but as of now, no formulation has managed to leap into commercial clinical testing. Reasons for this might not primarily be associated with a lack of suitable candidates, but amongst others a lack of suitable in vitro models to assess the efficacy, therapeutic benefit, and cost-effectiveness of the candidate formulations.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Department of Pharmaceutics, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutics, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
11
|
Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, Strzempek W, Pesta E, Węglarz WP, Gil B, Menaszek E, Kulinowski P. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2-From Raw MOF to Drug Delivery System. Pharmaceutics 2019; 11:pharmaceutics11120687. [PMID: 31861138 PMCID: PMC6969914 DOI: 10.3390/pharmaceutics11120687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The theranostic approach to local tuberculosis treatment allows drug delivery and imaging of the lungs for a better control and personalization of antibiotic therapy. Metal-organic framework (MOF) Fe-MIL-101-NH2 nanoparticles were loaded with isoniazid. To optimize their functionality a 23 factorial design of spray-drying with poly(lactide-co-glycolide) and leucine was employed. Powder aerodynamic properties were assessed using a twin stage impinger based on the dose emitted and the fine particle fraction. Magnetic resonance imaging (MRI) contrast capabilities were tested on porous lung tissue phantom and ex vivo rat lungs. Cell viability and uptake studies were conducted on murine macrophages RAW 246.9. The final product showed good aerodynamic properties, modified drug release, easier uptake by macrophages in relation to raw isoniazid-MOF, and MRI contrast capabilities. Starting from raw MOF, a fully functional inhalable theranostic system with a potential application in personalized tuberculosis pulmonary therapy was developed.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka-Gaweł
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
- Correspondence:
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy;
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Edyta Pesta
- Department of Pharmaceutical Analysis, Research Network Łukasiewicz—Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland;
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Elżbieta Menaszek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland;
| |
Collapse
|
12
|
Rasool MF, Khalid S, Majeed A, Saeed H, Imran I, Mohany M, Al-Rejaie SS, Alqahtani F. Development and Evaluation of Physiologically Based Pharmacokinetic Drug-Disease Models for Predicting Rifampicin Exposure in Tuberculosis and Cirrhosis Populations. Pharmaceutics 2019; 11:pharmaceutics11110578. [PMID: 31694244 PMCID: PMC6921057 DOI: 10.3390/pharmaceutics11110578] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
The physiologically based pharmacokinetic (PBPK) approach facilitates the construction of novel drug–disease models by allowing incorporation of relevant pathophysiological changes. The aim of the present work was to explore and identify the differences in rifampicin pharmacokinetics (PK) after the application of its single dose in healthy and diseased populations by using PBPK drug–disease models. The Simcyp® simulator was used as a platform for modeling and simulation. The model development process was initiated by predicting rifampicin PK in healthy population after intravenous (i.v) and oral administration. Subsequent to successful evaluation in healthy population, the pathophysiological changes in tuberculosis and cirrhosis population were incorporated into the developed model for predicting rifampicin PK in these populations. The model evaluation was performed by using visual predictive checks and the comparison of mean observed/predicted ratios (ratio(Obs/pred)) of the PK parameters. The predicted PK parameters in the healthy population were in adequate harmony with the reported clinical data. The incorporation of pathophysiological changes in albumin concentration in the tuberculosis population revealed improved prediction of clearance. The developed PBPK drug–disease models have efficiently described rifampicin PK in tuberculosis and cirrhosis populations after administering single drug dose, as the ratio(Obs/pred) for all the PK parameters were within a two-fold error range. The mechanistic nature of the developed PBPK models may facilitate their extension to other diseases and drugs.
Collapse
Affiliation(s)
- Muhammad F. Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Correspondence: (M.F.R.); (F.A.); Tel.: +92-619-210-129 (M.F.R.); +96-611-469-7749 (F.A.)
| | - Sundus Khalid
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Hamid Saeed
- Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
- Correspondence: (M.F.R.); (F.A.); Tel.: +92-619-210-129 (M.F.R.); +96-611-469-7749 (F.A.)
| |
Collapse
|
13
|
|