1
|
Castro-Balado A, Cuartero-Martínez A, Pena-Verdeal H, Hermelo-Vidal G, Schmidt A, Montero B, Hernández-Blanco M, Zarra-Ferro I, González-Barcia M, Mondelo-García C, Giráldez MJ, Yebra-Pimentel E, Otero-Espinar FJ, Fernández-Ferreiro A. Cysteamine Eye Drops in Hyaluronic Acid Packaged in Innovative Single-Dose Systems, Part II: Long-Term Stability and Clinical Ocular Biopermanence. Pharmaceutics 2023; 15:2589. [PMID: 38004568 PMCID: PMC10675239 DOI: 10.3390/pharmaceutics15112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in several tissues and organs causing, among others, severe eye symptoms. The high instability of cysteamine eye drops makes it difficult to develop formulations with an acceptable shelf life to be prepared in hospital pharmacy departments. Previously, a new compounded formulation of cysteamine eye drops in hyaluronic acid (HA) packaged in innovative single-dose systems was developed. METHODS Long-term stability at -20 °C of this formulation was studied considering the content of cysteamine, pH, osmolality, viscosity, and microbiological analysis. The oxygen permeability of single-dose containers was also studied and an ocular biopermanence study was conducted in healthy volunteers measuring lacrimal stability and volume parameters. RESULTS Data confirm that cysteamine concentration remained above 90% for 120 days, all parameters remaining within the accepted range for ophthalmic formulations. The permeability of the containers was reduced over time, while ocular biopermanence was maintained despite the freezing process and storage time. CONCLUSIONS 0.55% cysteamine hydrochloride formulation in HA and packaged in single-dose containers preserved at -20 °C is stable for 120 days protected from light, presenting high potential for its translation into clinical practice when commercial presentations are not available.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Andrea Cuartero-Martínez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Hugo Pena-Verdeal
- Department of Applied Physics (Optometry), Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (H.P.-V.); (M.J.G.); (E.Y.-P.)
- Optometry Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Gonzalo Hermelo-Vidal
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Anja Schmidt
- Group of Polymers, Physics and Earth Sciences Department, Campus Industrial de Ferrol (CIF), CITENI, Escuela Politécnica de Ingeniería (EPEF), Universidade da Coruña, C/Mendizabal s/n, 15403 Ferrol, Spain; (A.S.); (B.M.)
| | - Belén Montero
- Group of Polymers, Physics and Earth Sciences Department, Campus Industrial de Ferrol (CIF), CITENI, Escuela Politécnica de Ingeniería (EPEF), Universidade da Coruña, C/Mendizabal s/n, 15403 Ferrol, Spain; (A.S.); (B.M.)
| | - Manuela Hernández-Blanco
- Microbiology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - María Jesús Giráldez
- Department of Applied Physics (Optometry), Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (H.P.-V.); (M.J.G.); (E.Y.-P.)
- Optometry Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Eva Yebra-Pimentel
- Department of Applied Physics (Optometry), Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (H.P.-V.); (M.J.G.); (E.Y.-P.)
- Optometry Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Francisco J. Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| |
Collapse
|
2
|
Castro-Balado A, Bandín-Vilar E, Cuartero-Martínez A, García-Quintanilla L, Hermelo-Vidal G, García-Otero X, Rodríguez-Martínez L, Mateos J, Hernández-Blanco M, Aguiar P, Zarra-Ferro I, González-Barcia M, Mondelo-García C, Otero-Espinar FJ, Fernández-Ferreiro A. Cysteamine Eye Drops in Hyaluronic Acid Packaged in Innovative Single-Dose Systems: Stability and Ocular Biopermanence. Pharmaceutics 2022; 14:pharmaceutics14102194. [PMID: 36297629 PMCID: PMC9607622 DOI: 10.3390/pharmaceutics14102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs causing, among other symptoms, severe ocular manifestations. Cysteamine eye drops are prepared in hospital pharmacy departments to facilitate access to treatment, for which vehicles that provide adequate biopermanence, as well as adaptable containers that maintain its stability, are required. Difficulties related to cysteamine preparation, as well as its tendency to oxidize to cystamine, show the importance of conducting rigorous galenic characterization studies. This work aims to develop and characterize an ophthalmic compounded formulation of cysteamine prepared with hyaluronic acid and packaged in innovative single-dose systems. For this task, the effect of different storage temperatures and the presence/absence of nitrogen on the physicochemical stability of the formulation and its packaging was studied in a scaled manner, until reaching the optimal storage conditions. The results showed that 0.55% cysteamine, prepared with hyaluronic acid and packaged in single-dose containers, is stable for 30 days when stored at −20 °C. In addition, opening vials every 4 h at room temperature after 30 days of freezing maintains the stability of the cysteamine formulation for up to 16 h. Moreover, ocular biopermanence studies were conducted using molecular imaging, concluding that the biopermanence offered by the vehicle is not affected by the freezing process, where a half-life of 31.11 min for a hyaluronic acid formulation stored for 30 days at −20 °C was obtained, compared with 14.63 min for 0.9% sodium chloride eye drops.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Enrique Bandín-Vilar
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Andrea Cuartero-Martínez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Laura García-Quintanilla
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Gonzalo Hermelo-Vidal
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Xurxo García-Otero
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Lorena Rodríguez-Martínez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Manuela Hernández-Blanco
- Microbiology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (C.M.-G.); (F.J.O.-E.); (A.F.-F.)
