1
|
Park HJ, Kim DW. Customizable Self-Microemulsifying Rectal Suppositories by Semisolid Extrusion 3D Printing. Pharmaceutics 2024; 16:1359. [PMID: 39598483 PMCID: PMC11597271 DOI: 10.3390/pharmaceutics16111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: This study aims to create an innovative self-microemulsifying drug delivery system (SMEDDS) suppository for ibuprofen (IBU) using semisolid extrusion (SSE) three-dimensional (3D) printing technology. Methods: Based on solubility studies and the ability to form a transparent microemulsion upon dilution, a selected oil, surfactant, and co-surfactant were utilized to prepare SMEDDS-3DPS containing IBU. The optimal formulation consisted of 10% Triacetin, 80% Gelucire 48/16, and 10% Tetraethylene glycol. SSE 3D printing was employed to create three different-sized suppositories with varying drug contents. These suppositories were assessed for their physicochemical properties, content uniformity, and dissolution profiles. Results: The prepared mixture exhibited suitable physical properties for printing, with nano-sized emulsion droplets providing a large surface area for improved drug absorption in the rectum. Characterization techniques such as differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy indicated that IBU was present in the formulation in an amorphous state. Additionally, in vitro dissolution tests demonstrated that SMEDDS-3DPS had a significantly higher initial dissolution rate compared with IBU powder. Conclusions: This research suggests that SMEDDS-3DPS, as a rectal IBU dosage form, can enhance the rectal bioavailability of IBU. It demonstrates the versatility of 3D printing as a novel manufacturing method for lipid-based suppositories and highlights the simplicity and adaptability of SSE 3D printing technology in producing customized suppositories tailored to individual patient needs, surpassing traditional methods.
Collapse
Affiliation(s)
| | - Dong Wuk Kim
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE, MRC), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
2
|
Tu B, Jonnalagadda S. Amorphous stabilization of BCS II drugs using mesoporous silica. Int J Pharm 2024; 663:124555. [PMID: 39111354 DOI: 10.1016/j.ijpharm.2024.124555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the amorphous stabilization of BCS Class II drugs using mesoporous silica as a carrier to produce amorphous solid dispersions. Ibuprofen, fenofibrate, and budesonide were selected as model drugs to evaluate the impact of molecular weight and partition coefficient on the solid state of drug-loaded mesoporous silica (MS) particles. The model drugs were loaded into three grades of MS, SYLYSIA SY730, SYLYSIA SY430, and SYLYSIA SY350, with pore diameters of 2.5 nm, 17 nm, and 21 nm, respectively, at 1:1, 2:1, and 3:1, carrier to drug ratios, and three different loading concentrations using solvent immersion and spray drying techniques. Differential scanning calorimetry (DSC) thermograms of SY430 and SY350 samples exhibited melting point depressions indicating constricted crystallization inside the pores, whereas SY730 samples with melting points matching the pure API may be a result of surface crystallization. Powder x-ray diffraction (PXRD) diffractograms showed all crystalline samples matched the diffraction patterns of the pure API indicating no polymorphic transitions and all 3:1 ratio samples exhibited amorphous halo profiles. Response surface regression analysis and Classification and Regression Tree (CART) analysis suggest carrier to drug ratios, followed by molecular weight, have the most significant impact on the crystallinity of a drug loaded into MS particles.
