1
|
Liu J, Zhang Y, Li H, Liu C, Quan P, Fang L. The role of hydrophilic/hydrophobic group ratio of polyvinyl alcohol on the miscibility of amlodipine in orodispersible films: From molecular mechanism study to product attributes. Int J Pharm 2022; 630:122383. [PMID: 36370996 DOI: 10.1016/j.ijpharm.2022.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
The miscibility of the therapeutic drug in the polymer matrix is the key to the successful design and development of orodispersible films (ODFs). In the present study, four hydrolyzed polyvinyl alcohols (PVAs) with identical polymerization degree were investigated as carriers for Amlodipine (AML) ODFs systematically. The drug-polymer miscibility and the intermolecular interaction were investigated by Flory-Huggins theory, Gordon-Taylor theory, molecular simulation, FTIR, Raman and 1H NMR. The product attributes of ODFs were also studied. A pharmacokinetic study in rats was then conducted using the film product of PVA5-72, the best performer tested. The results revealed that the drug-polymer miscibility decreased linearly with the increase of hydrolyzed degree of PVA. Hydrogen bonds formed between the drug and the hydrophilic and hydrophobic groups of PVAs were the main intermolecular interaction that caused the differences in drug-polymer miscibility. Furthermore, drug-polymer interaction influenced the product attributes of ODFs, including dissolution profile, mechanical properties and physical stability. The pharmacokinetic study showed the ODFs disintegrated rapidly, and the amorphous AML dissolved and absorbed in the gastrointestinal tract, which was comparable to the commercial product. The research offered a foundation for development scientists in designing and formulating PVA films.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yongguo Zhang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, China
| | - Hui Li
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Kapourani A, Palamidi A, Kontogiannopoulos KN, Bikiaris ND, Barmpalexis P. Drug Amorphous Solid Dispersions Based on Poly(vinyl Alcohol): Evaluating the Effect of Poly(propylene Succinate) as Plasticizer. Polymers (Basel) 2021; 13:polym13172922. [PMID: 34502962 PMCID: PMC8434550 DOI: 10.3390/polym13172922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023] Open
Abstract
Although significant actions have been taken towards the utilization of poly(vinyl alcohol) (PVA) in the preparation of drug amorphous solid dispersions (ASDs) using fusion-based techniques (such as melt-quench cooling and hot-melt extrusion), several drawbacks regarding its rather high melting temperature and its thermal degradation profile make the use of the polymer extremely challenging. This is especially important when the active pharmaceutical ingredient (API) has a lower melting temperature (than PVA) or when it is thermally labile. In this vein, a previous study showed that newly synthesized polyester-based plasticizers may improve the processability and the thermal properties of PVA. However, the effects of such polyester-based plasticizers on the drug’s physicochemical and pharmaco-technical properties are yet unknown. Hence, the aim of the present study is to extend our previous findings and evaluate the use of poly(propylene succinate) (PPSu, i.e., the most promising plasticizer in regard to PVA) in the preparation of drug-loaded PVA-based ASDs. Dronedarone (DRN), a poorly water-soluble API, was selected as a model drug, and drug ASDs (using either neat PVA or PVA-PPSu) were prepared using the melt-mixing/quench cooling approach at low melting temperatures (i.e., 170 °C). DSC and pXRD analysis showed that a portion of the API remained crystalline in the ASDs prepared only with the use of neat PVA, while the samples having PPSu as a plasticizer were completely amorphous. Further evaluation with ATR-FTIR spectroscopy revealed the formation of significant intermolecular interactions between the API and the PVA-PPSu matrix, which could explain the system’s physical stability during storage. Finally, dissolution studies, conducted under nonsink conditions, revealed that the use of PVA-PPSu is able to maintain DRN’s sustained supersaturation for up to 8 h.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
| | - Artemis Palamidi
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
3
|
Molecular Interactions in Solid Dispersions of Poorly Water-Soluble Drugs. Pharmaceutics 2020; 12:pharmaceutics12080745. [PMID: 32784790 PMCID: PMC7463741 DOI: 10.3390/pharmaceutics12080745] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Physicochemical characterization is a crucial step for the successful development of solid dispersions, including the determination of drug crystallinity and molecular interactions. Typically, the detection of molecular interactions will assist in the explanation of different drug performances (e.g., dissolution, solubility, stability) in solid dispersions. Various prominent reviews on solid dispersions have been reported recently. However, there is still no overview of recent techniques for evaluating the molecular interactions that occur within solid dispersions of poorly water-soluble drugs. In this review, we aim to overview common methods that have been used for solid dispersions to identify different bond formations and forces via the determination of interaction energy. In addition, a brief background on the important role of molecular interactions will also be described. The summary and discussion of methods used in the determination of molecular interactions will contribute to further developments in solid dispersions, especially for quick and potent drug delivery applications.
Collapse
|
4
|
Katopodis K, Kapourani A, Vardaka E, Karagianni A, Chorianopoulou C, Kontogiannopoulos KN, Bikiaris DN, Kachrimanis K, Barmpalexis P. Partially hydrolyzed polyvinyl alcohol for fusion-based pharmaceutical formulation processes: Evaluation of suitable plasticizers. Int J Pharm 2020; 578:119121. [DOI: 10.1016/j.ijpharm.2020.119121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/12/2023]
|
5
|
Wolfel A, Euti EM, Picchio ML, Romero MR, Galván Josa VM, Martinelli M, Minari RJ, Alvarez Igarzabal CI. Unraveling the gallol-driven assembly mechanism of thermoreversible supramolecular hydrogels inspired by ascidians. Polym Chem 2020. [DOI: 10.1039/d0py01036g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gallic acid, a small polyphenolic compound with strong hydrogen-bonding ability, is studied as a dynamic crosslinker of poly(vinyl alcohol) for preparing thermosensitive hydrogels. Furthermore, insights about the involved mechanism are shown.