| | - Francisco J. Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Correspondence: (C.M.-G.); (F.J.O.-E.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (C.M.-G.); (F.J.O.-E.); (A.F.-F.)
| |
Collapse
|
3
|
Jimenez J, Resnick JL, Chaudhry AB, Gertsman I, Nischal KK, DiLeo MV. Ocular biodistribution of cysteamine delivered by a sustained release microsphere/thermoresponsive gel eyedrop. Int J Pharm 2022; 624:121992. [PMID: 35809831 DOI: 10.1016/j.ijpharm.2022.121992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The objective of the investigation was to determine the ocular biodistribution of cysteamine, a reducing agent used for treatment of cystine crystals in cystinosis, following topical administration of a sustained release formulation and traditional eyedrop formulation. To the right eye only, rabbits received a 50 µL drop of 0.44% cysteamine eyedrops at one drop per waking hour for 2, 6, 12, and 24 h. A second group received one 100 µL drop of a sustained release formulation containing encapsulated cysteamine microspheres suspended in a thermoresponsive gel. Upon serial sacrifice, ocular tissues from both eyes and plasma were obtained and quantified for cysteamine using LC-MS/MS. Cysteamine was detected in the cornea, aqueous humor and vitreous humor. Systemic plasma concentrations of cysteamine from treatment groups were below the limit of detection. As expected, 0.44% cysteamine eyedrops when administered hourly maintained drug concentrations within the cornea at a magnitude 5 times higher than a single dose of the sustained release formulation over 12 h. The sustained release formulation maintained cysteamine presentation across 12 h from a single drop. These studies demonstrate distribution of cysteamine to the eye following topical administration, including high drug uptake to the cornea and low systemic distribution.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jayde L Resnick
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ahmad B Chaudhry
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Ken K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Morgan V DiLeo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
4
|
Martín-Sabroso C, Alonso-González M, Fernández-Carballido A, Aparicio-Blanco J, Córdoba-Díaz D, Navarro-García F, Córdoba-Díaz M, Torres-Suárez AI. Limitations and Challenges in the Stability of Cysteamine Eye Drop Compounded Formulations. Pharmaceuticals (Basel) 2021; 15:ph15010002. [PMID: 35056058 PMCID: PMC8779799 DOI: 10.3390/ph15010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Damián Córdoba-Díaz
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Federico Navarro-García
- Microbiology and Parasitology Department, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Manuel Córdoba-Díaz
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana I. Torres-Suárez
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941735; Fax: +34-913941736
| |
Collapse
|
5
|
Castro-Balado A, Mondelo-García C, Varela-Rey I, Moreda-Vizcaíno B, Sierra-Sánchez JF, Rodríguez-Ares MT, Hermelo-Vidal G, Zarra-Ferro I, González-Barcia M, Yebra-Pimentel E, Giráldez-Fernández MJ, Otero-Espinar FJ, Fernández-Ferreiro A. Recent Research in Ocular Cystinosis: Drug Delivery Systems, Cysteamine Detection Methods and Future Perspectives. Pharmaceutics 2020; 12:E1177. [PMID: 33287176 PMCID: PMC7761701 DOI: 10.3390/pharmaceutics12121177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs. Although renal damage prevails during initial stages, the deposition of cystine crystals in the cornea causes severe ocular manifestations. At present, cysteamine is the only topical effective treatment for ocular cystinosis. The lack of investment by the pharmaceutical industry, together with the limited stability of cysteamine, make it available only as two marketed presentations (Cystaran® and Cystadrops®) and as compounding formulations prepared in pharmacy departments. Even so, new drug delivery systems (DDSs) need to be developed, allowing more comfortable dosage schedules that favor patient adherence. In the last decades, different research groups have focused on the development of hydrogels, nanowafers and contact lenses, allowing a sustained cysteamine release. In parallel, different determination methods and strategies to increase the stability of the formulations have also been developed. This comprehensive review aims to compile all the challenges and advances related to new cysteamine DDSs, analytical determination methods, and possible future therapeutic alternatives for treating cystinosis.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Iria Varela-Rey
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Beatriz Moreda-Vizcaíno
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Jesús F. Sierra-Sánchez
- Pharmacy Department, Hospital de Jerez de la Frontera, Jerez de la Frontera, 11407 Cádiz, Spain;
| | - María Teresa Rodríguez-Ares
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Gonzalo Hermelo-Vidal
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Eva Yebra-Pimentel
- Department of Applied Physics, Optometry, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.Y.-P.); (M.J.G.-F.)