Collapse
Affiliation(s)
- Buu Tu
- Saint Joseph's University, 600 S 43rd Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
3
|
Uddin A, Halder S, Deb N, Das H, Shuma ML, Hasan I, Shill MC, Haider SS. Impact of Methods of Preparation on Mechanical Properties, Dissolution Behavior, and Tableting Characteristics of Ibuprofen-Loaded Amorphous Solid Dispersions. Adv Pharmacol Pharm Sci 2024; 2024:2303942. [PMID: 38835733 PMCID: PMC11150040 DOI: 10.1155/2024/2303942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
This study aims to improve the biopharmaceutical, mechanical, and tableting properties of a poorly soluble drug, ibuprofen (IBP), by preparing amorphous solid dispersion (ASD) followed by a sustained-release tablet formulation. A suitable polymer to develop an ASD system was chosen by utilizing the apparent solubility of IBP in various polymer solutions. ASDs containing various ratios of IBP and selected polymer were prepared by the melt fusion (MF) method. ASD containing optimized drug-polymer ratio prepared by freeze-drying (FD) method was characterized and compared physicochemically. The solubility of IBP in water increased 28-fold and 35-fold when formulated as ASD by MF and FD, respectively. Precise formulations showed amorphization of IBP and increased surface area, improving solubility. The dissolution pattern of optimized ASD-IBP in pH 6.8 phosphate buffer after 60 min in MF and FD was enhanced 3-fold. In addition, direct compression tablets comprising optimized ASD granules from MF and FD were made and assessed using compendial and noncompendial methods. ASD-IBP/MF and ASD-IBP/FD formulations showed a similar drug release profile. In addition, 12 h of sustained IBP release from the ASD-IBP-containing tablets was obtained in a phosphate buffer with a pH of 6.8. From the dissolution kinetics analysis, the Weibull model fitted well. The drug release pattern indicated minimal variations between tablets formed using ASD-IBP prepared by both procedures; however, pre- and postcompression assessment parameters differed. From these findings, the application of ASD and sustained-release polymers in matrix formation might be beneficial in improving the solubility and absorption of poorly soluble drugs such as IBP.
Collapse
Affiliation(s)
- Ajam Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shimul Halder
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nandita Deb
- Department of Physics, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Harinarayan Das
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - Madhabi Lata Shuma
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Dhaka 1229, Bangladesh
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Syed Shabbir Haider
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
4
|
Joshi P, Rao GSNK, Chatterjee B. Scope and Application of Hot Melt Extrusion in the Development of Controlled and Sustained Release Drug Delivery Systems. Curr Pharm Des 2024; 30:2513-2523. [PMID: 39108005 DOI: 10.2174/0113816128299356240626114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 10/22/2024]
Abstract
Controlled-release drug delivery systems (CRDDS) are more beneficial than conventional immediate release (IRDDS) for reduced intake, prolonged duration of action, lesser adverse effects, higher bioavailability, etc. The preparation of CRDDS is more complex than IRDDS. The hot melt extrusion (HME) technique is used for developing amorphous solid dispersion of poorly water soluble drugs to improve their dissolution rate and oral bioavailability. HME can be employed to develop CRDDS. Sustained release delivery systems (SRDDS), usually given orally, can also be developed using HME. This technique has the advantages of using no organic solvent, converting crystalline drugs to amorphous, improving bioavailability, etc. However, the heat sensitivity of drugs, miscibility between drug-polymer, and the availability of a few polymers are some of the challenges HME faces in developing CRDDS and SRDDS. The selection of a suitable polymer and the optimization of the process with the help of the QbD principle are two important aspects of the successful application of HME. In this review, strategies to prepare SRDDS and CRDDS using HME are discussed with its applications in research.
Collapse
Affiliation(s)
- Parth Joshi
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle, Mumbai, Maharashtra 400056, India
| | - G S N Koteswara Rao
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Bappaditya Chatterjee
- School of Pharmacy, GITAM (Deemed to be University), Hyderabad, Telangana 502329, India
| |
Collapse
|
5
|
Karafiludis S, Buzanich AG, Heinekamp C, Zimathies A, Smales GJ, Hodoroaba VD, Ten Elshof JE, Emmerling F, Stawski TM. Template-free synthesis of mesoporous and amorphous transition metal phosphate materials. NANOSCALE 2023; 15:3952-3966. [PMID: 36723216 DOI: 10.1039/d2nr05630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves the transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1-x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms during degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed by in situ and ex situ scattering and diffraction, as well as X-ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on the metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes (240 m2 g-1 and 0.32 cm-3 g-1 for Mg and 90 m2 g-1 and 0.13 cm-3 g-1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further application, for instance in (electro)catalysis.