Collapse
Affiliation(s)
- Alexis Wolfel
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba)
- IPQA–CONICET
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
| | - Esteban M. Euti
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba)
- IPQA–CONICET
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
| | - Matías L. Picchio
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba)
- IPQA–CONICET
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
| | - Marcelo R. Romero
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba)
- IPQA–CONICET
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
| | - Victor M. Galván Josa
- Instituto de Física Enrique Gaviola
- Facultad de Matemática
- Astronomía y Física
- CONICET
- Córdoba 5000
| | - Marisa Martinelli
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba)
- IPQA–CONICET
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)
- CONICET
- Santa Fe 3000
- Argentina
- Facultad de Ingeniería Química (Universidad Nacional del Litoral)
| | - Cecilia I. Alvarez Igarzabal
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba)
- IPQA–CONICET
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
| |
Collapse
|
6
|
Kumar V, Mintoo MJ, Mondhe DM, Bharate SB, Vishwakarma RA, Bharate SS. Binary and ternary solid dispersions of an anticancer preclinical lead, IIIM-290: In vitro and in vivo studies. Int J Pharm 2019; 570:118683. [DOI: 10.1016/j.ijpharm.2019.118683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
|
7
|
Mori Y, Higashi T, Motoyama K, Ishida M, Onodera R, Arima H. A comprehensive understanding of lowly-hydrolyzed polyvinyl alcohol-based ternary solid dispersions with the use of a combined mixture-process design. Drug Dev Ind Pharm 2019; 45:1599-1609. [PMID: 31271320 DOI: 10.1080/03639045.2019.1640720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We recently reported lowly hydrolyzed polyvinyl alcohol (L-PVA, 70-74% hydrolyzed, about 580 polymerized, JR-05) as a promising matrix for hot-melt extrusion (HME) due to its unique micelle formation ability compared to the most commonly used PVA (87-89% hydrolyzed, about 580 polymerized). In the present study, we focused on the effect of composition [indomethacin (IND), L-PVA, sorbitol] and process parameters (temperature and screw speed) on each response, i.e. processing torque, and physicochemical properties such as residual crystallinity, residual ratio, and area under the dissolution curve (AUDC) in supersaturated solution using a HME by applying the design of experiment (DoE) approach. To overcome the poor processability of L-PVA, given its semicrystalline nature, we applied sorbitol as a plasticizer and systematically and simultaneously evaluated its influence on the outputs based on the mixture design combined with process factors. Few studies have focused on comprehensive evaluation of the composition and HME process conditions because obtaining a design space requires numerous experiments. We found that incorporating sorbitol into the L-PVA greatly improved the processing torque. However, sorbitol negatively influenced the degree of residual crystallinity and the AUDC of IND. Lastly, we established a laboratory-scale design space that could achieve high supersaturation and ensure adequate miscibility between each component, using an acceptable processing torque for HME, by applying the minimum amount of sorbitol. These fundamental results suggest that sorbitol maximizes the potency of L-PVA as a carrier in HME.
Collapse
Affiliation(s)
- Yoshimasa Mori
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc. , Osaka , Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University , Kumamoto , Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University , Kumamoto , Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University , Kumamoto , Japan
| | - Makoto Ishida
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc. , Osaka , Japan
| | - Risako Onodera
- Program for Building Regional Innovation Ecosystems, Kumamoto University , Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University , Kumamoto , Japan.,Program for Leading Graduate Schools 'Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program', Kumamoto University , Japan
| |
Collapse
|
8
|
How changes in molecular weight and PDI of a polymer in amorphous solid dispersions impact dissolution performance. Int J Pharm 2019; 556:372-382. [DOI: 10.1016/j.ijpharm.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023]
|
9
|
Mori Y, Motoyama K, Ishida M, Onodera R, Higashi T, Arima H. Theoretical and practical evaluation of lowly hydrolyzed polyvinyl alcohol as a potential carrier for hot-melt extrusion. Int J Pharm 2018; 555:124-134. [PMID: 30448311 DOI: 10.1016/j.ijpharm.2018.11.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Polyvinyl alcohol (PVA) is considered to be an unsuitable carrier for hot-melt extrusion (HME) due to its low processability. In this study, we focused on a lowly hydrolyzed PVA (JR-05, 70.0-74.0% hydrolyzed, L-PVA) to evaluate the potential use of L-PVA as a carrier for HME using the Hoftyzer and Krevelen method and thermodynamic models. These evaluations for drug-polymer systems based on the Flory-Huggins theory predicted the physicochemical properties of the solubility and miscibility between indomethacin (IND) and PVAs. Prior to initiating formulation studies, construction of IND and PVA phase diagrams provided guidance for design process conditions in HME. On the basis of the results of the validation studies, a conventional grade of PVA (JP-05, 87.0-89.0% hydrolyzed) is unlikely to be suitable as a carrier of HME due to its low plasticity, resulting in rapid recrystallization in the evaluation of in vitro dissolution and stability caused by poor miscibility. On the other hand, JR-05 demonstrated high processability, leading to the preparation of miscible extrudate with a high stability and an excellent in vitro dissolution profile due to its unique micelle-forming capability. These findings suggest that L-PVA brings about new carrier options among non-ionic polymers for HME.
Collapse
Affiliation(s)
- Yoshimasa Mori
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho Takatsuki, Osaka 569-1125, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Makoto Ishida
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho Takatsuki, Osaka 569-1125, Japan
| | - Risako Onodera
- Program for Building Regional Innovation Ecosystems in Kumamoto University, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools 'Health Life Science, Interdisciplinary and Glocal Oriented (HIGO) Program', Kumamoto University, Japan.
| |
Collapse
|