| | - María Jesús Giráldez-Fernández
- Department of Applied Physics, Optometry, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.Y.-P.); (M.J.G.-F.)
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| |
Collapse
|
6
|
Atallah C, Charcosset C, Greige-Gerges H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J Pharm Anal 2020; 10:499-516. [PMID: 33425447 PMCID: PMC7775854 DOI: 10.1016/j.jpha.2020.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
The aminothiol cysteamine, derived from coenzyme A degradation in mammalian cells, presents several biological applications. However, the bitter taste and sickening odor, chemical instability, hygroscopicity, and poor pharmacokinetic profile of cysteamine limit its efficacy. The use of encapsulation systems is a good methodology to overcome these undesirable properties and improve the pharmacokinetic behavior of cysteamine. Besides, the conjugation of cysteamine to the surface of nanoparticles is generally proposed to improve the intra-oral delivery of cyclodextrin-drug inclusion complexes, as well as to enhance the colorimetric detection of compounds by a gold nanoparticle aggregation method. On the other hand, the detection and quantification of cysteamine is a challenging mission due to the lack of a chromophore in its structure and its susceptibility to oxidation before or during the analysis. Derivatization agents are therefore applied for the quantification of this molecule. To our knowledge, the derivatization techniques and the encapsulation systems used for cysteamine delivery were not reviewed previously. Thus, this review aims to compile all the data on these methods as well as to provide an overview of the various biological applications of cysteamine focusing on its skin application.
Collapse
Affiliation(s)
- Carla Atallah
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering, Claude Bernard Lyon 1 University, France
| | - Catherine Charcosset
- Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering, Claude Bernard Lyon 1 University, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
| |
Collapse
|
7
|
Atallah C, Greige-Gerges H, Charcosset C. Development of cysteamine loaded liposomes in liquid and dried forms for improvement of cysteamine stability. Int J Pharm 2020; 589:119721. [PMID: 32758591 DOI: 10.1016/j.ijpharm.2020.119721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Despite the high aqueous solubility of cysteamine, its unpleasant organoleptic properties, hygroscopicity, instability in solutions, and poor pharmacokinetic profile are the main drawbacks that limit its use for medical and cosmetic purposes. In this study, cysteamine-loaded liposomes were prepared using the ethanol injection method. Liposomes were characterized for their size, homogeneity, surface charge, and morphology. The incorporation ratios of cholesterol and phospholipids, the encapsulation efficiency and the loading ratio of cysteamine in liposomes were determined. Moreover, the stability of free and encapsulated cysteamine was assessed at different temperatures (4, 25, and 37 °C) in the presence and absence of light. Cysteamine-loaded liposomes were freeze-dried and reconstituted liposomes were characterized. Finally, the storage stability of the freeze-dried cysteamine-loaded liposomes was studied. Liposomes were nanometric, oligolamellar, and spherical. The encapsulation efficiency and the loading ratio of cysteamine varied between 12 and 40% in the different formulations. The encapsulation improved the stability of cysteamine in the various storage conditions. The dried form of cysteamine-loaded liposomes conserved the size of the vesicles and retained 33% of cysteamine present in the liposomal suspension before lyophilization. The freeze-dried liposomes formulations were stable after four months of storage at 4 °C.
Collapse
Affiliation(s)
- Carla Atallah
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon; Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon
| | - Catherine Charcosset
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, France.
| |
Collapse
|