Collapse
Affiliation(s)
- Stephanos Karafiludis
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ana Guilherme Buzanich
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Christian Heinekamp
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Annett Zimathies
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Glen J Smales
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Vasile-Dan Hodoroaba
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Johan E Ten Elshof
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Tomasz M Stawski
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
6
|
Trivedi R, Chatterjee B, Kalave S, Pandya M. Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review. Curr Drug Deliv 2023; 20:694-707. [PMID: 35899950 DOI: 10.2174/1567201819666220721111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rishab Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Sana Kalave
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Mrugank Pandya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
7
|
Ghaemmaghamian Z, Zarghami R, Walker G, O'Reilly E, Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv Drug Deliv Rev 2022; 187:114313. [PMID: 35597307 DOI: 10.1016/j.addr.2022.114313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Pandemics and epidemics are continually challenging human beings' health and imposing major stresses on the societies particularly over the last few decades, when their frequency has increased significantly. Protecting humans from multiple diseases is best achieved through vaccination. However, vaccines thermal instability has always been a hurdle in their widespread application, especially in less developed countries. Furthermore, insufficient vaccine processing capacity is also a major challenge for global vaccination programs. Continuous drying of vaccine formulations is one of the potential solutions to these challenges. This review highlights the challenges on implementing the continuous drying techniques for drying vaccines. The conventional drying methods, emerging technologies and their adaptation by biopharmaceutical industry are investigated considering the patented technologies for drying of vaccines. Moreover, the current progress in applying Quality by Design (QbD) in each of the drying techniques considering the critical quality attributes (CQAs), critical process parameters (CPPs) are comprehensively reviewed. An expert advice is presented on the required actions to be taken within the biopharmaceutical industry to move towards continuous stabilization of vaccines in the realm of QbD.
Collapse
Affiliation(s)
- Zahra Ghaemmaghamian
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Gavin Walker
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Ahmad Ziaee
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
8
|
Development and Characterization of Eudragit ® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals (Basel) 2022; 15:ph15040492. [PMID: 35455489 PMCID: PMC9025505 DOI: 10.3390/ph15040492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.
Collapse
|
9
|
Machine learning to empower electrohydrodynamic processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112553. [DOI: 10.1016/j.msec.2021.112553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
|
10
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
11
|
Insights into the ameliorating ability of mesoporous silica in modulating drug release in ternary amorphous solid dispersion prepared by hot melt extrusion. Eur J Pharm Biopharm 2021; 165:244-258. [PMID: 34020023 DOI: 10.1016/j.ejpb.2021.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
In this work, the application of various mesoporous silica grades in the preparation of stabilized ternary amorphous solid dispersions of Felodipine using hot melt extrusion was explored. We have demonstrated the effectiveness of mesoporous silica in these dispersions without the need for any organic solvents i.e., no pre-loading or immersion steps required. The physical and chemical properties, release profiles of the prepared formulations and the surface concentrations of the various molecular species were investigated in detail. Formulations containing 25 wt% and 50 wt% of Felodipine demonstrated enhanced stability and solubility of the drug substance compared to its crystalline counterpart. Based on the Higuchi model, ternary formulations exhibited a 2-step or 3-step release pattern which can be ascribed to the release of drug molecules from the organic polymer matrix and the external silica surface, followed by a release from the silica pore structure. According to the Korsmeyer-Peppas model, the release rate and release mechanism are governed by a complex quasi-Fickian release mechanism, in which multiple release mechanisms are occurring concurrently and consequently. Stability studies indicated that after 6 months storage of all formulation at 30% RH and 20 °C, Felodipine in all formulations remained stable in its amorphous state except for the formulation comprised of 40 wt% Syloid AL-1FP with a 50 wt% drug load.
Collapse
|
12
|
Facile preparation of solid dispersions by dissolving drugs in N-vinyl-2-pyrrolidone and photopolymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112063. [PMID: 33947557 DOI: 10.1016/j.msec.2021.112063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
Drug solid dispersions improve the dissolution of drugs in aqueous media for enhancement of oral bioavailability. The current preparation methods of drug solid dispersions mainly involve the evaporation of solvents or the melting of drugs and matrix. Here, we create a new and simple method for the preparation of drug solid dispersions by dissolving drugs in N-vinyl-2-pyrrolidone (NVP) and then NVP photopolymerization. A variety of drugs were explored to find whether they were suitable for this method and only some of them were soluble in NVP and formed transparent and hard solid dispersions, including fluconazole, ketoconazole, bifonazole, miconazole nitrate, sulfamethoxazole, aspirin, ibuprofen and artesunate. The formation of photocuring solid dispersions was highly related to the free radical scavenging function of drugs. Those drugs with strong free radical scavenging capability, including curcumin, resveratrol, quercetin, genistein, puerarin, nicergoline, olanzapine, indomethacin, did not form solid dispersions. They scavenged 2,2-diphenyl-1-picrylhydrazyl free radicals, which was demonstrated by ultraviolet spectrometry and electron spin resonance. The scavenging of free radicals stopped the chain polymerization of NVP. The Fourier transform infrared spectra, X-ray diffraction and differential scanning calorimetry of ibuprofen solid dispersions and artesunate solid dispersions showed the molecularly miscible state of the drugs and the hydrogen bonding between the drugs and polyvinyl pyrrolidone. The NVP-based solid dispersions of the two drugs had faster and more complete dissolution than their traditional solid dispersions. The NVP photopolymerization-based solid dispersion method provides a new choice for the production of solid dispersions in the research and industrial fields.
Collapse
|
13
|
Improved Bioavailability and High Photostability of Methotrexate by Spray-Dried Surface-Attached Solid Dispersion with an Aqueous Medium. Pharmaceutics 2021; 13:pharmaceutics13010111. [PMID: 33467157 PMCID: PMC7830624 DOI: 10.3390/pharmaceutics13010111] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Low aqueous solubility and poor bioavailability are major concerns in the development of oral solid-dosage drug forms. In this study, we fabricated surface-attached solid dispersion (SASD) to enhance the solubility, bioavailability, and photostability of methotrexate (MTX), a highly lipophilic and photo-unstable drug. Several MTX-loaded SASD formulations were developed for spray-drying using water as the solvent, and were investigated for their aqueous solubility and dissolution kinetics. An optimized ternary SASD formulation composed of MTX/ sodium carboxymethyl cellulose (Na-CMC)/sodium lauryl sulfate (SLS) at 3/0.5/0.5 (w/w) had 31.78-fold and 1.88-fold higher solubility and dissolution, respectively, than MTX powder. For SASD, the in vivo pharmacokinetic parameters AUC and Cmax were 2.90- and 3.41-fold higher, respectively, than for the MTX powder. Solid-state characterizations by differential scanning calorimetry and X-ray diffraction revealed that MTX exists in its crystalline state within the spray-dried SASD. The MTX-loaded SASD formulation showed few physical changes with photostability testing. Overall, the results indicate that the spray-dried MTX-loaded SASD formulation without organic solvents enhances the solubility and oral bioavailability of MTX without a significant deterioration of its photochemical stability.
Collapse
|
14
|
Insoluble Polymers in Solid Dispersions for Improving Bioavailability of Poorly Water-Soluble Drugs. Polymers (Basel) 2020; 12:polym12081679. [PMID: 32731391 PMCID: PMC7466147 DOI: 10.3390/polym12081679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/14/2023] Open
Abstract
In recent decades, solid dispersions have been demonstrated as an effective approach for improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques that include the application of nanotechnology. Many studies have reported on the ability to change drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies involving insoluble carriers has been provided. In addition to the role of solubility and dissolution enhancement, the perspectives of the use of these polymers in controlled release solid dispersions have been classified and discussed. Moreover, the compatibility between methods and carriers and between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble carriers could provide a specific approach and/or a selection of these polymers for further formulation development and clinical applications.
Collapse
|
15
|
Oral Fixed-Dose Combination Pharmaceutical Products: Industrial Manufacturing Versus Personalized 3D Printing. Pharm Res 2020; 37:132. [PMID: 32556831 DOI: 10.1007/s11095-020-02847-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Fixed-dose combination (FDC) products containing at least two different active pharmaceutical ingredients are designed to treat more effectively different pathologies as they have demonstrated to enhance patient compliance. However, the combination of multiple drugs within the same dosage form can bring many physicochemical and pharmacodynamic interactions. The manufacturing process of FDC products can be challenging, especially when it is required to achieve different drug release profiles within the same dosage form to overcome physicochemical drug interactions. Monolithic, multiple-layer, and multiparticulate systems are the most common type of FDCs. Currently, the main manufacturing techniques utilized in industrial pharmaceutical companies rely on the use of combined wet and dry granulation, hot-melt extrusion coupled with spray coating, and compression of bilayered tablets. Nowadays, personalized medicines are gaining importance in clinical settings and 3D printing is taking a highlighted role in the manufacturing of complex and personalized 3D solid dosage forms that could not be manufactured using conventional techniques. In this review, it will be discussed in detail current marketed FDC products and their application in several diseases with an especial focus on antimicrobial drugs. Current industrial conventional techniques will be compared with 3D printing manufacturing of FDCs. Graphical Abstract.
Collapse
|